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Abstract: This paper addresses the problem of computing force-closure grasps with 
four non-coplanar contact points. The proposed approach in this work to determine 
force-closure grasp, is valid for sets of four faces with coplanar or non-coplanar 
normal, and is based on geometric operations. First, the sets of four object faces that 
due to their relative orientations and positions allow concurrent, flat-pencil and 
regulus types of grasp are determined; second, these sets are evaluated with a quality 
function and the best one is selected for the grasp; Finally, on the selected faces, 
according to the possible types of non-planar grasp, four contact points assuring a 
force-closure grasp are determined. Copyright© 2006 IFAC 
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1. INTRODUCTION 

 
A grasp of an object is force-closure if and only if 
the fingers can apply, through the contact points, 
forces that generate an arbitrary force and moment 
on the object. The theory regarding force-closure 
grasps has been deeply studied, and different 
techniques have been proposed for different cases 
(Nguyen, 1988, Liu et al., 1999; Xiangyang and 
Ding, 2004; Prado and Suarez, 2003-2005a). 
The force-closure grasps with four non-coplanar 
contact forces are classified into three categories 
(Ponce et al., 1997): concurrent grasp, in this case 
the lines of action of the four contact forces intersect 
in a point (Figure 1a); flat-pencil grasp, here the lines 
of action of two contact forces intersect in a point 
and those of the other two forces intersect in another 
point, with these two points laying on the 
intersection of the planes defined by each pair of 
lines of action (Figure 1b); and regulus grasp where 
the distance between two lines of action is the same 
as the distance between the other two lines of action 
and the projections of each pair of lines of actions on 
the plane parallel and equidistant to them must form 
a concurrent or a flat-pencil (Figure 1c). Also if a set 
of four faces allows a concurrent grasp with the 

contact points in the interior of the face (i.e. the 
contacts do not belong to the face boundary) then it is 
always possible to determine flat-pencil and regulus 
grasps on the same set of faces; moreover, the 
different types of grasp can be reached using the 
same directions of force by changing only the contact 
points. In the same way, if a set of four faces allows a 
flat-pencil grasp (but not necessarily a concurrent 
grasp) then it is always possible to determine a 
regulus grasp on the same set of faces. 
Ponce et al. (1997) developed an approach to 
determine concurrent grasps, but only on sets of four 
faces whose relative orientations satisfy a sufficient 
condition and their relative positions allow this type 
of grasp. However, the method does not work for 
flat-pencil and regulus grasps. Sundang and Ponce 
(1995) proposed a method for the construction of the 
three types of non-planar grasps over four faces 
whose relative orientations satisfy a sufficient 
condition but assuming that the relative positions of 
the faces to be contacted by the fingers allow flat-
pencil and regulus grasps. Prado and Suárez (2005b) 
developed an approach to determine non-coplanar 
grasps on sets of object faces whose relative 
orientations satisfy a necessary and sufficient 
condition and their relative positions allow three 
(concurrent, flat-pencil and regulus) or two (flat-
pencil and regulus) types of non-coplanar grasps. 
However, the approach does not determine regulus 
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grasps over sets of faces that only allow this type of 
non-coplanar grasp. 
In this paper, an approach to build the three types of 
non-coplanar grasps is proposed, and the main 
contribution is the determination of regulus grasps 
over sets of faces that only allow this type of grasp, a 
case that was not solved in any previous works. 
Same of the procedures used in this general approach 
were already used in Prado and Suárez (2005b) to 
solve particular cases, this will be pointed out when 
corresponds in the paper. 
Assumptions. The following assumptions are 
considered in this work: (1) The objects are 
polyhedrons; (2) The grasp is done using four fingers 
and each finger contacts with a different face of the 
object; (3) Only the fingertips will contact with the 
object surface and the contact is a point; and (4) the 
friction coefficient µ is constant. 
Notation. The following notation will be used: 
Pi: contact point on the object surface (i=1,2,3,4). 
Ai: contacted face of the object (i=1,2,3,4). 
ni: unitary vector with object inward direction 

normal to Ai. 
α=tg-1µ: half-angle of the friction cone (α<π/2). 
Cfi: friction cone with half-angle α, axis parallel to ni 

and vertex at Pi. 
Ci: friction cone with half-angle α, axis parallel to ni 

and vertex at the origin of the reference system 
(representation of Cfi in the force space). 

