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Abstract 

This paper presents a heuristic approach to the 
synthesis of force closure grasps of polyhedral objects 
using three contact points with friction. The approach is 
valid for sets of three faces as well as for sets of two faces 
(i.e. two contact points in the same object face). First, the 
sets of two and three object faces whose relative 
orientations and positions allow force closure grasps are 
determined. Second, these sets are evaluated with a 
quality function and the best one is selected for the grasp. 
Finally, the grasp contact points that generate a force 
closure grasp are determined on the selected set of faces. 
The method uses simple geometric reasoning on the 
projections of the faces on two orthogonal planes. 

1. Introduction 

A force-closure grasp is able to reject external forces 
and torques applied on the grasped object by means of the 
forces applied by the fingers at the contact points. The 
theory regarding force-closure grasps has been deeply 
studied, and different techniques have been proposed 
depending on: the orientation of the faces to be contacted 
(parallel or non parallel), the number of fingers, the type 
the contact (hard or soft fingertips), and the object shape 
(concave or convex) [1]-[5].  

Previous approaches to the problem of determining 
force closure grasps of polyhedral objects with more than 
two friction contact points assume that each contact is 
located on a different object face [4]-[6], and therefore 
grasps with, for instance, three fingers on two object faces 
one not considered. 

Regarding the stability and robustness of the grasp, it 
was shown that a set of non-parallel grasping forces 
produce more stable and robust grasps than a set of 
parallel ones [7] [8]. Based on this idea, several 
algorithms were proposed for the determination of force 
closure grasps for non-parallel faces [1][5][6][8], but they 
are not applicable for parallel faces. Nevertheless, parallel 
faces are quite frequent in real objects and sometimes the 
constraints impose by the task or by the objects 
themselves force the use of parallel faces for the grasp. 

In this paper we present a heuristic approach to the 
synthesis of force closure grasps of polyhedral objects 
using three contact points with friction, valid for sets of 
three faces as well as for sets of two faces (i.e. two 

contact points in the same object face), being them either 
parallel or non-parallel. The proposed approach uses 
heuristics to avoid iterative searching procedures. First, 
the sets of two and three object faces whose relative 
orientations and positions allow force closure grasps are 
determined. Second, these sets are evaluated with a 
quality function and the best one is selected for the grasp. 
Finally, the grasp contact points that generate a force 
closure grasp are determined on the selected set of faces. 

2. Assumptions and basic nomenclature 

The following assumptions are considered in this work: 
• The objects are polyhedrons. 
• The grasp is done using three fingers. 
• Only the fingertips will contact with the object surface 

and the contact is a point (then for stability reasons, the 
contact points cannot be on an object edge). 

• The friction coefficient µ is constant. 
The following basic nomenclature will be used: 
Pi: contact point on the object surface (i=1,2,3). 
Ai: contacted face of the object (i=1,2 or i=1,2,3 

depending on the number of contacted faces). 
ni: object inward unitary vector normal to Ai. 
α=tg-1µ: half-angle of the friction cone (α<π/2). 
Cfi: friction cone with half-angle, axis parallel to ni and 

vertex at Pi. 
Ci: friction cone with half-angle α, axis parallel to ni and 

vertex at the origin of the reference system. 
fi: contact force applied at contact Pi (fi⊂Cfi). 
Πp: grasp plane defined by the three contact points Pi. 

3. Force-closure Grasps and Previous 
Considerations 

A force-closure grasp (FCG) must satisfy [3]: 

         = × =∑ ∑
n n

i ex i i ex
i i

f F r f M  (1) 

where n is the number of contact points, ri is the vector 
from the object center of mass to the contact point Pi, and 
Fex and Mex are, respectively, any external arbitrary force 
and torque applied on the object. 

