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Institut d’Organització i Control de Sistemes Industrials (IOC-UPC)

Av. Diagonal 647 Planta 11, 08028 Barcelona, SPAIN
Emails: jordi.cornella@upc.edu, raul.suarez@upc.edu

Abstract

Form-closure independent regions are parts of the ob-
ject edges such that a grasp with a finger in each region
ensures a form-closure grasp. These regions are useful to
provide some robustness to the grasp in the presence of
uncertainty as well as in the design of fixtures. The pa-
per presents a new approach to compute independent re-
gions for four frictionless contacts. A sufficient condition
is stated and used to obtain combinations of two contact
points that allow a form-closure grasp. Then, selecting
one of these combinations, a set of four independent re-
gions on the object boundary is determined. An example of
the proposed methodology is included in the paper.

1 Introduction

Grasps capable of ensuring the immobility of the ob-
ject despite external disturbances are characterized by one
of the following properties: form-closure when the posi-
tion of the fingers ensures the object immobility, or force-
closure when the forces applied by the fingers ensure its
immobility [1]. These two properties are closely related
and many theoretical aspects are valid for both of them. A
necessary and sufficient condition that form/force-closure
grasps must satisfy and a quality criterion to select a grasp
can be found in [2] and [3], respectively. In practice, the
difference between form-closure and force-closure grasps
relies in the field of application: while form-closure grasps
are used to determine robust grasps that do not rely on
friction, for instance, the fixture of objects to be manu-
factured, assembled or inspected in industrial processes,
force-closure grasps rely on friction and they are used to
manipulate objects with a low number of contact points,
for instance, with grippers of two and three fingers.

During the last two decades, a lot of algorithms has
been developed to determine form/force-closure grasps of
polygonal and polyhedral objects [4][5][6], among others.
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These algorithms require the linealization of irregular ob-
jects, generating a large number of edges or introducing
errors in the computation of the finger placements. For
irregular objects, algorithms to compute antipodal points
(i.e., points whose normal vectors are collinear and in
opposite directions) can be found in [7] and [8], algo-
rithms to compute three finger grasps of 2D and 3D ob-
jects can be found in [9] and a general algorithm to de-
termine force-closure grasps of 3D objects was proposed
in [10]. These algorithms determine contact points and
the obtained grasps require a good precision in fingertips
placements. In order to provide robustness to the grasp in
front of finger positioning errors, the concept of indepen-
dent regions was introduced in [11] as regions on the object
boundary such that a finger in each region ensures a force-
closure grasp independently of the exact contact point. The
determination of independent regions was treated with dif-
ferent considerations: two fingers and polygonal [11] or
non-polygonal [12] objects, four fingers and polygonal ob-
jects [11][13], three fingers and polygonal objects [14] and
four fingers and polyhedral objects [15]. These works
are specific for a given number of fingers. General algo-
rithms to determine all the N -finger force-closure grasps
on polygonal objects can be found in [16] and [17]. These
algorithms have not been used to compute independent re-
gions, although in [17] the most stable grasp considering
finger positioning errors is determined. A general algo-
rithm to obtain independent regions on polygonal objects
can be found in [18], and an approach to determine inde-
pendent regions on 3D objects based on initial examples
was proposed in [19].

This paper deals with the problem of determining inde-
pendent regions on the boundary of non-polygonal objects
considering the minimum number of frictionless contacts
(four for 2D objects [2]) such that a contact point in each
region ensures a form-closure grasp (hereafter FC grasp).
The approach developed here uses the knowledge of the an-
tipodal points of the object to determine the combinations
of two contact points that allow a FC grasp; then, select-
ing one of these combinations, a set of four independent
regions on the object boundary is determined. Since the



solution does not rely on friction, the proposed approach is
useful to design fixtures for planar objects.

The basic assumptions considered in this work are:
1) The grasped object is planar; 2) The boundary of the
object is known; 3) Forces applied by the fingers act only
against the object boundary; 5) The fingertip is a point.

