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Abstract 

This paper describes a method for the determination of 
the four grasping points that are necessary to get a force 
closure grasp for a planar object considering frictionless 
contacts. The geometric model of the object is assumed to 
be unknown. The proposed approach starts from the 
object boundary obtained from the binary digitalization of 
an object image, and then uses the dual representation of 
forces and the dual-force space span for the 
determination of the grasping points.  

1 Introduction 

A force closure grasp of an object means that the 
object can not be moved in the hand with the application 
of external forces like, for instance, when the manipulated 
object touches another object in the workspace. 

The goal of this work is the determination of four 
frictionless contact points on the boundary of a planar 
object directly from the image of the object obtained by a 
computer vision system in order to obtain a force closure 
grasp. The proposed procedure determines the contact 
points without using or generating any geometric model 
or interpretation of the object. In this work friction is not 
considered, and therefore four contact points (four 
fingers) must be determined to guarantee a force closure 
grasp for 2D objects (therefore it is also a form closure 
grasp: capability of a grasp to prevent motions of the 
object in the gripper considering only the object 
geometrical shape and frictionless contacts). The 
existence of friction in the real world gives to the 
proposed solution an additional degree of robustness from 
the practical point of view.  

Grasping in robotics is an area that has received 
particular attention since the beginning of robotics. Bichi 
[1] presents a detailed summary of the evolution and the 
state of the art in the field of robust grasping and 
dexterous manipulation, he also describes the properties 
of force closure and form closure grasps [2]. The concept 
of force closure is often used with the intuitive meaning 
that motions of the grasped object with respect to the 
gripper must be avoided despite any external disturbance.  

Sufficient and necessary conditions for the existence of 
force closure grasps as well as procedures to look for 
them were presented by several authors for different 
problem conditions, like for instance: 

For planar objects: 
• For polygonal objects: with 2 fingers [3]; with 3 

fingers [4] [5]; with n fingers [6]. 
• For non polygonal objects: with 2 fingers [7]. 
For polyhedral objects: 
• With soft fingers (allow an area of contact): with 2 

fingers [3]. 
• With hard fingers (allow a point of contact): with 3 

fingers [8]; with 4 fingers [8][9]; with n fingers [10]. 
In same works ([3][5]) independent contact regions (on 

different object faces) for each finger are also computed.  
As this work, [6] deals with grasps of planar objects 

considering the case of four fingers, but the work there 
deals analytically with the case of polygonal objects 
knowing in advance their geometric model and the 
contact faces. 

There are also different works regarding the obtaining 
of force closure grasping points from images of a planar 
object, for instance [11] and [12] present heuristics 
approaches for grasps with two fingers, and [13] deals 
with the case of three fingers. Working with 3D objects, 
[14] and [15] use a stereoscopic vision system in order to 
look for the grasping points, both of them using a gripper 
with two parallel fingers.  

After this introduction the paper is organized as 
follows. Section 2 presents a description of the dual 
representation of forces and the necessary conditions to 
span the dual-force space through the linear combination 
of the applied forces. Section 3 presents the proposed 
approach, based on the dual representation of forces and 
the combination of dual points to span the entire dual-
force space. In section 4 some experimental results are 
presented and, finally, in section 5 the conclusions of the 
work are presented and discussed. 

2 Dual Space of Forces 

Consider a plane Π with an Euclidean reference system 
{x,y} with origin O, and a force f=(fx, fy) acting along the 
supporting line ax+by+c=0 on Π. The dual representation 
of f is, by definition, the point f’ with coordinates (a/c,b/c) 
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plus the sign of the torque τ that f produces around O 
[16]. Geometrically, this representation places the dual 
point f’ on the normal to the force supporting line drawn 
through the origin O and at a distance 1/d from O, being d 
the distance from the force supporting line to O (figure 1). 
The space of dual points f’ is called dual-force space.  

Consider now a planar object lying on Π such that its 
center of mass coincides with O. Any force f acting on the 
object boundary can be represented by the corresponding 
dual point f’, that represents the instantaneous center of 
rotation of the object under the action of f. The applied 
force f=(fx, fy) and the torque τ that f produces around O 
are usually represented by a vector g=( fx, fy, τ) in a tri-
dimensional force space F3, called generalized force or 
wrench. 

The direction and sense of a generalized force g in F3 
can be represented by a point P, with the coordinates of 
the intersecting point of the supporting line of g with the 
plane τ=1, jointly with the sign of the component τ of g 
i.e. P=(fx/τ, fy/τ) and sign(τ). This representation of the 
generalized force direction is directly related with the dual 
representation of pure forces acting in a plane in the 
following way: the coordinates of P are equivalent to the 
coordinates of f’ rotated π/2 clockwise around O [16]. 
Then, the dual representation of the forces acting on the 
object can be used to process the information related with 
the physical effect of these forces on the object. 
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Figure 1: Dual representation f’ of a force f. 