The proposed approach determines the three contact 
points Pi that allow a FCG based on the following 
proposition: 
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Proposición 1. Three non-colinear contact points Pi, 
i=1,2,3, allow a FCG if and only if the following three 
conditions are satisfied: 
C1. Πp∩(Cf1∩Cf2∩Cf3)≠ ∅. 
C2. The components fpi of fi over Πp i=1,2,3, satisfy at 

least one of the following two cases: 
1. fp1, fp2 and fp3 span Πp and their supporting lines 

intersect in a point. 
2. fp1, fp2 and fp3 are parallel and that in the middle of 

the other two has different sense. 
C3. The components fgi of fi orthogonal to Πp i=1,2,3, 

have the same sense. 
Proof.  
Sufficient Condition:  

Fex and Mex can be decomposed into two components, 
one over Πp and another one orthogonal to Πp.  

The condition C1 allow the application of contact 
forces fi with non-null components fpi satisfying fpi⊂Cfi 
and components fgi with any sense. 

The condition C2 implies that a positive linear 
combination of the components fpi can balance the 
component of Fex over Πp and the component of Mex 
orthogonal to Πp.  

The condition C3 implies that a positive linear 
combination of the components fgi can balance the 
component of Fex orthogonal to Πp and the component of 
Mex over Πp.  

The existence of a proper solution of the two previous 
positive linear combinations under the constraint fi⊂Cfi 
can be guarantied just by applying forces fi with 
components fpi large enough. 
Necessary Condition: 

A necessary condition for the existence of a FCG is 
that equation (1) must be satisfied when Fex=0 and Mex=0 
[1][5][11]. In the case of a FCG with three contact points 
Pi it means that the three applied contact forces fi must be 
coplanar [5] and, since they pass though the contact points 
Pi, this is possible only on the plane Πp; as a consequence 
condition C1 is necessary for the existence of a FCG.  

The proof of case 1 of C2 as necessary condition for 
the existence of a FCG can be found in [8], and the proof 
for case 2 of C2 can be found in [7]. 

If the three components fgi do not have the same sense 
then the component fgi with different sense produce, with 
each of the others, two torques on Πp with different 

directions (since the contact points Pi are not collinear 
these torques cannot be parallel), then any positive linear 
combination of the components fgi produces a non-null 
torque over Πp, and since the components fpi do not 
produce torques over Πp the resultant torque of the forces 
fi will be always non null, and the grasp will not be a 
FCG. As a consequence condition C3 is necessary for the 
existence of a FCG.                                                           ■ 

4. Selection of the Set of Faces that Allow 
Force-Closure Grasps 

The selection of the object faces that allow a FCG is 
done in two phases: 

1. Selection of faces according to their orientations. 
2. Selection of faces according to their positions 

(from those passing the first phase). 
The selection procedures for the sets of three and two 

faces are described in the following subsections, where 
the following conditions and auxiliary regions are used. 

If fpi, i=1,2,3, are non-parallel, their supporting lines 
must intersect in a point (Proposition 1, condition C2). 
This point belongs to each of the regions bounded each 
one by two straight lines parallel to each fpi passing 
through the extremes of the segments ai=Πp∩Ai (Figure 
1a). Then, the intersection, R, of these regions always 
satisfies  

 

 R≠∅ (2) 

Let Ap
i be the projection of Ai over Πp. Since 

ai=Πp∩Ai⇒ai⊆Ap
i. Then, the intersection, Rp, of the 

regions on Πp bounded each one by two straight lines 
parallel to each fpi passing through the extremes of Ap

i 
satisfies R⊆Rp, and therefore 

 Rp≠∅ (3) 
In the case of parallel fpi it is necessary to distinguish 

between the case of a grasp using two faces and the grasp 
using three faces; for two faces all the previous reasoning 
is valid and R and Rp must be non null for any FCG, but 
in the case of parallel fpi applied on three faces R may be 
null, even for a FCG, and the same may happen with Rp 
(note that the regions whose intersection determine R are 
parallel strips and the two lateral ones, corresponding to 
forces with the same sense, may not intersect each other 
even for a FCG). 

