
GRASPING FORCE OPTIMIZATION USING
DUAL METHODS
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Abstract: One of the basic requirements in grasping and manipulation of objects
is the determination of a suitable set of grasping forces such that the external
forces and torques applied on the object are balanced and the object remains
in equilibrium. This paper presents a new mathematical approach to efficiently
obtain the optimal solution of this problem using the dual theorem of non-linear
programming. The problem is modeled such that the basic convexity property
necessary to apply the dual theorem is satisfied and, then, it is transformed into
another one much easier to be solved. Three examples showing the efficiency and
accuracy of the proposed methodology are included in the paper.
Copyright c©2006 IFAC
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1. INTRODUCTION

Dexterous manipulation by means of mechanical
hands has become a field of great interest in the
last two decades. The advantages of these kind of
end-effectors over the conventional grippers are,
among others, the versatility of grasping objects
of different shapes and a better distribution of the
grasping forces, avoiding to damage the object.
The determination of the contact points on the
object boundary is usually based on the proper-
ties of form/force-closure, which provide to the
grasp the capability of resisting any external dis-
turbance (Bicchi, 1995). Once the grasp satisfies
one of these two properties, the problem is to
determine an adequate set of contact forces such
that the external forces and torques are balanced
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and the object remains in equilibrium. This is
one of the most basic requirements of a grasp
and, usually, it has not an unique solution. Some
authors prioritized the simplicity and efficiency
of the algorithms versus the optimality of the
solution in order to use the algorithms in real-time
procedures (Yoshikawa and Nagai, 1991; Saut et
al., 2005, among others). Other authors focused
their interest in obtaining the optimal solution
(for instance, the minimal force necessary to hold
the object). The main difficulty of determining the
optimal grasping forces is the non-linearity of the
friction models, although they can be simplified by
using linear approximations. In this case, the Sim-
plex algorithm(Kerr and Roth, 1986) or dual lin-
ear programming methods(Cheng and Orin, 1990)
can be applied. The accuracy of these methods
depends on the number of planes used in the ap-
proximation which increases their computational
cost. A linear method based on the ray-shooting
algorithm that use a large number of planes in



the approximation with a reasonable computa-
tional cost was presented by Liu (1999). The non-
linearities of the friction cones were maintained
by Nakamura et al. (1989) where an off-line algo-
rithm based on the primal form of a non-linear
problem was presented. The representation of the
frictional constraints as a positive definiteness of
a symmetric matrix was proposed by Buss et al.
(1996) and refined by Helmke et al. (2002). Based
on this representation, these authors developed
gradient flow algorithms and Han et al. (2000)
developed an algorithm based on Linear Matrix
Inequality methods. The algorithms proposed by
Buss et al. (1996), Helmke et al. (2002) and Han et
al. (2000) require to select an initial solution that
satisfies the constraints and the step sizes of the
algorithms. A solution to these problems as well
as a comparison of the three mentioned algorithms
was done by Liu et al. (2004). The use of a neural
network to solve this problem was proposed by
Xia et al. (2004).
This paper presents a new mathematical approach
to efficiently solve the optimal force distribution
problem. The problem is modeled as a non-linear
minimization problem such that the objective
function is the L2 norm of the finger forces vector
and the constraints are obtained by linearizing the
friction cones. This model assures the convexity
of the problem implying that the dual theorem
of non-linear programming can be applied, and
the original problem is transformed into another
one much easier to be solved. This method allows
to use a large number of planes in the linear
approximation without increasing the computa-
tional cost of the algorithm, allowing an accurate
final solution.

2. PRELIMINARY CONCEPTS

2.1 Problem Statement

Let f ci
∈ R

3 be the force exerted by a finger on
a contact point pi of the object boundary with
i = 1, ..., n and n being the number of fingers in
contact. Consider a local contact frame defined
by three orthogonal vectors such that one is the
inward normal and the other two are tangent to
the object boundary. In this case, fci

can be
expressed with respect to this local contact frame
as f ci

= [fn
ci

f t1
ci

f t2
ci

]T , where fn
ci

is the normal
and f t1

ci
and f t2

ci
are the tangent components

of fci
(see Fig. 1). Based on the hard contact

friction model, each finger force must satisfy the
Coulomb’s law in order to avoid finger slippage on
the object boundary, i.e.:

−µ(fn
ci

)2 + (f t1
ci

)2 + (f t2
ci

)2 ≤ 0 (1)

being µ the friction coefficient. Geometrically,
Eq. (1) defines the friction cone where the finger
force must lie.
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Fig. 1. Object and local contact frames, and hard
contact friction model.