2.1 Linear Combination of Forces 

Positive linear combinations of forces are easily 
obtained in the dual-force space. As it is illustrated in 
figure 2, the positive linear combination in F3 of two 
generalized forces g1 and g2 (corresponding to two forces 
f1 and f2 in the workspace) determines a sector of the 
plane defined by g1 and g2. The intersection of the straight 
lines in this sector with the plane τ=1 gives the dual 
representation of the linear combination of g1 and g2. If g1 
and g2 have the components of torque with different sign 
then the dual representation of the linear combination has 
dual points with positive and negative sign that are 
grouped in two disjoint sets of points over the line defined 
by the dual representation of g1 and g2 (figure 2b). 
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Figure 2: Linear combination of two forces g1 and g2 : a) 
torques with same sign, b) torques with different sign. 

 
Then, in practice, combining two or more forces in the 

dual force space is quite simple:  
a) The positive linear combination of two forces that 

produce torques with the same sign is the segment defined 
by the corresponding two dual points of the forces, 
keeping always the same sign as the two initial dual 
points. 

b) The positive linear combination of two forces that 
produce torques with different signs is given by the 
remaining portions of the straight line defined by the dual 
points of the two forces when the segment defined by 
these dual points is removed from the line, the sign of the 
points in each portion is determined by the sign of the 
initial dual point in the same portion (figure 3). 

These rules can be used to easily find the dual 
representation of a friction cone as the linear combination 
of the two forces in the cone boundary (figure 3). 

2.2 Force Closure Condition in the Dual-Force 
Space 

A force closure grasp must be able to compensate any 
external force applied on the manipulated object, this 
means that the positive linear combination of the forces 
applied by the fingers on the object must be able to span 
all the force space F3. In the case of planar objects and 
frictionless contacts a minimum of four forces are 
necessary to ensure this condition (i.e. four fingers 
applying four forces orthogonal to the object boundary). 
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Figure 3: Combination of forces in the dual-force space. 
The cone of forces C1 maps to the segment 

21 '' ff  because 
f1 and f2 produce torques with the same sign. The cone of 

forces C2 maps to the points outside the segment
43 '' ff , 

because f3 and f4 produce torques with different signs. 

 
Considering the dual representation of forces, four 

grasping forces span all the force space if the linear 
combination of the corresponding four dual points span 
all the dual-force space, and this happens if one of the 
following sufficient conditions is satisfied (figure 4). 

Polygon Condition: One dual point has different sign than 
the other three dual points and it lies inside the triangle 
defined by the three dual points with the same sign. 

Cross Condition: Two dual points have one sign, the 
other two has the other sign, and the two segments 
defined by the dual points with equal sign intersect 
each other. 
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Figure 4: Examples of the two cases in which four dual 

points expand the entire dual-force space. 

The proof of these conditions can be found in [16], but 
in any case it is straightforward to verify them using the 
graphic interpretation of the positive linear combination 
of forces in the dual-force space presented in the previous 
subsection. 

3 Proposed Approach 

The proposed approach for the determination of four 
grasping points on the object boundary able to generate a 
force closure grasp has the following steps:  

1. Compute the object boundary from an image of the 
object. 

2. Compute for each point of the object boundary (i.e. 
pixel) the straight line normal to the boundary. 

3. Compute the dual representation of the forces 
pointing inside the object along the straight lines 
obtained in step 2. 

4. Search the dual points obtained in step 3 for a set of 
four points that span all the force space (using search 
heuristics and optimization criteria). 

5. Select as grasping points on the object boundary 
those corresponding to the selected four dual points 
in step 4. 

The following subsections deal with each of these steps. 

3.1 Computation of the Object Boundary 

This step is composed of very well know operations in 
the area of computer vision which are outside the scope of 
this paper, and therefore it is not detailed here (see for 
instance [17]). 

In this work it is assumed that the object boundary is 
available as a list of m ordered points (pixels) Pi = (xi,yi) 
with i=1...m, such that the object inside is always to the 
right side of the sequence. 

In order to facilitate the computation of the dual points 
and make them to have a physical meaning, the origin of 
the reference system is translated to the center of mass of 
the object (the original image coordinates has the origin 
located in one corner of the image).  