Let Πs be an arbitrary plane orthogonal to Πp and As
i 

the projection of Ai over Πs. The projection of Ap
i over Πs 

give a segment on the line Πp∩Πs that belong to As
i (this 

segment is always non-null, but it can degenerate into a 
point). Then, it is possible to define a region Rs≠∅ on Πs 
bounded by two lines parallel to Πp∩Πs (Figure 1b), such 
that: 

 Rs ∩ As
i ≠ ∅ (4) 

4.1 Selection of the sets of three faces  
Selection of faces according to their orientations. 
Let: 
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Figure 1. a) Determination of R; b) Determination of Rs.
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Πl be the plane parallel to the one defined by the extremes 
of n1, n2 and n3 and passing through the origin 
(Figure 2a). 

ϕ be the angle between ni and Πl, i=1,2,3 (note that ϕ is 
the same for any i). 

vil and vir be the two unitary vectors that indicate the two 
boundary directions of Πl∩Ci (Figure 2b) respectively 
(note that vil=vir when Ci is tangent to Πl). 

Proposition 2. Any vector of ℜ3 can be obtained as a 
linear combination of three vectors, one from each 
friction cone Ci, if: 

1. ϕ < α. 
2. 0∈ConvexHull(v1l, v1r, v2l, v2r, v3l, v3r). 

Proof. If ϕ ≥ α then all three cones Ci lie in one of the 
half-spaces of ℜ3 defined by Πl and therefore vectors in 
the other half-space can not be obtained as a linear 
combination of any three vectors from the cones Ci (note 
that vil and vir do not exist for ϕ > α and that vil=vir for the 
limit case ϕ = α). 

If ϕ < α and 0∉ConvexHull(v1l, v1r, v2l, v2r, v3l, v3r) then 
the plane Πl can not be spanned by a linear combination 
of the components on Πl of any three vectors from the 
cones Ci, and therefore some vectors of ℜ3 cannot be 
obtained.  

If ϕ < α and 0∈ConvexHull(v1l, v1r, v2l, v2r, v3l, v3r) then 
the plane Πl can be spanned by a linear combination of 
the components on Πl of three vectors from the friction 
cones Ci and, at the same time, there are forces in Ci with 
components orthogonal to Πl pointing in both senses; as a 
consequence any vector of ℜ3 can be obtained as a linear 
combination of three vectors, one from each cone Ci.      ■ 

Only sets of three object faces that satisfy the two 
conditions in Proposition 2 are selected.  
Selection of faces according to their positions.  

A set of three object faces will be considered as 
parallel for grasping purposes if they allow a FCG that in 
absence of external perturbations (i.e. satisfy equation (1) 
for Fex=0 and Mex=0) reaches the equilibrium using 
parallel forces. This condition is possible if the contact 
friction cones satisfy Ci∩Cj∩(-Ck)≠ ∅, with (-Ck) 
representing the negated of Ck, {i,j,k}={1,2,3} and the 
axis of Ck is the normal that does not form the smallest 
angle between any two normals. The selection of faces 
according to their positions is done in a different way for 
parallel and non-parallel sets of faces. 
For a set of non-parallel faces. In absence of external 
perturbations each grasp force must lie on the grasp plane 
Πp as well as in the corresponding friction cone Cfi, 
therefore it is interesting to maximize Πp∩Cfi, i=1,2,3. 

The plane Πp that maximizes the minimum Πp∩Cfi is 
parallel to Πl, and makes Πp∩Cfi to have the same size for 
any i. For this reason, the condition Πp//Πl is imposed in 
the grasp search, and it is considered in this selection of 
object faces. Let the plane Πs (remember that Πs is 
orthogonal to Πp and therefore also to Πl) be orthogonal 
to the projection, nl

i, of any of the three vectors ni over Πl 
(without loss of generality from now on in this subsection 
it is assumed that Πs⊥nl

1). Now, given a set of three non-
parallel faces Ai, i=1,2,3, the procedure to test if this set is 
valid to produce a force closure grasp is the following: 
1. On the plane Πl (Figure 3a): 

1.1. Compute the projection, Al
i, of Ai over Πl ∀i. 

1.2. Compute the intersection, Rl, of three regions 
limited each one by two parallel lines such that for 
i=1,2,3: 
• The lines are parallel to nl

i. 
• The lines are tangent to Al

i.  
If Rl=∅ (i.e. Rp=∅, in equation (3)) then Return 
(Invalid). 