This paper is organized as follows. Section 2 summa-
rizes some results of previous works ([18][20]) obtained
for polygonal objects that are the starting point of the de-
velopments for non-polygonal objects. Section 3 tackles
the problem of finding FC grasps of non-polygonal objects
and presents a method to obtain independent regions on the
object boundary. An example of the proposed methodo-
logy is included in Section 4, and finally, some concluding
remarks and possible future lines to extend this work are
pointed out in Section 5.

2 Form-Closure Grasps of Polygonal
Objects

Consider a polygonal object described as a set of edges.
Let f i be the normalized applied force at a contact point pi

on an edge. In the absence of friction, f i is normal to the
edge and it produces a torque τi with respect to the object’s
center of mass. Since f i is normalized and its direction is
known for each contact edge, there is an univocal relation
between the torque produced by the normal force and the
exact contact point on the edge. Based on this relation the
following terms are defined.

Definition 1: The Real Range of τi, Ri, is the set of values
of τi produced by the contact force f i that are physically
possible due to the length of the contact edge. �
Definition 2: The Directional Range of τi, Rfci

, is the set
of values of τi produced by the contact force f i that allow
a FC grasp for any other given three torques and consider-
ing that the contact edge has infinite length (i.e. only the
“direction” of the edge is considered). �

Let f i, i=1, ..., 4, be the applied forces on the object
edges, let Pf be the polygon defined by these forces in
the force space and consider that 0 ∈ Pf (otherwise a FC
grasp is not possible). From the two definitions above, the
existence of a FC grasp implies that τi ∈ Ri ∩ Rfci

. Since
Ri is known, the set of valid torques that produces a FC
grasp can be determined by finding Rfci

.
The Directional Range was introduced in [18] and [20],

where the following remarks were stated and proved:
1. There are two types of Directional Range: Infinite if

Rfci
has only one finite extreme and the other tends to

±∞, and Limited if Rfci
has two finite extremes.
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Figure 1: Examples of the determination of the types of
Directional Ranges from the applied forces: a)Rfch
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four Directional Ranges are Infinite.

2. The number of finite extremes and, therefore, the type
of Directional Range Rfci

, can be determined knowing
how many pairs βi,jk and βi,kj are non-positive, being:

βi,jk =
sin(θi − θk)
sin(θj − θk)

(1)

βi,kj =
sin(θj − θi)
sin(θj − θk)

(2)

where θi, θj and θk are the directions of the forces f i,
f j and fk with i, j, k ∈ {1, 2, 3, 4} and i �= j �= k.

3. There are always at least two Infinite Directional
Ranges that correspond to the torques generated by two
forces that define consecutive vertices of Pf and lie be-
tween the negated of the other two forces (Fig. 1 shows
different examples).

4. Let Rfci
and Rfcj

be two Infinite Directional Ranges
withf i andf j defining two consecutive vertices of Pf .
In a FC grasp Rfci

tends to±∞andRfcj
tends to ∓∞.

Based on these four remarks, the following necessary
and sufficient condition for the existence of a FC grasp was
enunciated [18].
Necessary and sufficient condition: Given four contact
edges, four frictionless contacts allow a FC grasp iff:

sign(Γi) �= sign(Γj) (3)

with
Γρ = βρ,hkτh + βρ,khτk − τρ (4)

where ρ∈{i, j}, τi and τj have Infinite Directional Ranges
and f i and f j define two consecutive vertices of Pf . The
coefficients βρ,hk and βρ,kh are determined from equa-
tions (1) and (2) and must be non-positive. �

Equation (4) has an useful geometrical property on the
object space: the lines of action of the forces whose torques
appear in equation (4) intersect at the same point when
Γρ =0 (note that if the angle between θρ and θk or θh is
π, then βρ,hk = 0 or βρ,kh = 0, respectively, and only two
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Figure 2: a) Example of a FC grasp of a polygonal ob-
ject (black points) and the determination of critical points
(shaded points); b) Determination of the types of Direc-
tional Ranges from the applied forces: Rfch

and Rfck
are

limited and Rfci
and Rfcj

are Infinite.

torques appear in equation (4)). When Γρ =0 the grasp
is critical and it separates the FC grasps from the non-FC
grasps [13]. An example of a FC grasp of a polygonal ob-
ject and critical point positions is shown in Fig. 2.