3.2 Computation of the Normal to the Object 
Boundary 

First, the tangent at x+bt y+ct=0 to the object boundary 
at each point Pi is determined by adjusting a straight line 
using linear regression and n neighbor points of Pi (from 
Pi-α to Pi+β, being α the integer part of n/2 and β=n-α). 
Note that since the points Pi are constrained to positions 
in an orthogonal grid (they are the pixels of an image) the 
number n of neighbor points will determine the number of 
possible directions of the tangent line. From the equation 
of the tangent, the normal to the object boundary through 
Pi, anx+bny+cn=0, can be easily determined. For each 
point Pi it is recorded: the normal line, the unitary vector 
along this line pointing inside the object, and the error εi 
in the approximation of the tangent line by the linear 
regression over the n neighbor points of Pi. 

3.3 Computation of the Dual Points  

Considering frictionless contacts, the potential grasping 
force applied at each Pi must act along the line normal to 
the object boundary computed in the previous step. 



Therefore, the dual representation of this force is given by 
the dual point of the line anx+bny+cn=0 plus the sign of 
the toque that the force produces with respect to the center 
of mass. According to section 2 results, 
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and the corresponding sign is given by  
sign(pi x ni) 

where pi is the vector from the origin O to Pi and ni is the 
unitary internal normal to the boundary at Pi (indicates the 
direction of the potential applied force at Pi). 

Figure 5 shows an example of the approximation of the 
straight lines tangent and normal to the object boundary at 
Pi, and the dual representation of the force fi that a finger 
can applied at Pi.  
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Figure 5: Determination of the dual point of the force fi 

applied by a finger at Pi. 

3.4 Selection of the Grasping Points 

The algorithm used to search for four dual points that 
span the entire dual-force space is presented in this 
subsection. There are different search criteria for the 
selection of the grasping points according to different 
quality functions (see [18] for a survey). In this work the 
following search criteria were used:  

a) Look for straight (smooth) portions of the object 
boundary avoiding points like, for instance, the corners of 
the object or points near them (avoiding convex corners is 
fine, but the weak point is that also concave corners are 
avoided as grasping points). The application of this 
criterion simply consists in considering only the points Pi 
with associated error εi in the approximation of the 
tangent line below a selected threshold.  

b) Look for grasping points that generate maximum 
torque with minimum contact force. This criterion by 
itself does not ensure an optimum grasp, but its use as 
heuristics is based on the following reasoning. According 
to the measure of quality of a force closure grasp 
proposed by Ferrary and Canny [19], the best grasp (most 
robust) is that such that a sphere centered on the origin of 

F3 and inscribed in the convex hull of the four wrenches 
gi=(fix,fiy,τi) i=1,…,4 applied at the contact points has a 
maximum radius. This radius is determined by the 
distance from the origin to a face of the convex hull 
(defined by three of the four wrenches gi). Consider 
(without lost of generality) the face of the convex hull 
defined by g1, g2 and g3, then, the distance from the origin 
to this face is a linear function of two sets of parameters: 
Ωjk=sin(arctan(fjx,fjy)-arctan(fkx,fky)), with {j,k}∈{1,2,3} 
i≠j; and τj with j∈{1,2,3}. Therefore, the larger Ωjk and τj 
the better the contribution of these three wrenches; 
nevertheless, optimizing the effect of three wrenches does 
not optimize the final grasp with the four wrenches. This 
criterion prioritizes contact points with larger τj even 
when they may have small Ωjk. The physical interpretation 
is that points Pi with the boundary normal line passing far 
away from the center of mass (i.e. the origin of the 
reference system) will be preferred; in the dual 
representation, this means that the dual point of the 
corresponding line of force is closer to the origin. If Ωjk is 
too small it may be necessary to apply larger forces in 
order to compensate external disturbances in some 
particular direction (how to avoid small values of Ωjk is 
mentioned below but it was not implemented in this 
work). The application of this criterion is done by 
ordering the set of dual points corresponding to potential 
forces applied on each Pi according to the distance from 
each dual point to the origin. The search of the grasping 
points that produce a force closure grasp is performed by 
searching the ordered list of dual points for four points 
whose positive linear combination spans the whole space, 
i.e. four points that satisfies any of the conditions 
introduced in section 2.2, either the Polygon Condition or 
the Cross Condition. In order to avoid small values of Ωjk 
these conditions can be tested considering a given security 
margin, i.e. avoiding the selection of three (almost) 
aligned points (see the graphic conditions in figure 4). 

The Polygon Condition and Cross Condition are 
evaluated for the first four dual points in the list (i.e. the 
four points closest to the origin), if none of the conditions 
is satisfied the next dual point in the list is considered and 
the conditions are evaluated now for each subset of four 
points of the five closest points to the origin. This 
procedure is iteratively repeated adding the next point in 
the list until a set of four dual points that satisfy one of the 
conditions is found. The points in the object boundary 
associated with these four dual points are selected as 
grasping points. The implemented search algorithm is 
formally described in the Appendix. 

