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Abstract

Tolerances a�ect the assemblability of a product, which

in turn a�ects the cost of the product because of the

scrap cost, and wasted time and energy. In this paper,

we propose a method to analyze the product in terms of

assemblability based on tolerances and adjustability of

the parts. More speci�cally, the product is considered

assembled if the real parts can be �t regardless of the

deviations the real parts may have from their nominal,

because some parts can be adjusted in position after

it is assembled due to clearances between the parts.

Moreover, there is a cost associated with adjusting the

parts because of the adjusting time, �xturing costs,

and additional operations. A method is proposed to

evaluated the adjusting cost by counting the minimum

number of parts that must be moved or adjusted in

order to complete the assembly.

1 Introduction

The designers specify the dimensions and tolerances

of the parts of a product. These dimensions denote

the ideal geometry of parts, whereas the tolerances

describe the permitted variations of the speci�ed

dimensions or geometries. The tolerance speci�cation

is necessary because the manufacturing processes are

inherently imprecise and produce parts that vary.

The tolerances may not allow the parts to be

assembled successfully because the small deviations

can propagate and accumulate in the product. More

speci�cally, an assembly is typically composed of

several to many parts that are assembled together

through some type of interconnection, such as loose-

�t, tight-�t, attachment, etc., between parts' surfaces,

calledmating features. Small deviations can propagate

and accumulate through these mating features such

that a new part may not �t into the already assembled

parts, thus, failing the assembly operation.

Whether or not a part can be assembled into

the already assembled parts depends not only on

tolerances but also on clearances between the parts.

Clearances between two parts may provide the

adjustability, called an adjustable displacement set or

adjustable zone, which is de�ned as a set of permitted

displacements of one part with respect to its mated

part. The adjustable zone is a function of clearance of

two mating feature and the functionality of the parts

in the assembly. For instance, a cylindrical peg with

its diameter smaller than the diameter of a cylindrical

hole can adjust its pose by as much as the di�erence of

the two diameters. However, because of a functional

requirement, the bottom of the peg must be in contact

with the 
oor of the hole when they are mated. These

permitted adjustable zones provide the adjustability

to the parts for successful assembly operations because

the deviations due to tolerances can be compensated.

Although the adjustability may compensate tol-

erances, it comes with a cost associated with mov-

ing or adjusting the parts such as the adjusting time,

�xturing cost, and additional operations. Thus, it is

necessary to compute the minimumnumber of objects

(parts) that must be adjusted in order to perform a

successful assembly operation, given a set of toleranced

parts and a valid assembly sequence. It must be noted

that in some cases, adjusting the parts may not be

enough to assemble them successfully because the de-

viations caused by tolerances may be too large to be

compensated by given adjustable zones.

Following assumptions ae used: 1) Parts are rigid

components. 2) The clearance between two mating

features must be zero or larger. 3) It is always possible

to assembly the parts when they are nominal. 4) Real

parts are within the tolerance speci�cation.

Related Works

Turner [1] showed that a tolerance speci�cation

can be expressed as an in-tolerance region (established

by the tolerance limits) of a normed vector space. He

developed the methods for tolerance analysis based on

�nding the relationship between in-tolerance region

and in-design region, which is established by the

design constraints. Bjorke [2] has proposed statistical

approaches to a tolerance analysis based on functional

(sum) dimensions of simple and interrelated tolerance

chains. His goal was to derive a set of tolerance chain

equations which can solve the functional dimensions.

Then, these functional dimensions were checked

against the given con�dence limits.
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Figure 1: (a) A position tolerance (ANSI) of a hole

feature, (b) the real tolerance boundary in a deviation

frame, and (c) an approximated tolerance ellipse.

2 Product Assemblability

Tolerances a�ect the probability of a successful assem-

bly due to the permitted pose and size deviations, as

well as the surface and form irregularities, of the parts.

Although such deviations are small relative to the the

dimensions, they propagate and accumulate in assem-

blies making them di�cult or even impossible to as-

semble. However, they can be compensated by small

clearances between parts which provide the adjusta-

bility to already assembled parts to help bring the

mating parts to their mating positions, and provide

a small zone of possible mating positions for the mat-

ing parts instead of a single possible mating position.

This probability of assembly is called assemblability.

De�nition: The assemblability of a product for

a given dimension and tolerance speci�cation is

the probability of successfully assembling a set of

part instances manufactured within the tolerance

speci�cation.