1.3. Compute the projection, Al
i, of Ai over Πl ∀i. 

1.4. Trace three planar cones, Cri, on Πl with the origin 
at the centroid of Rl, axis with the directions of nl

i 
(i=1,2,3) and half-angles α-ϕ. 

1.5. Compute Al
i∩Cri (by construction Al

i∩Cri≠∅). 
1.6. Compute the portion, Ali, of each face Ai whose 

projection on Πl gives Al
i∩Cri. 

2. On the plane Πs (Figure 3b): 
2.1. Compute the projection, As

i, of Ali over Πs ∀i. 
2.2. Compute the intersection, Rs, of three regions 

limited each one by two parallel lines such that for 
i=1,2,3: 
• The lines are parallel to Πl∩Πs. 
• The lines are tangent to As

i.  
(note that in this case the six lines are parallel). 
If Rs=∅ (see equation (4)) then Return (Invalid). 

3. Return (Valid). 
For a set of parallel faces. Without loss of generality we 
will assume here that A1 is the face with opposite 
direction to A2 and A3. In this case the procedure uses only 
the plane Πs, as follows: 
1. If As

1∩As
2≠∅ or As

1∩As
3≠∅ (Figure 4a) then 

Return(Valid). 
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Figure 3. a) Selection on Πl; b) determination of Al1. 
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Figure 2. a) Determination of Πl; b) determination of v2r and v1l.
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2. Compute the auxiliary region Aaux1=ConvexHull(As
2, 

As
3)-As

2-As
3 that has vertices of As

2 and vertices of As
3. 

If As
1∩As

aux1≠∅ (Figure 4b) then Return (Valid). 
3. Return (Invalid). 

This is a conservative approach because there may be 
sets of three faces that allow a FCG and they are not 
considered as valid, but in any case these sets would 
permit only extreme grasp configurations close to lose the 
force closure condition. 

4.2 Selection of the sets of two faces 

Selection of faces according to their orientations.  
Let ϕ be the angle between ni and the segment defined 

by n1 and n2 (note that ϕ is the same for i=1 and i=2). A 
set of two object faces is selected as valid candidate for a 
FCG according to their orientations if ϕ < α. 
Selection of faces according to their positions.  

Let the plane Πs (remember that Πs is orthogonal to 
Πp) be orthogonal to the segment defined by n1 and n2, 
and As

i be the projection of Ai over Πs. A set of two object 
faces is selected as valid candidate for a FCG according to 
their positions if ConvexHull(As

1)∩ConvexHull (As
2)≠∅. 

This is a conservative approach because there may be 
sets of two faces that allow a FCG and they are not 
considered as valid, but in any case these sets would 
permit only extreme grasp configurations close to lose the 
force closure condition. 

5. Determination of the Plane Πp 
The orientation of the plane Πp and the region Rs 

(equation (4)) that fixes the position of Πp assuring the 
existence of a FCG are determined as follows. 
For a set of three faces: 
• For non-parallel faces. The orientation of Πp is 

selected such that Πp//Πl and the region Rs is computed 
as in the Step 2.2 of Subsection 4.1. 

• For parallel faces. Let: 
Aaux2 be the intersection As

1∩ConvexHull(As
2, As

3), 
le1 be the straight line parallel to that defined by the 

centroids of As
2 and As

3 passing through the centroid 
of Aaux2, 

lej be the straight line passing through the centroids of 
Aaux2 and As

j, j=2,3. 
o If (lei∩As

2≠∅ and lei∩As
3≠∅) is satisfied for any 

i=1,2,3, then compute the largest segment 
se=lei∩ConvexHull(As

2,As
3) from those obtained for 

the values of i that satisfy (lei∩As
2≠∅ and 

lei∩As
3≠∅). Otherwise, compute the edge, se, of 

ConvexHull(As
2, As

3) that has vertices of As
2 and 

vertices of As
3 and that is closer to the centroid of 

Aaux2. 
o Compute the intersection, Rs, of three regions limited 

each one by two parallel lines such that: 
 The lines are parallel to se. 
 The lines are tangent to As

i.  
Then, the orientation of Πp is selected such that Πp⊥Πs 
and Πp//se. 