fi: contact force applied at contact Pi (fi⊂Cfi). 
Fex: external arbitrary force applied on the object. 
Mex: external arbitrary moment applied on the object. 
cm: object center of mass. 

2. APPROACH OVERVIEW 

The approach proposed in this work first selects the 
sets of faces that allow at least one type of non-
coplanar grasp. Then, from these sets, the one that 
maximizes a quality function is selected and, finally, 
on the selected faces four contact points assuring a 
force-closure grasp (FCG) are determined. 
The selection of the sets of four object faces that 
allow non-planar grasps is done in two phases: 
1) Selection of faces according to their orientations. 
In this phase the sets of four faces whose relative 
orientations allow the application of forces fi∈Ci 
i=1,2,3,4 that span ℜ3 are selected. Then, for each of 
these sets of faces subsets *Ci of the friction cones Ci 

are determined (Figure 2) such that, if fi∈*Ci 
i=1,2,3,4, then the four fi span ℜ3 with independence 
of the contact point; *Ci is approximated by the 
largest cone included in it. This phase was already 
solved in Prado and Suárez (2005b). 

2) Selection of faces according to their positions. In 
order to have the largest range of variation of the 
directions of fi to keep a FCG when Fex≠0 and 
Mex≠0, it is desirable the direction of fi to be aligned 
with the axis, nfi, of *Ci when Fex=0 and Mex=0, and 
therefore it is considered as a constraint in this 
selection of faces. In this phase a procedure is 
proposed to determine all the sets four faces that 
allow any type of non-coplanar grasps (including 
those that only allow regulus grasp) considering fi 
with direction of nfi. This procedure is composed of 
three modules independent from each other. The first 
module determines whether a set of faces allows the 
three types of non-coplanar grasps (concurrent, flat-
pencil and regulus), the second module determines 
whether a set of faces allows two types of non-
coplanar grasps (flat-pencil and regulus) and the last 
module determines whether the set of faces allows 
only regulus grasp. 
All the sets of faces that allow at least one type of 
non-coplanar grasps are evaluated according to a 
quality measure that considers: 
• The relative positions of the faces and their 

locations with respect to the object center of mass. 
• The forces fi with direction of nfi should have 

similar modules in absence of external 
perturbations (i.e. for Fex=0 and Mex=0). 

Then the set of faces that maximizes the quality 
function is selected for the grasp. 

The positions of Pi, i=1,2,3,4, on the selected faces 
are determined such that the centroid of the 
tetrahedron that they define is close to the object 
center of mass cm. 

3. SELECTION OF THE SETS OF FOUR FACES 
THAT ALLOW FCG 

The proposed procedure for the selection of the sets 
of four faces that allow FCG is described in the 
following two subsections. 
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3.1 Selection of faces according to their orientations  
Let: 
Πl be the closest plane to the origin that contains a 

face of ConvexHull(n1,n2,n3,n4) (Figure 3). 
ϕ be the angle between Πl and any of the three ni that 

determines Πl (note that ϕ is the same for any i). 
'Πl be the plane parallel to the Πl that contains the 

origin. 
vil and vir be the two unitary vectors that indicate the 

two boundary directions of 'Πl∩Ci, i=1,2,3,4, 
respectively (vil and vir don not exist when 
'Πl∩Ci=∅ and vil=vir when Ci is tangent to 'Πl). 