2.1 Assemblability Analysis

Assemblies consisting of a number of parts have a net-

work of part interconnections, which represents the

complex relationships among the parts. More speci�-

cally, the parts in an assembly are interconnected through

some type of mating conditions such as loose-�t, �ght-

�t, attachment, etc., using some surfaces or features of

parts, calledmating features. For instance, a cylindrical-

peg feature of part P

1

has a loose-�t mating relation

with a cylindrical-hole feature of part P

2

, assuming the

diameter of peg is always smaller than hole.

It is possible that certain combinations of part

instances may fail to assemble due to the accumulation

of deviations which even the adjustable zones cannot

compensate. Thus, it is important to predict the

probability of successful assembly of the parts so

that the tolerance speci�cations can be reevaluated

and modi�ed if necessary in order to increase the

probability and lower the production cost associated

with the assembly costs.

A set of parts forming a loop may fail to

assemble because of the closed-loop constraint. More

speci�cally, every part in this set must be assembled
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Figure 2: (a) Assembly of parts P1 and P2 and (b)

the nominal adjustable zone and its minimum and

maximum boundaries.

to its two mating parts, except the base parts which

may be �xed, e.g., on a �xture, or attached to other

loops. This set of parts forming a loop is called a

parallel chain. A parallel chain fails to assemble if the

last part that completes the loop cannot be assembled

because the accumulated deviation of individual parts

cannot be compensated by the adjustable zones.

A network of an assembly is usually composed of

a set of parallel chains, called a multi chain. A multi

chain fails to assemble if any one of the parallel chains

fails to assemble. Therefore, the assemblability can be

computed statistically by computing the probability of

assembly of every parallel chains in the product. The

computational methods are discussed next.

2.2 Computational Model

It has been already studied by [3] that most

of the tolerance types described in ANSI [4] can

be statistically approximated by an ellipsoid in a

coordinate frame of kinematic parameters, called a

deviation frame in this paper. In general, a deviation

frame has six axes (i.e., three translation and three

rotation), and the origin indicates that the feature is in

its nominal pose. Centered at the origin of a deviation

frame, the ellipsoid approximates the real tolerance.

For instance, a point in this ellipsoid represents a

permitted deviation of feature from its nominal pose.

For example, a feature (hole) of a part shown in

Fig. 1(a) has a position tolerance of 0.2. The meaning

of this tolerance is that the axis of the hole (shown by

a solid vertical line) is permitted to deviate within the

tolerance zone (shown by a dotted rectangle with the

width of 0.2.) That is, the coordinate frame attached

to the nominal pose of the hole can deviate from its

nominal as much as the axis is allowed to deviate from

its nominal. This maximum boundary in a deviation

frame of two axes (� and x) is shown in Fig. 1(b),

which shows that the coordinate frame attached to the

nominal hole can rotate (�) approximately at most by

�0.033 and can translate in x-axis (x) at most by �0.1.

Fig. 1(c) shows an ellipse approximation of the real

tolerance boundary. The details of the approximation

algorithm using ellipsoid are described in [3] and [5].

An example of the adjustable zone of a peg and

hole is shown in Fig. 2(a), which is a rectangular zone
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Figure 3: (a) An adjustable zone of P1 and P2, (b) the

real boundary in a deviation frame, and (c) an ellipse

approximation.

of 0.40 by 1.0 when the parts are nominal (i.e., the part

dimensions without the tolerances). However, due to

the tolerances (�0.05) of the diameters of the peg and

hole, the adjustable zone can vary accordingly within

the maximumand minimumlimits as shown by dotted

lines in Fig. 2(b).

An adjustable zone and its limits are represented

by a nominal ellipsoid and its minimumand maximum

limits in a deviation frame. For instance, the

coordinate frame attached to the center of the axis of

the hole of P2, which is aligned with the axis of the peg,

is permitted to be adjusted as much as the adjustable

zone allows, as shown in Fig. 3(a). The nominal

and the limits of the adjustable zone in a deviation

frame is shown in Fig. 3(b), where the solid line is the

nominal adjustable boundary, whereas the dotted lines

indicate the minimum and maximum limits. Fig. 3(c)

shows an adjustable ellipse and the limits statistically

approximating the real adjustable boundary and the

limits of Fig. 3(b). In brief, the distribution of

the simulated adjustable zones (the distribution of

diamond areas) is optimally approximated by an

analytical distribution that can closely approximate

the simulated distribution of the real adjustable zones.

This analytical solution (Gaussian-Sigmoid Function

[5]) has a 
at-top bell shape whose minimum (the top)

and maximum (approximately �3�) can approximate

the limits of the adjustable boundary limits. The

details are described in [5].