For a set of two faces: 
• Compute the intersections: 

o As
12 = As

1∩As
2 (Figure 5a). 

o Rs
1= (ConvexHull(As

1)-As
1) ∩ As

2. 
o Rs

2= (ConvexHull(As
2)-As

2) ∩ As
1. 

By construction at least one out of As
12, Rs

1 and Rs
2 is 

always not null. 
• Select from As

12, Rs
1 and Rs

2 the one with larger area, 
and call it Rs

maxT.  
o If Rs

maxT=As
12 then let lu be the largest edge of As

12. 
o If Rs

maxT = Rs
i, i=1,2, then let lu be the edge of the 

region ConvexHull(As
i)-As

i that contains Rs
i, and 

whose extremes are not continuous vertices of As
i. 

• Compute Rs as the intersection of two regions limited 
each one by two parallel lines such that: 
o The lines are parallel to lu (Figure 5b). 
o The lines are tangent to As

i, i=1,2,3. 
Then, the orientation of Πp is selected such that Πp⊥Πs 
and Πp//lu. If Rs

maxT=Rs
i for any i=1,2, then the two 

portions of As
i that are included in Rs will be considered as 

corresponding to two different faces, and therefore if we 
call them As

i and As
3, respectively. These can be 

subsequently processed as the sets of three faces. For the 
same reason, if Rs

maxT≠Rs
i i=1,2, then As

i=As
3. 

Previous works [5]-[10] have shown that it is a 
desirable condition that the grasping plane Πp contains the 
object center of mass cm. Then, considering this condition, 
the position of Πp is determined such that it contains a 
specific point for the different cases. Let cs

m be the 
projection of cm on Πs. 
For any set of three faces and for sets of two faces with 
Rs

maxT=Rs
i 

• If cs
m∈Rs∩ConvexHull(As

1, As
2, As

3) then Πp is fixed to 
contain cm. 

• Otherwise, Πp is fixed to contain the centroid, cs
I, of 

Rs∩ConvexHull(As
1, As

2, As
3). 
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For sets of two faces with Rs
maxT≠Rs

i 
• If cs

m∈As
12 then Πp contains cm. 

• If cs
m∉As

12 and the centroid of As
12 lies inside As

12 then 
Πp is fixed to contain the centroid of As

12.  
• If cs

m∉As
12 and the centroid of As

12 is not inside to As
12 

then trace a straight line, Lc, orthogonal to lu passing 
through the centroid of As

12. Πp is fixed to contain the 
middle point of Lc∩As

12 (Figure 5c). 

6. Quality of the Sets of Faces 
In order to select a set of faces that allows a good FCG, 

the sets of faces are classified according to a quality 
measure defined considering: 
• The triangle, , defined by P1, P2, and P3 should have 

the maximum possible area. It provides a larger 
dynamic stability [10]. 

• The centroid of  should be as close as possible to the 
object center of mass. It gives a better response to 
gravitational forces and torques [1][5]. 

• The grasping forces fi should have similar modules in 
absence of external perturbations (i.e. satisfy equation 
(1) for Fex=0 and Mex=0). It gives a greater range of 
variations of the applied forces to keep the FCG when 
there are external perturbations (i.e. satisfy equation 
(1) for Fex≠0 and Mex≠0) [7][9]. 

Let:  
nl

bs be the vector bisector of Ci∩Cj∩(-Ck)∩Πl, 
{i,j,k}={1,2,3} (the axis of Ck is the normal to the 
face that does not form the smallest angle between 
any two normals) for a set of three faces or be the 
vector parallel to the segment defined by n1 and n2 for 
a set of two faces. 

Is be the region Rs∩ConvexHull(As
1, As

2, As
3). 