All the components of the contact forces generated
by the fingers with respect their local contact
frames, form the finger force vector :

fc = [fT
c1

. . . fT
cn

] ∈ R
3n (2)

In order to determine the effect of fc on the
object, it has to be expressed with respect to a
common object frame usually chosen at the object
center of mass. The relation between the local
contact frames and the object frame is defined by
the Grasp Matrix G∈R

6×3n (Murray et al., 1994).
Let wext = [fx fy fz τx τy τz ]T ∈ R

6 be the
external wrench vector defined by all the forces
and torques exerted on the object with respect to
the object frame. In order to maintain the object
equilibrium, each finger must exert a contact force
such that −wext = Gf c. The dimension of fc

(3n) is greater than the dimension of the external
wrench vector (6) when n ≥ 3, implying that the
object is overconstrained and the solution is not
unique. In this case, f c = fp + fh with fp and
fh being two orthogonal vectors given by:

fp = −G+wext (3)

fh = Nh (4)

where G+ is the pseudo-inverse of G, N∈R
3n×(3n−6)

is an orthonormal basis of the null space of G and
h ∈ R

(3n−6) expresses fh with respect to N . fp is
called the particular solution of the problem and
this is the required force to balance the external
wrench. fh is called the homogeneous solution of
the problem or the internal force vector. This is
the component of fc that does not contribute to
balance the external wrench but it is necessary
to maintain the contact forces inside the friction
cones. Since fp is fixed for a set of grasping
points and an external wrench, the problem of
determining the grasping forces is equivalent to
determine h.

2.2 Mathematical Programming Background

The main mathematical programming concepts
that will be used in this paper to determine the
optimal finger forces are summarized in this sub-
section. The proofs of the conditions and theo-
rems exposed here and further explanations about
mathematical programming are given, among oth-
ers, by Luenberger (1973).



Consider the generic form of a minimization prob-
lem with inequality constraints as:

Min F(x) (5)

subject to C(x) ≤ 0 (6)

where x∈R
q is the variables vector, F is the ob-

jective function and C is a p-dimensional function.
Let x∗∈Ω be a vector that satisfies the con-
straints defined by Eq. (6). x∗ can be:
A local minimum: If there is a distance ε such

that F(x)≥F(x∗), ∀x ∈ Ω within |x−x∗|≤ε.
A global minimum: If F(x)≥F(x∗), ∀x∈Ω.
A regular vector: If the gradients of the con-

straints C(x∗) are linearly independent.

While in an optimization problem without con-
straints the gradient vector of the objective func-
tion is null in the local minima, this does not
necessarily happen when this function is subjected
to constraints. The following conditions generalize
the necessary optimality conditions for this kind
of problems.

Kuhn-Tucker Conditions (First-Order Nec-
essary Conditions). Let x∗ be a local minimum
for the minimization problem described by Eq. (5)
and (6) and suppose that x∗ is regular. There ex-
ists a Lagrange multipliers vector λ∈R

p (p being
the number of constraints) such that:

∇F(x∗) + λ∇C(x∗) = 0 (7)

λC(x∗) = 0 (8)

λ≥ 0 (9)

where ∇ is the gradient of the respective function.�
Let L(x, λ) = F(x) + λC(x) be the Lagrangian
function of a minimization problem. Eq. (7) is
the gradient of the Lagrangian function respect
to x and evaluated at x = x∗. Eq. (8) and (9)
determine the active constraints of the problem,
i.e. the inequality constraints that have associated
a Lagrange multiplier strictly positive and act just
as equalities.

