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Abstract

An assembly task, whether robotic or manual, may
involve adjusting the positions of already assembled
parts when a new part is been assembled, due to
tolerance and position uncertainties of the parts. Such
an adjusting operation can increase the cost of the
product because of the adjusting time, fizturing costs,
additional operations, etc. In this paper, a statistical
approach to evaluate the cost of assembly is proposed.
The cost is measured according to the number of objects
that must be moved in order to successfully assemble
the product. The approach uses a statistical analysis
of the accumulated tolerances, the local clearances, and
the possible adjustable zones due to clearances between
the already assembled parts, to calculate the minimum
number of objects that must be adjusted to complete the
assembly. Special attention is given to the assembly of
parallel chains. The complete procedure and simulation
results are given.

1 Introduction

In real assembly, parts are not nominal but deviate
slightly due to the design tolerances, thus introducing
uncertainty in the position of the part features.
Moreover, the uncertainty in the positions of the parts
in an assembly increases due to the clearances (play)
between them. Such uncertainty can make the product
more difficult to be assembled by causing some nominal
assembly strategies to fail.

The influence of the tolerances and clearances
on the assemblability of a product has already been
analyzed by Lee and Yi [1], where complete algorithms
to calculate the assemblability of a product based on
the tolerances and adjustable zones' are given. As a

*This work was partially supported by the project CICYT
TAP96-0868.  During this work Rail Suédrez was at the
University of Southern California as a post-doctoral visiting
scholar; his stay was supported by the Government of Catalonia.

1An adjustable zone is a set of poses where a part is allowed
to be placed with respect to its mating part in an assembly; it is
defined by the clearance between two parts and the functionality
of the product.
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complement to that work, this paper focuses on the
influence of the tolerances, clearances, and position
uncertainty in the product assembly itself. The effect
of these elements can be analyzed according to different
criteria. In particular, in this work the minimum
number of parts (and which are those parts) that have
to be adjusted in order to successfully perform the
assembly is considered.

This information is directly related to the cost of
the assembly, since it is an indicator of whether or not
a particular set of fixtures has to be used, or whether
or not a set of extra movements has to be performed
to re-fix the assembled parts in order to proceed with
the assembly of the product. Therefore, this indicator
can be used to select optimal assembly sequences that
minimize the assembly cost or complexity.

The analysis is particularly interesting when the
product contains serial chains of parts that must be
simultaneously considered when the part that links
them is added. Consider, for instance, the example
of figure 1. Due to tolerances, clearances, and pose
uncertainty, part M may not be assembled just by
moving it to a nominal assembly pose, but it should
be displaced to fit parts P; and P»,. FEven if an
adjustment in the pose of M is permitted, tolerances
and clearances in chain 1 and 2 can produce deviations
that may not allow the assembly unless the pose of P,
P, or both is adjusted. In this case, it is necessary
to use fixtures or to make additional movements of the
robot prior to assembling part M.

Problem Statement: What is the minimum
number of parts (and which are they) that must be
adjusted in order to perform a successful assembly,
given a set of toleranced parts and a valid assembly
sequence for the nominal dimensions of the parts?

It must be noted that in some cases, adjusting the
parts may not be enough to assemble them successfully
because the deviations caused by tolerances may be too
large to be compensated for by given clearances.

In this work the following assumptions are made:
(a) Tolerances have a Gaussian probability distribu-
tion because specific manufacturing processes are not
known at a design stage, many manufacturing pro-
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Figure 1: A parallel chain and nomenclature.

cesses have a Gaussian probability distribution [2], and
the central limit theorem [3] can be applied to the tol-
erance propagation; (b) Parts are rigid so they do not
deform during and after the assembly; (c¢) The given
assembly sequence is valid for nominal parts; (d) A se-
rial chain is regarded as one object to be moved if the
last part needs to be adjusted (adjusting the last part
may involve adjusting more parts in the chain).