The sets of four faces that satisfy any of the two 
conditions below allow applied forces fi∈Ci i=1,2,3,4 
that span ℜ3, therefore they are selected as 
candidates for a FCG: 
1) 0∈ConvexHull(n1,n2,n3,n4). 
2) ϕ < α and 0∈ConvexHull(vil, vir, i=1,2,3,4). 
After selecting the sets of faces that allow FCG, the 
largest cone *Ci, included in each friction cone Ci, 
with directions that assure the FCG are determined. 
The procedure to determine *Ci is based on geometric 
operations with elements obtained from the friction 
cone Ci and the ConvexHull(n1,n2,n3,n4) 
respectively. The two conditions previous described 
and the determination of *Ci were developed and 
justified by Prado and Suárez 2005b. 

3.2 Selection of faces according to their positions  
The proposed procedure determines all the sets of 
four faces that allow to apply fi with direction of nfi 
i=1,2,3,4, (nfi being the axis of *Ci) whose lines of 
action determine concurrent, flat-pencil or regulus 
grasps. 
Let Di be the volume swept by the face Ai when Ai is 
displaced in the direction of nfi, i=1,2,3,4. 
A set of four faces Ai, i=1,2,3,4, is valid to produce a 
FCG if it satisfies any of the following three cases: 

A) Sets of faces that allow concurrent, flat-pencil and 
regulus grasps (Figure 4a) 

If D1∩D2∩D3∩D4≠∅ then the set of faces is valid 
for the three types of non-coplanar grasps 
In this case the projection on Ai with directions of nfi, 
i=1,2,3,4, of any point belonging to D1∩D2∩D3∩D4 
always determines a concurrent grasp (remind that if 
a set of faces allows a concurrent grasp also allows 
flat-pencil and regulus grasps). 
If D1∩D2∩D3∩D4=∅ then the set of faces does not 
allow concurrent grasps. 

B) Sets of faces that allow flat-pencil and regulus 
grasps 

If ∃Dj∩Dk≠∅ k,j∈{1,2,3,4}with j≠k, then: 
1. Determine Dj∩Dk and Dr∩Dh, where at least 

Dj∩Dk≠∅, with {j,k,r,h}={1,2,3,4} (Figure 4b). 
2. Determine the volumes, Dx and Dy, swept by 

Dj∩Dk and Dr∩Dh respectively (Figure 4c), when 
they are displaced in the direction of 
nI=(nfj×nfk)×(nfr×nfh). If Dx∩Dy≠∅ then the set is 
valid for a flat-pencil and regulus grasps. 
In this case the projections on Aj and Ak of a point 
belonging to Dx∩Dy∩Dj∩Dk and the projections 
on Ar and Ah of another point belonging to 
Dx∩Dy∩Dr∩Dh, with both points contained in a 
straight line parallel to nI, always determine a flat-
pencil grasp. 
The straight line that contains the two projected 
points must be parallel to nI  to allow a resultant of 
null torque. Note that any straight line parallel to nI 
and passing through a point belonging to 
Dx∩Dy∩Dj∩Dk always intersects with 
Dx∩Dy∩Dr∩Dh. 

If Dj∩Dk=∅ ∀k,j then the set of faces does not allow 
concurrent and flat-pencil grasps. 

C) Sets of faces that only allow regulus grasps 

Let: 
Li be the line of action of fi with direction of nfi 

i=1,2,3,4.  
Πx and Πy be the planes parallel and equidistant to Lj 

and Lk, and to Lr and Lh respectively, 
{j,k,r,h}={1,2,3,4}. 

px be the intersection point of the projections of Lj 
and Lk on Πx. 

py be the intersection point of the projections of Lr 
and Lh on Πy. 
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sx be the segment whose extremes are contained in Lj 
and Lk respectively, parallel to nfj×nfk and 
containing to px. 

sy be the segment whose extremes are contained in Lr 
and Lh respectively, parallel to nfr×nfh and 
containing to py. 