2.3 Parallel Chain Computation

The statistical ellipsoids of the tolerance and adjustable

zone of a parallel chain, as well as its assemblability,

can be computed in the following way: (1) Identify

the last part to be assembled in the parallel chain.

(2) From the base(s), compute the ellipsoids of toler-

ance and adjustable zone of each chain, called a serial

chain, formed by cutting the parallel chain at the last

part. This cut assumes that the last part is been as-

sembled to only one of the serial chains, and computes

the accumulation at the mating features of each se-

rial chain. (3) Numerically compute the new ellipsoids

of the tolerance and adjustable zone, as well as the

assemblability, of the parallel chain.

The computation of ellipsoids of tolerance and

adjustable zone of a serial chain in step (2) requires

the addition and propagation of ellipsoids of individual

mating features in the serial chain. This addition

operation is called a tolerance sweep operation, which

adds all combinations of randomly and normally

generated samples (points) of the two ellipsoids.

Then, the distribution of the addition is optimally

approximated by an ellipsoid using an analytic

solution, i.e., Gaussian function. The tolerance

ellipsoid of a serial chain is the addition of all the

individual ellipsoids in the chain.

The sweep operation of two adjustable ellipsoids

approximates the distribution of the sweep area of

two randomly selected adjustable ellipsoids from each

given nominal adjustable ellipsoids and their limits.

More speci�cally, (i) Randomly generate an ellipsoid

from each nominal adjustable ellipsoids and their

limits. This can be done by randomly and normally

generating a value within the limits of the ellipsoids

axes, so that randomly generated ellipsoid lies within

the limits. (ii) Compute the sweep volume of the two

randomly generated ellipsoids. (i) Repeat the above

two steps many times, and accumulate the sweep

volumes. (iv) Optimally approximate the distribution

of the accumulated sweep volumes using an analytical

solution describe in the previous subsection.

The assemblability and the ellipsoids of tolerance

and adjustable zone of a parallel chain can be

computed from the solutions of the two serial chains.

Note that the ellipsoids of tolerance and adjustable

zone of each serial chain denote the probability

distribution of tolerance and adjustable zone of the

serial chain. Therefore, the assemblability can

be computed by randomly and normally selecting

(generating) a sample point from each tolerance

ellipsoid, and checking whether or not the randomly

selected adjustable ellipsoids located at the tolerance

sample point intersect. The intersection implies that

the two serial chains can be assembled for the selected

samples or instances. The assemblability of the

parallel chain is the total number of success divided

by the total number of trials. For all the intersection

volumes, the distribution of the centers and the

distribution of the volumes, whose centers transformed

to an origin of a adjustable deviation frame, form

the tolerance and adjustable zones of the parallel

chain. These distributions can be approximated by the

ellipsoids of tolerance and adjustable zone as described

in the previous section.

2.4 Multi Chain Computation

A multi chain represents a network of two or more

parallel chains. An example of a multi chain is shown

in Fig. 4, where there are six parts, P1, � � �, P6, and

seven parallel chains, 1, � � �, 7. The parallel chains are

shown by dotted loops in the �gure.

The assemblability of a multi chain is computed

by iteratively solving each parallel chain of the multi
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Figure 4: A multi chain with seven parallel chains

chain. The order of parallel chains to be solved can

be determined from the given assembly sequence, or

by the users (designers), as long as the next selected

parallel chain is connected to the already processed

(solved) parallel chain. When the solution of a new

parallel chain is computed, at a selected part, its e�ect

is propagated back (back-propagation) to other nodes

of the already solved parallel chains. This is because

the completion (or assembly) of a new parallel chain

can a�ect the previously computed solutions of other

nodes. That is, when a new parallel chain is assembled

to the currently assembled parts, the tolerances and

adjustable zones of the parts may no longer be the

same. The algorithm ends when the last parallel chain

in a multi chain is solved.

In Fig. 4 for example, when the P-chain 1 is

selected, the pool of nodes under consideration is

fP1,P2,P3g, as shown in Table 1. The parallel chain

is solved at P3, which is underlined and bold faced

in the table. After the computation of tolerance and

adjustable zone of P3, the result back-propagates to

P1 and P2. When the P-chain 2 is considered, the

part nodes attached to it, e.g., P4 and P5, are added

to the pool of nodes to consider. There are P1, P2,

P3, P4, and P5 which are attached to the future P-

chains, i.e., 3,4,5, 6, and 7. P4 is selected as a node for

which P-chain 2 is solved. When the solution of P4 is

calculated, its solution back-propagates to P1, P2, P3,

and P5. This process continues, and can be traced as

shown in Table 1.