Related Works
Turner [4] showed that a tolerance specification can
be expressed as an in-tolerance region (established by
the tolerance limits) of a normed vector space. He
developed the methods for tolerance analysis based on
finding the relationship between in-tolerance regions
and in-design regions, which is established by the
design constraints. However, the analysis does not
answer the problem of assemblability, where some
dimensions (such as clearances) could be used to
compensate for deviations caused by tolerances.
Bjorke [5] has proposed statistical approaches to a
tolerance analysis based on functional dimensions? of
simple tolerance chains (equivalent to parallel chains)
and interrelated tolerance chains (equivalent to multi-
chains). His goal was to derive a set of tolerance chain
equations which can solve the functional dimensions.
Then, these functional dimensions were checked
against the given confidence limits. However, besides
being limited to one dimension, similar to Turner’work,
his objective (functionality analysis) is quite different
from ours (assemblability analysis).

2A functional dimension is the one that affects the assembly
more than other dimensions.
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Figure 2: Pose tolerance: a) position tolerance (ANSI)
of a hole feature, b) real tolerance boundary in a
deviation frame, c) approzimated tolerance ellipse.
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Figure 3: a) Assembly of two parts P1 and P2, and
b) the nominal adjustable zone and its minimum and
mazimum boundaries.

2 Representation: Tolerances
and Adjustable Zones

It has been already studied [6] that most of the toler-
ance types described in ANSI [7] can be statistically
approximated by an ellipsoid in a coordinate frame of
kinematic parameters, called deviation frame in this
paper. The origin of this frame indicates that the fea-
ture does not deviate from its nominal pose, and the
ellipsoid approximates statistically the real tolerance
bounds. A point in this ellipsoid represents a permit-
ted deviation of a feature from its nominal pose.

For example, a feature (hole) of a part has a
position tolerance of 0.2 (figure 2a). This means that
the axis of the hole (shown with a solid vertical line)
is permitted to deviate within the tolerance zone of
0.2 width (shown with a dotted rectangle). Then,
the coordinate frame attached to the hole can deviate
from its nominal pose as much as the axis is allowed
to deviate from its nominal pose. The maximum
boundary in a 2-dimensional deviation frame (6 and z)
is shown in figure 2b, which shows that the coordinate
frame attached to the nominal hole can rotate in 6 at
most £0.033 and can translate in the x-axis at most
£0.1, but they are not independent. Figure 2¢ shows
the approximation of the real tolerance boundary by
an ellipse.

Figure 3a shows the adjustable zone between two
parts, which is a rectangular zone of 0.40 by 1.0 for
nominal parts. However, due to the size tolerances
(£0.05) of the features (peg and hole), the adjustable
zone can vary within the maximum and minimum
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Figure 4: a) Adjustable zone of P1 and P2, b) real
boundary in a deviation frame, c) ellipse approzima-
tion.

limits shown with dotted lines in figure 3b.

An adjustable zone is approximated in a deviation
frame by a nominal ellipsoid and its minimum and
maximum limits (see figure 4). That is, the coordinate
frame attached to the center of the axis of the hole
of P2 is permitted to be adjusted as much as the
adjustable zone allows with respect to the peg, as
shown in figure 4(a). Figure 4(b) shows the adjustable
zone in a deviation frame. The solid line is the nominal
adjustable boundary, whereas the dotted lines indicate
the minimum and maximum limits. Figure 4(c) shows
an adjustable ellipse approximating the real adjustable
boundary.

3 Parallel Chains

The interconnection of parts in an assembly may form
loops or parallel chains. A parallel chain is closed by
assembling the last part to two serial chains, e.g. part
M, chain 1 and chain 2, in figure 1. The accumulated
tolerances and adjustable zones at the ending feature
of each serial chain (F; and F3) must be computed in
order to evaluate both the assemblability and difficulty
of a parallel chain when part M is added. These
parallel chains can make the assembly difficult or even
impossible.

The tolerance accumulation in each serial chain is
computed by adding the tolerances of all the features
in the chain using a sweep operation on the two
ellipsoids that represent the two tolerances. A sweep
operation is similar to Minkowski addition [8], which
is defined as an addition of all possible combinations
of position vectors of two sets, except that the position
vectors are generated as samples with some probability
within the corresponding ellipsoids. Each sample
models a random instance of a part deviation. Next,
the result of the additions, a simulated solution, is
optimally approximated by another ellipsoid using an
analytic solution, a Gaussian function. Therefore, the
tolerance ellipsoid of a serial chain can be computed
by continuously applying the sweep operation to a
tolerance ellipsoid of every feature in the chain.