The Kuhn-Tucker conditions are necessary condi-
tions and they have to be always satisfied. In order
to determine when the Kuhn-Tucker conditions
are also a sufficient condition for a local minimum
the following condition is stated.

Second-Order Sufficient Condition. A vector
x∗ satisfying the Kuhn-Tucker conditions is a
strict local minimum of the problem described by
Eq. (5) and (6) if the Hessian matrix

H(x∗) = ∇2F(x∗) + λ∇2C(x∗) (10)

is positive definite on the subspace
M ′ = {y : ∇Cj(x∗)y = 0 for all j ∈ J}, where
J = {j : ∇Cj(x∗)y = 0, λj > 0} and Cj is the j
component of C. �

The methodologies that determine the optimal
solution using the original or primal form of the
minimization problem are usually called primal
methods. Other kind of methods use the dual form
of the minimization problem to determine the op-
timal solution. The dual form transforms the orig-
inal problem into an equivalent problem where the
fundamental unknowns are the Lagrange multipli-
ers and once they are known, the determination of
the final solution is simple. The methods based on
the dual form are applicable only to a subclass of
non-linear optimization problems, since it requires
the convexity of the problem. Nevertheless, this
property is satisfied in a large range of practical
situations and there are important classes of prob-
lems for which these methods are better than the
primal.

Duality Theorem. Let x∗ be a local minimum
of the optimization problem described by Eq. (5)
and (6), and let λ∗ be the corresponding Lagrange
multipliers vector. Suppose also that x∗ is regular
and that the Hessian matrix H(x∗) is positive
definite. Then, the dual problem

Max φ(λ) = min[F(x) + λC(x)] (11)

subject to λ ≥ 0 (12)

has a local maximum at λ∗ with corresponding
value x∗. �
Note that the Duality Theorem can be applied
only when H(x∗) is positive definite, which as-
sures the convexity of the problem.

3. DETERMINATION OF THE MINIMAL
FINGER FORCES

The mathematical programming background pre-
sented in Sec. 2.2 is applied here to the problem of
determining the minimal grasping forces necessary
to balance an external wrench exerted on the
object. First, the problem is modeled such that
the convexity of the problem is assured. Then, the
primal and dual forms of the problem are obtained
and, finally, a method to determine the minimal
forces based on the dual form is developed.

3.1 Modeling the problem

The minimization of the grasping forces subjected
to the friction constraints, can be modeled as a
constrained minimization problem described by
Eq. (5) and (6). The objective function used in
this work is the module of the finger force vector,
i.e., ‖fc‖, with fc given by Eq. (2). Taking into
account that fc can be expressed as the sum
of two orthogonal vectors (fp and fh given by
Eq. (3) and (4), respectively) and that N is an



orthonormal basis of the null space of the grasp
matrix, ‖fc‖ can be expressed as:

‖fc‖ = ‖fp‖ + ‖h‖ (13)

The friction cones are modeled with the typical
linear approximation to a pyramid of m faces.
Taking into account the particular and homoge-
neous components of fc, the constraints imposed
by the friction cones can be expressed in a matri-
cial form as:

Rh + b ≤ 0 (14)

where R ∈ R
nm×n and b ∈ R

nm. As a result, the
problem of minimizing the grasping forces can be
expressed as the following minimization problem:

Min F(h) = ‖h‖2 (15)

subject to Rh + b ≤ 0 (16)

Note that Eq. (13) and (15) are equivalent for
the optimization and they give the same result.
Besides, these equations are quadratic implying a
non-linear minimization problem. From Eq. (10),
the Hessian matrix associated to this problem is
H(h)=2In, In being the n-identity matrix. Based
on H(h) the following properties regarding the
primal and dual forms are stated:
• H(h) is constant and positive definite in all the

subspace defined by the constraints. There-
fore, the Kuhn-Tucker conditions determine
the strictly global minimum of the problem.

• The convexity property necessary to apply the
dual theorem is satisfied. Then, the solution
of the dual form gives also the strictly global
minimum of the primal form.

The following subsections present the primal and
dual forms of the minimization problem described
by Eq. (15) and (16).