The computational complexity of the algorithm

is provided in terms of the number of Intersection

Operations (IOs), as in the parallel chain, and Sweep

Operations (SOs). In the worst case, the number of

IOs is P �n, where P is the number of part nodes that

join two or more parallel chains, and n is the number

of P-chains in the multi chain (M-chain.) The number

of Tolerance Sweep Operations (TSOs) performed by

the algorithm is n(P � 1) + 2M , and the number of

Adjustable Displacement Sweep Operations (ASOs)

is n(P � 1) + M , where M is the number of mating

nodes.

Table 1: Multi chain execution steps for the example

in Fig. 4

P-chain
Order

Pool of Nodes under
Consideration

Pool of Nodes for
Future P-chains

1 {P1, P2, P3} = S1 {P1, P2, P3}

2 {P4, P5} ∪ S1 = S2 {P1, P2, P3, P4, P5}

3 S2 = S3 {P1, P2, P4, P5}

4 {P6} ∪ S3 = S4 {P1, P2, P4, P5, P6}

5 S4 = S5 {P1, P2, P4, P6}

6 S5 = S6 {P1, P2, P6}

7 S6 = S7 ∅

3 Cost Evaluation

This section presents a method to deal with a parallel

chain of parts that can be systematically extended for

the case of a manipulated object that links a larger

number of parallel chains.

Let M be the manipulated part, the last part

that will link two serial chains, and P

1

and P

2

be the

two last parts of the two serial chains that have to be

assembled withM . The number of parts N=f0,1,2,3g

that has to be adjusted to be able to perform the

assembly as well as which are these parts (P

1

, P

2

, and

M ), allows eight di�erent solutions according to the

di�erent sets of parts to be adjusted: ;, fP

1

g, fP

2

g,

fMg, fM;P

1

g, fM;P

2

g, fP

1

; P

2

g and fM;P

1

; P

2

g.

The algorithm to compute the statistical occurrence

of each one is described below:

Algorithm: Adjustability Cost

1. Compute the ellipsoids of tolerance (T

i

) and

adjustable zone (D

i

) of two serial chains, i=1,2.

2. Set num

�

=0 for � = ;, fP

1

g, fP

2

g, fMg,

fM;P

1

g, fM;P

2

g, fP

1

; P

2

g, and fM;P

1

; P

2

g.

3. Repeat n times (n large enough):

(a) Randomly generate an adjustable ellipsoid

L

i

between M and P

i

.

(b) Randomly generate a sample p

i

from the

T

i

and D

i

. p

i

denotes an possible pose of a

serial chain i.

(c) Randomly generate a sample m

i

from the

mating feature i of M .

(d) Compute the minimum number of parts to

be adjusted.

(e) Increment num

�

according to the result

returned in previous step.

4. Return

num

�

n

for each �.
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Table 2: Simulation results of the multi chain

Par1 Par2 Par3 Par4 Par5 Par6 Par7 A

Sim1 0.997 1.0 1.0 0.277 1.0 1.0 0.513 0.1417

Sim2 0.997 1.0 1.0 0.085 0.922 0.999 0.618 0.0482

Sim3 0.996 1.0 1.0 0.184 0.945 1.0 0.949 0.1644

Sim4 0.997 1.0 1.0 0.126 0.895 0.999 0.708 0.0795

Sim5 0.989 1.0 1.0 0.451 0.993 1.0 0.585 0.2591

Average 0.1386

4 Simulation of Assemblability

An assembly of six parts, shown in Fig. 5, is used in

the simulation. The parts are two dimensional. We

used two dimensional coordinate frames with x and �

axes, where x denotes the translation in x axis and �

denotes the rotation about the axis perpendicular to

the plane of the paper.

The graph of the assembly is shown in Fig. 4.

It has seven parallel chains, 1-7. This multi chain is

solved by solving the parallel chains in the sequence

of 1 to 7. As explained before, the i

th

parallel

chain depends on the solution of the sub-multi chain

composed of parallel chains 1 through i� 1.

The result of the �ve simulation runs is shown in

Table 2, where Par

i

denotes the parallel chain i, Sim

j

denotes the j

th

simulation run, and A denotes the

assemblability of the product. This simulation result

shows that Par4 has very low probability, which leads

to very low probability for the whole assembly. The

probability of Par7 is also low.