The method to compute the adjustable zone
accumulation of a serial chain is based on the addition

of all the adjustable zones of the chain. The addition
of two adjustable ellipsoids and their limits (minimum
and maximum) can be optimally approximated by a
new ellipsoid and limits. The numerical algorithm
used is as follows: (1) Randomly generate an ellipsoid
from each adjustable ellipsoid; (2) Compute the sweep
volume of the two randomly generated ellipsoids; (3)
Repeat steps (1) and (2) many times; (4) Optimally
approximate the distribution of the accumulated sweep
volumes with an ellipsoid and corresponding limits.
The approximation of step (4) can be done using
a Gaussian-Sigmoid function® whose shape is very
similar to the accumulation of the randomly generated
ellipsoids (refer to [1] for details of the computation).

4 Statistical Evaluation of the
Necessary Adjustments

Given an assembly sequence, the uncertainty intro-
duced by each part due to tolerances of features and the
adjustable zones allowed by local clearances is propa-
gated as it was described in section 3.

The evaluation of the number of parts that has to
be adjusted can be done for a serial chain* in order
to decide if a fixture is needed to improve the average
cost of the assembly operation, but this is a particular
and simpler case of the general problem generated by
parallel chains. This section presents a procedure to
deal with two parallel chains of objects that can be
systematically extended for the case of a manipulated
object that links a larger number of parallel chains.

Let M be the manipulated object (the part that
will link two serial chains), and P; and P> be the last
two objects of the two serial chains to be assembled
with M, (figure 1). The features (pegs) Fi of Py
and F5 of P, have to be mated with the features
(holes) M; and My of M, respectively. The following
nomenclature will be used:

p; : the pose® of part P; (1=1,2).

m : the pose of part M (m,: nominal value of m).

f; : the pose of the feature F; of part P; (i=1,2). Note
that f; depends on p; and the tolerances of part P;.

m; : the pose of the feature M; of part M (i=1,2)

L; : the local clearance between P; and M; (i=1,2).
L;(f;) will represent the valid assembly poses of M;
for the pose f; of F;, and L;(m;) will represent the
valid assembly poses of F; for the pose m; of M;.

3A Gaussian-Sigmoid function is 2[ %], where

a0/
G(X) is a Gaussian function. This probability distribution has
a flat-top bell shape determined by the parameters X and T'.

4In a serial chain, the number of parts N = {0,1,2} that has
to be adjusted to be able to perform the assembly allows four
possible solutions: @, {P}, {M}, and {P, M}, where P is the
end part in the chain and M is the manipulated part.

5Poses are expressed in an absolute reference frame unless it
is explicitly specified.



C; : a set of possible poses of F; (i=1,2), due to
tolerances and adjustable zones of the parts.

S(m) : a set of possible poses of M for a given
commanded pose m with probability distribution
d(m) due to the pose uncertainty of M.

S;(m) : a set of possible poses of M; for a given
commanded pose m with probability distribution
d(m;) due to tolerances and the pose uncertainty
of M (1=1,2).

The number of parts N={0,1,2,3} that has to be
adjusted to be able to perform the assembly as well
as which are these parts (P, P2, and/or M) allow
eight different solutions: @, {P;}, { P2}, {M}, {M, P},
{M,Pz}, {Pl,PQ} and {M,Pl,PQ}. The statistical

occurrence of each one is computed as follows:

1. Propagate the tolerances and clearances of each
serial chain (using the methodology described in
section 3). For i = 1,2 do:

a. Statistically propagate the tolerances of the
objects in the chain. The result will be a
set T; of possible accumulated deviations in
the position of F; with certain distribution of
probability.

b. Statistically propagate the clearances between
the objects in the chain. The result will be a set
D; of possible sets of adjustable displacements
for the part P; with certain distribution of
probability.