3 Form-Closure Grasps of Non-Polygonal
Objects

3.1 Form-Closure Conditions

Let B(u) be the parametric description of an object
boundary (B(u) is assumed to be a smooth and closed
curve). At each point of this curve, pi =B(ui), the tan-
gent and the internal normal vectors are given by ti and
ni, respectively. Therefore, the normalized applied force
f i on the contact point pi is given by f i =ni/‖ni‖.

The necessary and sufficient condition enunciated for
polygonal objects is based only on the directions of the
applied forces. Given four contact points on the object
boundary, the directions of the applied forces are also
known, implying that the necessary and sufficient condi-
tion developed for polygonal objects can also be applied to
check if these contact points allow a FC grasp, as in Fig 3.
Based on the necessary and sufficient condition for poly-
gonal objects, the following lemma is enunciated.

Lemma 1: Let θh, θi, θj and θk be the directions of the
consecutive applied forces on any four points on B(u), and
consider that τj and τk have Infinite Directional Ranges
(as in the necessary and sufficient condition developed for
polygonal objects). In a FC grasp, these four directions
must satisfy the following relations:

0 < θk − θh < π (5)
θh + π ≤ θρ ≤ θk + π with ρ ∈ {i, j} (6)
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Figure 3: a) Example of a FC grasp of a non-polygonal
object (black points) and the determination of a critical
point (shaded point); b) Determination of the types of Di-
rectional Ranges from the applied forces: Rfch

and Rfck

are limited and Rfci
and Rfcj

are Infinite.

Proof: From equations (1) and (2) the coefficients βρ,hk

and βρ,kh of equation (4) are:

βρ,hk =
sin(θρ − θk)
sin(θh − θk)

(7)

βρ,kh =
sin(θh − θρ)
sin(θh − θk)

(8)

and from the remark 2 of the previous section they must be
non-positive. From equations (7) and (8) it can be checked
that the coefficients are non-positive only if equations (5)
and (6) are satisfied. �
Definition 3: An opposite point, po

i of pi, is a contact
point on the object boundary such that fo

i and f i are in
opposite directions. �
Definition 4: (From [7]) An antipodal point, pa

i of pi, is
a contact point on the object boundary such that fa

i and f i

are in opposite directions and they are collinear (therefore
pa

i is also an opposite point of pi). �
Consider a FC grasp formed by pν = (xν , yν),

ν ∈ {h, k} and their opposite points po
ν = (xo

ν , yo
ν) and let

fν =(fxν
, fyν

) be the applied force on pν . In this case, the
necessary and sufficient condition developed for polygonal
objects is equivalent to

sign(Γh) �= sign(Γk) (9)

with

Γν = fyν
(xo

ν − xν) − fxν
(yo

ν − yν) ν ∈ {h, k} (10)

Given two contact points ph and pk, it is possible to as-
sure that they allow a FC grasp if both of them satisfy equa-
tion (9). Otherwise, it is not possible to assure anything.
Then, equation (9) is a sufficient condition for a FC grasp.