The assemblability of the example assembly is low

mainly due to the small clearance that was assigned to

the mating features between the parts P3 and P4. The

peg diameter of P3 is 1.63 and the hole diameter of P4

is 1.67, whereas other peg and hole mating features

have diameters of 1.40 and 1.80, respectively.

5 Simulation of Cost Evaluation

The four part example assembly shown in Fig. 6 is

used in this simulation. The bottom part (P1) has

two holes where the left shaft (P2) and the right shaft

(P3) are inserted into. The top part (P4) with two
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Figure 6: ANSI dimension and tolerance speci�cation

for the four part 2D example assembly: 1 Bottom (P1),

2 Shafts (P2 and P3), 1 COver (P4).

holes is assembled to the two shafts. The holes of part

P1 have diameter of 1.0 with size tolerance of �0.01

and position tolerance of 0.10. The holes of part P4

have diameter of 1.02 with size tolerance of �0.01 and

position tolerance of 0.10. Note that the holes of P4

have diameter slightly larger, by 0.2, than the holes of

P1. The shafts, P2 and P3, have diameter of 0.97 with

size tolerance of �0.02. Size and position tolerances

are used in this example to make it simple to illustrate

simulation results.

The simulation counts the number of objects that

must be moved in order to successfully assemble the

parts. Therefore, it assumes that the cost is the same

for moving the same number of objects, although they

may be di�erent, e.g., moving two objects fP1,P2g or

fP1,Mg costs the same. It must be noted that the

algorithm described in the previous section accounts

for all possible results including di�erent objects but

the same number of objects.

Two assembly sequences were tested and com-

pared in the simulation: (1) fP1,P2,P3g [ fP4g and

(2) fP4,P2,P3g [ fP1g, where f.g denotes a subassem-

bly and [ denotes the assembly operation. For ex-

ample, the subassembly fP1,P2,P3g has been already

assembled, and the next assembly task is to assem-

ble fP4g to fP1,P2,P3g. It must be noted that the

subassemblies fP1,P2,P3g and fP4,P2,P3g are serial

chains, thus, the cost of assembling them has been

ignored in this simulation. We show the cost of as-

sembling a parallel chain.
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Figure 7: Accumulated tolerance ellipses at P2 (T1),
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In simulation (1), ellipses of tolerances and

adjustable zones, shown in Fig. 7, are computed at the

upper end of shafts, P2 and P3, propagated from P1.

Note that although the deviation frame requires three

axes, y component has been ignored since it a�ects

little the results and illustrates better the example.

T1 and T2 are the accumulated tolerance ellipses at

the tip of the left shaft (P2) and the right shaft (P3),

respectively. m1 and m2 are the tolerance ellipses

of the left and right holes of the top part (P4). The

solid-line bar graph in Fig. 8 shows the probabilities

of moving N = f0, 1, 2, 3g number of objects for the

sequence. In simulation (2), the ellipses of tolerances

and adjustable zones are computed at the lower end

of the shafts, P2 and P3, propagated from P4. The

dashed-line bar graph in Fig. 8 shows the probabilities

of moving N number of objects for this sequence.

These results show that the assembly sequence

(1) can be assembled without moving an object about

2.88% of the time, and one object about 38.72% of

the time. However, the assembly sequence (2) can

only assemble 0.32% without moving any objects, and

21.4% by moving one object. By assuming that the

cost is directly related to the number of objects to

be moved (e.g., �xturing cost), then the assembly

sequence (1) is better than the assembly sequence (2).

6 Conclusion

A statistical method of computing the assemblability

of a product is proposed based on solving parallel

chains iteratively. In addition, the product can be

statistically evaluated in terms of adjusting cost. In

assembly processes, adjusting parts can increase the

cost of the product due to additional �xtures or

holding devices, extra time, etc. The predictability

of the product assemblability allow the designers to

better design the tolerances, and decrease the cost

involved in assembly process.

The expected contributions of this paper are:

(1) a computer-aided tool for analyzing the product
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Figure 8: Bar graphs of probability of moving N =

f0, 1, 2, 3g. number of parts for assembly sequence

1: fP1, P2, P3g [ fP4g (dashed-lines), and assembly

sequence 2: fP4, P2, P3g [ fP1g (solid-lines).

assemblability can be built to help the designers check

the tolerance speci�cation, (2) a new cost metric is

proposed based on the concept of adjustability of

assembly, and (3) assembly sequences can be selected

using this metric, thus bringing the assembly sequence

evaluation closer to more realistic problem.
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