3.2 Primal Form

Since the convexity of the minimization problem is
assured, the global minimal grasping forces satisfy
the following system of equations obtained from
the Kuhn-Tucker conditions:

2Inh + RT λ = 0 (17)

λ(Rh + b) = 0 (18)

λ≥ 0 (19)

In this problem, the number of constraints (nm) is
larger than the number of variables (n) implying
that the maximum number of active constraints
has to be n so that the solution is regular. There-
fore, at least nm − n Lagrange multipliers are
equal to zero. The determination of the minimal
grasping forces using the Kuhn-Tucker conditions

represents a combinatorial problem with the max-
imum number of combinations bounded by Cn

nm.
Each combination implies to solve a n-linear sys-
tem of equations. Note that the number of com-
binations increases exponentially with respect to
the number of faces used to linearize the friction
cones. Although the Kuhn-Tucker conditions in
their pure form can be used when the friction
cones are linearized with a low number of faces,
it should be used jointly with another methods to
improve the convergence.

3.3 Dual Form

Since the convexity of the minimization problem is
assured, the dual theorem can be applied obtain-
ing that the solution of the optimization problem
described by Eq. (15) and (16) is also the solution
of the following maximization problem:

Max φ(λ) = λTSλ + λT b (20)

subject to λ ≥ 0 (21)

where S ∈ R
n×nm is defined as:

S(i, j)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
4

n∑
k=1

[R(i, k)]2 if i = j

−1
4

n∑
k=1

[R(i, k)][R(j, k)] if i 	= j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22)

The dual form has the following important advan-
tages respect to the primal one:
1. The objective functions of the two forms are

quadratic, but the constraints of the dual form
are much simpler than the constraints of the
primal form.

2. λ = 0 satisfies these constraints, thus it
is trivial to find an initial value λ inside
the feasible regions. Besides, this is a good
initial value since at least nm − n Lagrange
multipliers are equal to zero for the solution of
the primal form to be regular.

3. The progress from the initial value to the op-
timal solution maintaining the partial results
inside the feasible region is also a simple task.

Nevertheless, a drawback of this formulation is
the lack of physical meaning. The accomplishment
of the constraints does not have any physical
meaning and it does not imply to satisfy the
friction constraints. Only in the optimum case
it is possible to assure that the finger forces lie
inside the friction cones. Even so, it is considered
that the mathematical advantages of the dual
problem worth its lack of physical meaning. Fig. 2
schematizes the relation between the primal and
the dual form.

Using the dual problem formulation, the following
algorithm based on the gradient of the maximiza-
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Fig. 2. Relations between the primal and the dual
forms: the optimal solutions are equivalent
while the feasible regions are not.

tion function described by Eq. (20) is applied to
determine the optimal solution.

Step 1. Initialization.
Select as initial feasible solution λ(0) = 0, chose
the step size α and the tolerance parameter
ε > 0, compute ∇φ and initialize t = 1.

Step 2. Update values.
Compute λ(t+1) = λ(t) + α∇φλ(t+1).
If λ

(t+1)
i < 0 then λ

(t+1)
i = 0, where λ

(t+1)
i , with

i = 1, ..., nm, is a component of λ(t+1).
Step 3. Stop condition.

Compute δ = ‖λ(t+1) − λ(t)‖.
If δ < ε then λ(t+1) is the optimal solution of

the dual problem. The optimal solution of
the primal problem is determined using the
Kuhn-Tucker conditions.

Else t = t + 1 and go to Step 2.

This algorithm uses a constant value for the
step size α that has been chosen empirically (the
smaller the magnitude of α the slower the con-
vergence, but if α is too large the algorithm may
never converge). In order to increase the conver-
gence, more sophisticated methods that vary the
step size as a function of the rate of convergence
will be considered in future works. This methods
could be easily introduced in the algorithm with
minor modifications.