Proposition 1: Considering frictionless contacts, equa-
tion (10) gives Γν = 0 (and as a consequence the grasp
is critical) if and only if the grasp includes two antipodal
points pa

ν . �
Proof: The antipodal points are a subset of the opposite
points. Then, equation (9) developed for two opposite
points, also determines whether two antipodal points can
produce a FC grasp. Geometrically, Γν of equation (10)
is the distance between the point po

ν and the straight line
defined by the vector fν and the point pν . Since the di-
rections of two antipodal points are collinear, pa

ν of pν be-
longs to the straight line defined by fν and pν . As a result,
Γν =0 implying a critical grasp. �

Proposition 2: Let pa
h and pa

k be two consecutive points
with antipodal points on the object boundary. The result of
equation (10) has the same sign for any point between pa

h

and pa
k. �

Proof: From Proposition 1, only antipodal points make
equation (10) equal to zero. Therefore, since the sign of
equation (10) can change only at the antipodal points and
the object boundary is closed, all the points between two
consecutive antipodal points make the solution of equa-
tion (10) to have the same sign. �

Given the parametric description of the object boundary
B(u), it is possible to determine whether two contact points
pν =B(uν) with ν∈{h, k} satisfy equation (9) and, there-
fore, allow a FC grasp avoiding exhaustive search proce-
dures given the antipodal points on B(u) (algorithms to
compute antipodal points can be found in [7] and [8]). Let
the hk−space be the 2D space defined by the parameters
that fix the position of two contact points. The values of
these parameters that define antipodal points make a parti-
tion of the hk−space into rectangular cells (Fig. 4). From
Proposition 2, the result of equation (10) has the same
sign for any contact point between two consecutive antipo-
dal points. Then, all the combinations of any two con-
tact points that belong to the same cell of the hk−space
satisfy equation (9), defining a FC cell, or do not satisfy
equation (9), meaning that it is a cell where it is not pos-
sible to assure a FC grasp. The FC cells are determined
checking a combination of two contact points from each
cell of the antipodal grid (black cells in Fig 4.b). The other
cells require a more exhaustive analysis and they are dis-
carded, implying a conservative and linear approximation
(in Fig 4.b the discarded regions that actually allow a FC
grasp are shadowed).

3.2 Independent regions

In the previous subsection, the cells where it is possible
to obtain a FC grasp considering only two contact points
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Figure 4: a) Antipodal points on an ellipse; b) Partition of
the hk-space: Regions where a FC grasp is possible (black
cells), regions where a FC grasp is not possible (white
cells) and regions that allow a FC grasp but are discarded
(shaded regions).

were determined. In this subsection, an approach to select
the other two contact points and a procedure to obtain in-
dependent regions on the object boundary that allow a FC
grasp are presented.

Lemma 2: Let ph, pi, pj and pk be four contact points
that satisfy Lemma 1 and produce a FC grasp. Then, there
are an odd number of critical points pcn

between pi and
pj such that pcn

, ph and pk produce a critical grasp (i.e.,
the lines of action of f cn

, fh and fk intersect at the same
point), with pcn

= (xcn
, ycn

) being the solution of:

fycn
(xcn

− xhk) − fxcn
(ycn

− yhk) = 0 (11)

where (xhk, yhk) is the intersection point of the lines of
action of fh and fk. �
Proof: A FC grasp satisfies equation (3), implying that Γi

and Γj have different signs. The values of Γi and Γj are ob-
tained from equation (4) considering the contact points pi

and pj , respectively. Since the object boundary is smooth,
pi and pj define a continuous piece of the object boundary,
and since in a FC grasp the signs of Γi and Γj must be dif-
ferent, there must be an odd number of critical points pcn

between pi and pj that make equations (4) equal to zero
and allow the result of equation (4) to change its sign. As a
result, the lines of action of the applied forces fh, fk and
f cn

intersect at the same point, and given ph and pk, the
critical points pcn

can be determined from equation (11). �
Let ph =B(uh) and pk =B(uk) be two contact points

with uh and uk belonging to the same FC cell of the hk-
space. In a FC grasp, the directions of the applied forces
f i and f j must satisfy equation (6), determining a lower
and an upper limit points for pi and pj , pl =B(ul) and
pu =B(uu), where ul and uu are functions of uh and uk.
As a result of Proposition 2, there must be an odd number
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of critical points pcn
=B(ucn

) between pi and pj , where
ucn

is also a function of uh and uk. Considering the ranges
of uh and uk that define a FC cell, ul and uu describe
two limit surfaces and each ucn

(there is an odd number)
describes a critical surface, as in Fig. 5. Therefore, a set
of independent regions is obtained determining two pa-
rallelepipeds between the limit surfaces with the same pro-
jection on the hk−space such that there are an odd num-
ber of critical surfaces between them. The edges of these
parallelepipeds define on the object boundary independent
regions where a FC grasp is possible.