4 Experimental Results 

In order to illustrate the proposed approach described 
in section 3, the procedure is applied to 4 objects, one 



artificially generated (a square of 50×50 pixels) and three 
observed by a camera in the Robotics Laboratory of the 
IOC (original images of 600×600 pixels). The binary 
image of each object boundary is stored as a text file with 
two columns of data, the coordinates xi and yi of each 
point Pi of the boundary. All the functions were 
implemented in Visual BASIC 5, and times are obtained 
in a PC Pentium 4 at 2.4 Ghz. Figures 6 to 8 show the 
object boundaries and the obtained grasping points; 
figures 6 and 7 include also the dual points of potential 
forces normal to the object boundary at each Pi for the 
first two examples, positive dual points are represented in 
black and negative points in white. The tangent to the 
object boundary at each point Pi was computed using 11 
points (n=10 in Subsection 3.2), i.e. the considered point 
itself plus the five previous points and the five next points 
in the object boundary, and only points Pi with error 
below εi=1 in the linear regression were considered (then, 
in the square of figure 6 the grasping points are located at 
the sixth pixel from the corner). 

5 Discussion and Conclusions 

In this paper a method for the determination of 
grasping points that allow a force closure grasp was 
presented. The method was developed for planar objects 
(under certain conditions it may be applied to sections of 
3D objects) without considering friction, so four grasping 
points are determined. The presence of friction in real 
world adds robustness to the solution. The presented 
approach works from an image of the object without the 
need for an explicit identification of the geometrical 
model of the object. The search of the grasping points is 
done in the dual space of forces, were the potential 
contact force at each point in the object boundary are 
represented. The method automatically avoids contact 
points near the object corners (avoiding convex corners is 
good but avoiding concave corners are not necessary). 
Weak points of the approach are: concave corners are 
filtered, and the resulting grasping points do not 
necessarily define a polygon that contains the center of 
mass of the object (which is a good criterion if the 
“planar” object has to be lift in the third dimension).  

Future works include the implementation of a security 
margin in the fulfillment of the Polygon Condition and the 
Cross Condition to avoid grasps near to unstable 
situations; the consideration of friction to allow the 
determination of grasps with less than four fingers (or 
contact points), as well as the inclusion of the constraints 
in the accessibility to the grasping points considering the 
mechanical hand developed in the Robotics Laboratory of 
the IOC. Optimization of the search of the grasping points 
according to other criteria is also being analyzed. 

   
Figure 6: Left: square (artificially generated) and grasping 
points; Right: dual force space (tested points: 4 positives 

and 4 negatives, in 2.1 ms). 

   
Figure 7: Left: object boundary and grasping points; 

Right: dual force space (tested points: 19 positives and 9 
negatives, in 8 ms). 

  
Figure 8: Other objects and resulting grasping points 
(tested points example in the left: 50 positives and 2 

negatives, in 1.6 ms; tested points example in the right: 50 
positives and 52 negatives, in 8.07 s). 

Appendix: Implemented Search Algorithm 
Nomenclature: 
PointInfo: a class including six members, 

x, y:  coordinates of the object boundary point P where 
a force is applied. 

fx, fy: coordinates of the dual point of the force applied 
at (x, y). 

S: sign of the dual point. 
d: distance from the dual point to the origin. 

Boundary: set of PointInfo corresponding to all the object 
boundary points. 

Analyzed: set of PointInfo under evaluation. 
Group: set of four PointInfo. 
GraspGroup: set of four PointInfo that span all the dual-

force space. 



Functions: 
Polygon(Group) 

If the dual points of the four PointInfo in Group satisfy 
the Polygon Condition Then Return TRUE  

Else Return FALSE  
End If 

End Polygon 
Cross(Group) 

If the dual points of the four PointInfo in Group satisfy 
the Cross Condition Then Return TRUE  

Else Return FALSE  
End If 

End Cross 
Combination(PointInfo, Analyzed) 

For Each Group ⊆ {PointInfo ∪ Analyzed} 
 If Polygon(Group)=TRUE Then Return Group 
 Elif Cross(Group)=TRUE Then Return Group  
 End If 
End For 
Return ∅ 

End Combination 

Main Algorithm: 
Main(Boundary) 

Analyzed=∅ 
Sort the elements of Boundary in increasing order of 

member d of each PointInfo. 
For each PointInfo in Boundary 
 GraspGroup=Combination(PointInfo,Analyzed) 

If GraspGroup = ∅ Then  
Analyzed = Analyzed ∪ PointInfo 

 Else Return GraspGroup 
 End If 
End For 
Return ∅ 

End Main 
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