The proposed quality function uses three parameters d1, 
d2, and dni that are computed as follows considering the 
plane Πp already determined (Section 5): 
• Compute a region Ip as, 

o For sets of three non-parallel faces. Ip is the 
intersection of three regions limited each one by two 
parallel lines such that, for i=1,2,3: 
 The lines are parallel to nl

i (Section 4). 
 The lines are tangent to ai (Section 4). 

o For sets of three parallel faces and set of two faces. 
Ip is the intersection of the ConvexHull(a1,a2,a3) 
(note that a2=a3 for two faces with Rs

maxT≠Rs
i) with a 

region limited by two parallel lines such that: 
 The lines are parallel to nl

bs. 
 The lines are tangent to a1 (in the phase of 

selection by positions is assumed that the face A1 
has opposite direction to the faces A2 and A3). 

• Find the centroid cp
I of Ip. 

• Then: 
d1 is the distance between cs

I and cs
m. 

d2 is the distance between cp
I and cp

m. 
dni is the distance between the extremes of each pair nl

i, 
i=1,2,3 for sets of three faces, and dni is the distance 

between the extremes of each pair ni, for set of two 
faces (in this case it is considered that n2= n3). 

Now, the proposed quality function that returns the 
quality of a set of faces as a value in the range [0,1] 
(being 1 the highest quality) is  
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=∏ i
i

Q q  (5) 

with 

 

1max 1
1

1max

 −= 


d d
q

d
 (6) 

where d1max is the maximum value of d1 from all the valid 
sets of faces, q1 indicate how close is cs

I from cs
m; 

 

2 max 2
2

2 max

 −= 


d d
q

d
 (7) 

where d2max is the maximum value of d2 from all the valid 
sets of faces, q2 indicate how close is cp

I from cp
m; 
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where Is
max and Ip

max are the maximum values of Is and Ip 
from all the valid sets of faces, q3 indicate the area ratio 
between Is and Ip with Is

max and Ip
max, respectively; 

 4 1 ϕ
α

= −q  (9) 

q4 indicates how close are the extremes of ni to Πp; 
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where dmax and dmin are the maximum and minimum 
values of dni i=1,2,3, respectively. q5 indicates 
• For a set of three non-parallel faces, whether the 

triangle defined by nl
1 nl

2 and nl
3 contains the origin 

and, if this is the case, which is the relation between 
the maximum and minimum edges of the triangle. 

• For a set of three parallel faces, how close are nl
2 and 

nl
3 from the supporting line of nl

1. 
• For a set of two faces, how close is n2 from the 

supporting line of n1. 
The set of faces with largest Q is selected for the grasp.  

7. Determination of the Contact Points 
The position of the contact point Pi on the face Ai is 

determined on the segment ai, i=1,2,3 (note that for a set 
of two faces the points P2 and P3 are on the same face A2) 
being ai=Πp∩Ai. Let: 

ca be the centroid of ConvexHull(a1,a2,a3), 
Li be the straight line on Πp passing through cp

I 
(centroid of Ip) with the direction of nl

i, i=1,2,3. 



The process used to determine each contact point Pi, 
for each type of set of faces, assures that ca belongs to the 
triangle defined by the three points Pi and that is close to 
the triangle centroid.  

In order to avoid contact points close to the boundary 
of the faces below a security limit, the segments ai can be 
shortened a given security distance from their actual 
vertices. The following subsections describe the 
procedure for the contact point determination for each 
type of sets of faces. 

7.1 Contact points for three non-parallel faces 

In this case the following procedure is used (Figure 6): 
1. Compute the straight line Li, i=1,2,3, closest to ca. 

Let Lp be the Li closest to ca. 
2. Compute the projection, Pm, of the middle point of 

the segment p
a Ic c  on Lp. 

3. Determine a point PI such that: 
• If Pm∈Ip then PI =Pm. 
• If Pm∉Ip then PI is the extreme of Lp∩Ip closest to 

a2. 
4. Trace three straight lines through PI with the 

directions of nl
1, nl

2 y nl
3. Let 'P1, 'P2 and 'P3 be the 

intersection points of these lines with a1, a2, and a3 
respectively. 