Based on this methodology a procedure to obtain a set
of independent regions is proposed as follows:
1. Select two contact points ph0

=B(uh0) and
pk0

=B(uk0) with uh0 and uk0 belonging to the
same FC cell.

2. Determine ul, uu and all the ucn
.

3. Compute the middle point between each two consecu-
tive points obtained in step 2, and select two of these
middle points with an odd number of critical points be-
tween them (note that if there is only one critical point,
there will be only two middle points).

4. Select two of the middle points obtained in step 3 as
ui0 and uj0 generating a FC grasp.

5. Determine two parallelepipeds with the range of ui and
uj containing ui0 and uj0 with the same ranges of uh

and uk and without intersecting the limit surfaces and
the critical surface.

6. The projections of these two parallelepipeds on each
axis determine the independent regions on the object
boundary.

4 Example

An example of the proposed methodology is presented
in this section. The object used in the example has been
taken from [12], where independent regions for two fric-
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Figure 6: a) Object and antipodal points on its boundary;
b) hk-space, FC cells (black cells) and positions uh0 and
uk0 of the initial points (white cross).

tion contacts were determined. The boundary of the object
is described by:

B(u) = 0.6 + 0.6 cos(u) + 0.8 cos2(u) (12)

for 0≤u≤2π. Fig. 6 shows the object, the antipodal points
on its boundary and the antipodal grid with the FC cells.
The procedure described in Subsection 3.2 is applied for
the cell uh∈(0.834, π) and uk∈(π, 5.449), obtaining the
following result:

1. Selection of uh0 = 2.2 and uk0 = 4.1 (white cross in
Fig. 6b).

2. Determination of ul=5.540, uu=7.025 and uc1=6.296.
3. Computation of the middle points:

ui0 =(uc1 +ul)/2=5.918, uj0 =(uu+uc1)/2=6.661.
4. Since there are only two middle points, ui0 =5.918 and

uj0 =6.661 are the selected middle points.
5. Determination of the parallelepipeds as uν0 ± 0.2 for

ν ∈ {h, i, j, k}. The resulting parallelepipeds do not
intersect the limit surfaces nor the critical surface.

6. The independent regions are:
uh ∈ [2, 2.4], uk ∈ [3.9, 4.3],
ui ∈ [5.718, 6.118] and uj ∈ [6.461, 6.861].

Fig.7 shows the limit and the critical surfaces and one
of the parallelepipeds that defines the independent regions
(the second parallelepiped lies behind the critical surface)
and Fig.8 shows on the physical object the independent re-
gions and the points ph0

, pi0 , pj0 and pk0
obtained with

the proposed procedure.

5 Conclusions and future works

This paper presents a new approach to determine inde-
pendent regions on the object boundary considering four
frictionless contacts. Since the placement of a finger in
each one of these regions ensures a FC grasp despite the ex-
act position of the contact point, the determination of these
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regions is useful to provide some robustness in front of fin-
ger positioning errors as well as in the design of fixtures.

The major part of the algorithms previously proposed to
compute independent regions have been developed consi-
dering polygonal or polyhedral objects and they can not be
applied when non-polygonal objects are considered. Only
a few algorithm has been done considering non-polygonal
object. The approach developed here can be applied for
any object given a parametric description of its boundary,
although the amount of computation increases with the
complexity of the object boundary.

Future works includes the obtention of the independent
regions following some quality criterion and the adaptation
of the proposed methodology to the case where more than
two friction contacts are considered.
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