Note that px and py are the midpoints of sx and sy 
respectively, therefore px=sx∩Πx∩Πy and 
py=sy∩Πx∩Πy. 
A regulus grasp of fi with direction of nfi i=1,2,3,4, 
implies that x yp p ⊂Πx∩Πy and x ys s= , if any of 
these two conditions is not satisfied then the resultant 
torque produced by the applied forces is always non-
null. The procedure to determine if the set of faces 
allows regulus grasp is as follow: 
1. Compute the region, Rj, of Dj swept by Dk when 

Dk is displaced in the direction nfj×nfk (Figure 5). 
In the same way, determine the region, Rk, of Dk 
swept by Dj when Dj is displaced in the direction 
nfj×nfk. 
Since the extremes of sx belong to Lj and Lk 
respectively, and Lj⊂Dj and Lk⊂Dk, then the 
extremes of sx are always contained in Rj and Rk 
respectively. 
Let Rx be the region formed by all the segments 
parallel to nfj×nfk and whose extremes are 
contained in Rj and Rk respectively (sx⊂Rx). 

2. Repeat the step 1 replacing Dj and Dk by Dr and 
Dh and nfj and nfk by nfr and nfh, respectively, and 
let Rr and Rh be the corresponding resulting 
regions. 
Let Ry be the region formed by all the segments 
parallel to nfr×nfh and whose extremes are 
contained in Rr and Rh respectively (sy⊂Ry). 

3. Determine the volumes, Dx and Dy, swept by Rx 
and Ry respectively, when they are displaced in the 
direction of nI=(nfj×nfk)×(nfr×nfh) (Figure 6). If 
Dx∩Dy=∅ then the set of faces is non-valid for a 
regulus grasps. 
Any straight line parallel to nI that intersects Rx 
and Ry is always include in Dx∩Dy, this implies 
that if Dx∩Dy=∅ then x yp p  is not parallel to nI, 

therefore x yp p ⊄Πx∩Πy (Πx∩Πy//nI). Also 

x yp p ⊂Πx∩Πy implies necessarily that 
px⊂Rx∩Dx∩Dy and py⊂Ry∩Dx∩Dy. 

4. Determine the largest and shortest segments, s1
mx 

and s1
nx, parallel to nfj×nfk whose extremes belong 

to Rj and Rx∩Dx∩Dy respectively. In the same way 

determine the largest and shortest segments, s2
mx 

and s2
nx, parallel to nfj×nfk whose extremes belong 

to Rk and Rx∩Dx∩Dy respectively (note that the 
four segments are parallel and are include in Rx). If 
shortest{s1

mx, s2
mx}< largest{s1

nx, s2
nx} then the set 

of faces is non-valid for a regulus grasps. 
If shortest{s1

mx, s2
mx}<largest{s1

nx, s2
nx} then does 

not exist a segment parallel to nfj×nfk that satisfies 
that its midpoint belong to Rx∩Dx∩Dy and its 
extremes belong to Rj and Rk respectively. This 
implies that the set of faces do not allow determine 
sx (remind that px is the midpoint of sx and 
px⊂Rx∩Dx∩Dy). 

5. Repeat the step 4 replacing Dj and Dk by Dr and Dh 
and nfj and nfk by nfr and nfh, respectively. The 
resulting segments are identified with the same 
names but replacing x by y. If shortest{s1

my, s2
my}< 

largest{s1
ny, s2

ny} then the set of faces is non-valid 
to determine regulus grasps. 
Let s*

my=largest{s1
my, s2

my} s*
ny=shortest{s1

ny, s2
ny}. 

6. If shortest{s*
mx, s*

my}<largest{s*
nx, s*

ny} then the 
set of faces is non-valid for a regulus grasps. 
Otherwise it is valid. 
If shortest{s*

mx, s*
my}<largest{s*

nx, s*
ny} then 

x ys s=  this implies that the distance between 
Lj and Lk is always different from the distance 
between Lr and Lh, therefore the torque resultant 
produced by the applied forces is always non-null. 