4. EXAMPLES

This section presents some results of applying the
proposed methodology to compute the grasping
forces given the positions of the contact points
on the object boundary and the external wrench
(wext) exerted on it. The methodology has been
implemented using Matlab 6.5 in a Pentium Cen-
trino at 1.6 GHz. Therefore, the code is not opti-
mal in terms of efficiency and the computational
times included in the examples can only be con-
sidered as qualitative values. Fig. 3 shows the
object and the three grasping points used in the
examples. The position of the contact points with
respect to the object reference frame of the object
are given by the following grasp matrix:

p1

p2p3

Ox y

z

W

Fig. 3. Object and section defined by the three
grasping points used in the examples.

G=

⎡
⎢⎢⎢⎢⎣

−0.86 0.50 0 1 0 0 −0.86 0.50 0
−0.50 −0.86 0 0 1 0 0.50 0.86 0

0 0 1 0 0 1 0 0 1
0 0 2.59 0 0 0 0 0 −2.59
0 0 −0.50 0 0 1 0 0 −0.50
2 −1.73 0 0 −1 0 −2 1.73 0

⎤
⎥⎥⎥⎥⎦

Three examples taking into account different val-
ues of wext will be presented. The following pa-
rameters are used in the three examples: µ = 0.3
(friction coefficient), m = 12 (number of faces
used to linearize the friction cones), α = 0.7 (step
size of the gradient algorithm) and ε = 1 · 10−4

(tolerance used in the stop condition).

Example 1. Only the object weight acts as external
wrench and the object is positioned as in Fig. 3.
Therefore, wext = [0 0 − 1 0 0 0]T .
The gradient method based on the dual problem
formulation finds the optimal solution at step
730 (∼ 20 ms). The final value of the objective
function is ‖fc‖ = 2.4867 and the finger forces
are: f c1

=[1.11 0.09 0.33]T , fc2
=[1.83 0 0.33]T

and f c3
=[1.11 0.09 0.33]T .

Note that the grasp matrix G has been defined
such that the third component of each finger
force is orthogonal to the plane defined by the
three contact points (shaded plane in Fig. 3). The
external force is also orthogonal to this plane,
then, it is balanced by the third components of
the forces while the other components are due to
satisfy the friction constraints.

Example 2. Now the external applied wrench has
non-null components in each direction of the ob-
ject reference frame: wext = [1 − 2 5 − 4 1 2]T .
The gradient method based on the dual problem
formulation finds the optimal solution at step 888
(∼ 20 ms). The final value of the objective func-
tion is ‖fc‖ = 12.5725 and the finger forces are:
fc1

=[4.12 −1.10 −0.56]T, fc2
=[8.91 −0.89 −2.33]T

and f c3
=[7.01 0.56 −2.10]T .

Example 3. In this example the object is rotated
clockwise 2π radians respect to the z-axis (Fig. 4
shows the initial position of the object). The forces
are computed while the object is being rotated
since the direction of the weight with respect
to the contact points varies. The movement has
been discretized with 100 sampling points, which
implies that the forces are recomputed at each
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Fig. 4. Initial position of the object considered in
example 3.
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Fig. 5. Evolution of the finger forces during the
object rotation in example 3.

0.0628 rad. In order to improve the efficiency of
the gradient method, λ is initialized with the solu-
tion of the previous sampling point instead of the
null vector. The average and maximum number
of iterations to obtain the optimal solution at
each step is 216 (∼ 10ms) and 2545 (∼ 90ms),
respectively. Fig. 5 shows the evolution of the
finger forces during all the movement.

5. CONCLUSIONS AND FUTURE WORKS

A new mathematical approach to solve the force
distribution problem in a grasp has been pre-
sented. This approach is based on the dual the-
orem of non-linear programming, which can only
be applied when the convexity of the problem is
assured. By adequately modeling the problem and
applying the dual theorem, the original problem is
transformed to another one much easier to solve.
The examples shows the efficiency of the proposed
methodology. Even when the code can not be
considered optimal in terms of efficiency, the pro-
vided computational times are of the order or even
smaller than those of some of the most popular
algorithms described by Liu and Li (2004).
The improving of the proposed gradient algorithm
considering a variable step size as a function of
the rate of convergence is considered as future
work. Another interesting future work is the study
of the problem convexity considering non-linear
constraints in order to apply the dual theorem in
this case.
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