5. Let '  be the triangle determined by 'P1, 'P2 and 'P3. 
Then:  
• If PI∈'  then P1='P1, P2='P2 and P3='P3. 

• If PI∉'  then trace three straight lines through cp
I 

with the directions of nl
1, nl

2 y nl
3. The 

intersection points of these lines with a1, a2, and 
a3 respectively determine P1, P2 and P3. 

7.2 Contact points for three parallel faces and 
of two faces with Rs

maxT = Rs
i 

In this case the following procedure is used (Figure 7): 
1. Compute the intersection, *P1, of the line containing 

a1 with the line passing through ca with direction 
nl

bs.  
• If *P1∈a1 then P1=*P1. 

• If *P1∉a1 then P1 is the extreme of a1 closest 
to*P1. 

2. Determine the middle points, Pm1 and Pm2, of the 
portions of a2 and a3 on each side of the straight line, 
Lp, that passes through P1 with the direction of nl

bs. 
3. Select P2 as the point Pm1 or Pm2 that is more far 

away from Lp. 
4. Determine the distance, dm, from P1 to Lp. 
5. Select a point *P3 on the supporting line of a3 at a 

distance dm from Lp, now: 
• If *P3∈a3 then P3=*P3. 
• If *P3∉a3 then P3 is the extreme of a3 closest to *P3. 

7.3 Contact points for two faces with Rs
maxT ≠Rs

i 

In this case the following procedure is used: 
1. Compute the segments a1 and a2. The largest will 

contain two contact points (without loss of 
generality let us consider here that a2 ≥ a1). 

2. Compute the intersection, *P1, of the line containing 
a1 with the line passing through ca with direction of 
nl

bs. 
• If *P1∈a1 then P1=*P1. 
• If *P1∉a1 then P1 is the extreme of a1 closest to *P1. 

3. Trace the straight line, Lp, passing through P1 with 
direction of nl

bs. 
4. Compute Ps=Lp∩a2. Let s21 and s22 be the two parts 

of a2 delimited by Ps. 
5. Select P2 as the middle point of s21 or s22 that is 

more far away from Lp. 
6. Determine the distance, dm, from P2 to Lp. 
7. Select a point *P3 on the supporting line of a2 at a 

distance dm from Lp in the direction opposite to P2: 
• If *P3∈a2 then P3=*P3. 
• If *P3∉a2 then P3 is the extreme of a2 closest to *P3. 

8. Examples 
Six examples are given in order to illustrate the 

proposed approach. In all the cases it is assume a constant 
friction coefficient µ=0,3. The implementation was done 
using Matlab and executed on a server INTEL 
Biprocessor Pentium III 1,4 GHz. The six objects with 
numbered faces are shown on the left column of Figure 8 
and the objects with the resulting grasping points are 
shown on the right column of the same figure, even when 
the implementation is not particularly oriented to time 
optimization,  the  required  processing  time  is  given  in  
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each case showing that it strongly increases with the 
number of faces. Note that the obtained FCG make 
physical sense. Nevertheless, even when the FCG 
condition can be assured, no formal measure of the grasp 
quality was yet implemented (for instance the criteria of 
the maximum minimum wrench presented in [9]). 

9. Summary 
A heuristic approach to the determination of force-

closure grasps for polyhedral objects using three contact 
points with friction was presented in the paper. The 
approach can obtain a force closure grasp on two or three 
object faces. First, the best set of faces was selected from 
those whose relative orientations and positions allow 
force closure grasps, and then, the grasp contact points are 
determined on the selected set of faces using geometric 
reasoning and heuristics to avoid iterative procedures. 
Since all the possible sets of faces are initially considered, 
the time used in the selection of the best one clearly 
increases with the number of faces, on the other hand, 
once the contact faces were selected, the determination of 
the contact points in not time consuming. The results for 
different objects show that the obtained grasps make 
sense and are robust. Future work includes the 
comparison of the obtained grasps with the optimum one 
according to different optimizations criteria, which 
requires the implementation of a procedure to find the 
optimum grasp. 
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Figure 8. Six examples of FCG obtained with the proposed
approach. 
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