4. QUALITY OF THE SETS OF FACES  

In order to select the set of faces to be contacted by 
the fingers, all the valid ones are evaluated according 
to a quality measure that considers: 
• The tetrahedron defined by P1, P2, P3 and P4 should 

have the maximum possible volume and its 
centroid should be as close as possible to the object 
center of mass. This produces better results in front 
of gravitational forces and torques (Ponce et al., 
1997; Liu et al., 1999). 

• The forces fi should have similar modules in 
absence of external perturbations (i.e. for Fex=0 and 
Mex=0). This produces a larger range of variation of 
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the applied forces to keep the FCG when external 
perturbations exist (Nakamura et al., 1989). 

The proposed quality function requires to determine, 
for each valid set of faces, the region CD that contains 
all the non-coplanar grasps that allow to apply fi with 
direction of nfi that reaches the equilibrium. CD is 
determined as follows. 
• Determine the portion Ad

i, of each face Ai, 
i=1,2,3,4, as: 
 If the set of faces allows the three types of non-

coplanar grasps then Ad
i, is the portion of Ai 

swept by D1∩D2∩D3∩D4 when it is displaced in 
the direction of nfi. 

 If the set of faces allows two types of non-
coplanar grasps then Ad

j and Ad
k are the portions 

of Aj and Ak swept by Dx∩Dy∩Dj∩Dk when it is 
displaced in the direction of nfj and nfk 
respectively. In the same way Ad

r and Ad
h, are the 

portions of Ar and Ah swept by Dx∩Dy∩Dr∩Dh 
when it is displaced in the direction of nfr and nfh 
respectively. 

 If the set of faces only allows regulus grasps 
then Ad

i, is the portion of Ai swept by Ri when Ri 
is displaced in the direction of nfi, i=1,2,3,4. 

• CD=convexhull(Ad
1, Ad

2, Ad
3, Ad

4). 
Since CD contains all the non-coplanar grasps that 
allow to apply fi with direction of nfi that reaches the 
equilibrium, then the volume of CD has a direct 
relationship with the volume of the tetrahedron 
defined by four contact points of any non-coplanar 
grasp contained in CD. 
The quality function uses the centroid cd and the 
volume Vc of CD, as well as the distance dc from cd to 
the object center of mass cm. 
The function that returns the quality of a set of faces 
as a value in the range [0,1] (being 1 the highest 
quality) is 

 
3

1
i

i

Q q
=

= ∏   (1) 

with: 

 max
1

max

c c

c

d d
q

d
−

=   (2) 

where dcmax is the maximum value of dc from all the 
valid sets of faces (q1 indicates how close is cm from 
cd); 

 2
max

c

c

V
q

V
=   (3) 

where Vcmax is the maximum value of Vc from all the 
valid sets of faces that allow a FCG (q2 indicates how 
close is Vc from Vcmax); 

 3
max

e

e

V
q

V
=  (4) 

where Ve is the radius of the largest sphere centered 
at the origin and included in 
convexhull(nf1,nf2,nf3,nf4), and Vemax=0.333 is the 
maximum possible value of Ve, and it is obtained in 
the particular case where the angle between any two 
nfi is 109°.47'. If q3=1 then the forces fi with direction 
of nfi, i=1,2,3,4, have the same modules. 
The set of faces with the largest Q is selected for the 
grasp. 

5. DETERMINATION OF THE CONTACT 
POINTS 

The procedure to determine the contact points 
depends on the type of non-coplanar grasp. The 
constructions of concurrent and flat-pencil grasps 
were already solved in Prado and Suárez (2005b). In 
that work a concurrent grasp is determined such that 
the intersection point of the lines Li, i=1,2,3,4, is close 
to cm and a flat-pencil grasp is determine such that the 
straight line that contains Lj∩Lk and Lr∩Lh with 
{j,k,r,h}={1,2,3,4} is close to cm. The procedure 
described here solves the remaining case determining 
regulus grasps such that Πx∩Πy is close to cm.  
Let Ln be the straight line closest to cm, parallel to nI 
and intersect with Rx∩Dx∩Dy and Ry∩Dx∩Dy 
(Section 3, step 3). The process is as follow: 
1. Determine s'=Ln∩(Rx∩Dx∩Dy) and 

s''=Ln∩(Ry∩Dx∩Dy), with {j,k,r,h}={1,2,3,4}. As 
Ln is close to cm then is imposed that Ln=Πx∩Πy 
and px and py are the midpoints of s' and s'', 
respectively. Note that x yp p ⊂Πx∩Πy. 

2. Trace two straight lines, Lx and Ly, through px and 
py and parallel to nfj×nfk and to nfr×nfh, 
respectively. Since Lx//nfj×nfk, Ly//nfr×nfh, px∈Rx 
and py∈Ry then sj=Lx∩Rj≠∅, sk=Lx∩Rk≠∅, 
sr=Ly∩Rr≠∅ and sh=Ly∩Rh≠∅. 
Let Pmi be the midpoint of si, i=1,2,3,4. 

3. Compute dm=min(dm1,dm2,dm3,dm4) with 
dmj= mj xP P , dmk= mk xP P , dmr= mr yP P  and 

dmh= mh yP P . 

4. Trace the segment sx parallel to nfj×nfk, with length 
2dm such that px is its midpoint, and another 
segment sy parallel to nfr×nfh with length 2dm and 
py as its midpoint. 

Fig. 7. Determination of a regulus grasps. 
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Note that the extremes of sx lay inside Rj⊂Dj and 
Rk⊂Dk respectively. In the same way the extremes 
of sy lay inside Rr⊂Dr and Rh⊂Dh respectively. 

5. Trace a straight line through each extreme of sx 
and sy with the direction of nf1, nf2, nf3 and nf4 
respectively. The intersection points of these 
straight lines with A1, A2, A3, and A4 determine P1, 
P2, P3 and P4, respectively. 

The straight line used to determine Pi, i=1,2,3,4, 
(step 5) is the line of action of fi∈Cfi with direction of 
nfi, applied in Pi. These forces can be applied to 
reach the equilibrium in absence of external 
perturbations, nevertheless, a positive linear 
combination of these forces may not necessarily to 
balance any Fex≠∅ and Mex≠∅, but due to friction it 
can be assured that Pi allow to apply the necessary 
fi∈Cfi (possibly with directions different from nfi) to 
balance any Fex≠∅ and Mex≠∅. 

6. EXAMPLES 

Two examples are shown to illustrate the proposed 
approach. In all the cases it is assume a constant 
friction coefficient µ=0,36.  
Figure 8 shows two objects with the resulting 
grasping points according to the possible types of 
non-planar grasp, the concurrent and flat-pencil 

grasps are determined according to the approach 
described in Prado and Suárez (2005b) and the 
regulus grasps according the approach described in 
this work. 

7. CONCLUSION 

The approach presented in this paper computes force-
closure grasps for polyhedral objects using four 
contact points frictional on sets of four faces with 
coplanar or non-coplanar normal. First all the sets of 
four faces whose relative orientations and positions 
allow regulus grasps are determined. Then from 
these sets of faces, the one that maximizes a quality 
function is selected and finally, on the faces of the 
selected set, four contact points assuring a force-
closure grasp are determined for the case of a regulus 
grasps. The approach is based on geometric 
operations. The time used in the selection of the best 
one clearly increases with the number of faces, but 
on the other hand, once the contact faces were 
selected, the determination of the contact points in 
not time consuming, with the presented methodology 
it is possible to compute any type of non-coplanar 
grasps (concurrent, flat-pencil and regulus). 
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Fig. 8. Two examples of FCG obtained with the 
proposed approach. 
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