2. Compute S(m) and d(m) by considering the pose
uncertainty of M.

3. Compute Sij(m) and S2(m) with probability
distributions d(m;) and d(ms) by considering the
tolerances of M.

4. Set num,=0for a« =0, {1}, {2}, {M}, {M, P},
{MaP2}7 {PlaP2} , and {Mapl,P2}'

5. Repeat n times (n large enough):

a. Determine C; by statistically choosing a devi-
ation from T; and a set of adjustable displace-
ments from D;.

b. Randomly select particular instances of L; and
L5 from the tolerances of M, P; and Ps.

c. Randomly select a pose p; from Cj.

d. Randomly select a pose ps from Cs.

e. Randomly select a pose m from S(m,) accord-
ing to d(m).

f. Randomly select a pose m; from S;(m)
according to d(my).

g. Randomly select a pose my from S5(m)
according to d(my).

h. CALL parts-to-be-adjusted (flow chart in figure 5).

i. Increment num,, according to the result obtained
in the previous step.

6. Return nurrlna for each «.

The conditions in the flow-chart of figure 5 have
been implemented for a two-dimensional case (i.e.

e3:
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Lq(£1)?

c3: c4:
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L1(f1)? L (f2)?
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n 0 O
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Figure 5: Flow chart of the procedure parts-to-be-
adjusted wused to determine which parts have to be
adjusted in order to be able to perform the assembly.

ellipsoids are reduced to ellipses) but they are valid
for any number of degrees of freedom (i.e. ellipsoids
are actually hyper-ellipsoids of the corresponding
dimension). The physical meaning and geometrical
solutions of conditions ¢; for i=1,...,8 are:

cl. Does the local clearance Ly allow to mate features
Fy and My for the nominal position m, of M
and despite tolerances and previous clearances?
Solved by testing if a point lies inside an ellipsoid:
m; (m,) € L1(p1)-

c2. Idem to cl replacing subindex 1 with 2.

c3. Is it possible to adjust the pose p1 of part P; by
using previous clearances such that for the nominal
pose m, of M, the local clearance L1 allow features
Fy and My to mate despite tolerances? Solved
by testing if two ellipsoids intersect each other:
Cl n L1 (pl)-

c4. Idem to ¢3 replacing subindex 1 with 2.



ch. Is it possible to adjust the pose m of part M such
that the local clearances Ly and Lo simultaneously
allow feature Fy to mate M; and F> to mate
M,y despite tolerances and previous clearances?

Solved by:

a) propagating the tolerances between the two
features of M; considering the local clearance
this means the translation of an ellipsoid:
Li(p1) to Li(p}) (or La(pz2) to La(ph)).
The transformation between p; and pj is
the transformation between f; and f5 (or the
opposite if Ly is translated).

b) testing if two ellipsoids intersect each other:
Li(p1) N Lz(p2) (or La(p3) N Li(p1)).

c6. Is it possible to simultaneously adjust the poses m
and p1 of parts M and Py such that the local clear-
ances L1 and Lo simultaneously allow feature Fy to
mate My and F> to mate My despite tolerances and
previous clearances? Solved by:

a) propagating the tolerances between the two
features of M; considering the local clearance
this means the translation of an ellipsoid:
Li(p1) to Li(p}). Again, The transformation
between p; and p} is the transformation
between f; and f5.

b) performing a Minkowsky sum: Cj; = Cy &
Ly (p2)-

c) testing if two ellipsoids intersect each other:
Li(py) N Cs.

c7. Idem to c6 replacing subindices 1 with 2.
c8. Is it possible to simultaneously adjust the poses

m, p; and p2 of parts M, Py and Py such that

the local clearances Ly and Lo simultaneously allow

feature Fy to mate My and Fy to mate Ms despite
tolerances? Solved by:

a) performing the Minkowsky sums: C] = Cy &
L1(P1) and Cé = C2 D L2(p2)

b) considering that one of the features of M
has been assembled, propagate the tolerance
from this feature to the other; this means the
translation of an ellipsoid: C] to C{ (or C§ to
Cy).

c) testing if two ellipsoids intersect each other:
C/ Ny (or CYNCY).

Note that if not all the conditions are satisfied, the

product cannot be assembled. The percentage of as-
semblable products (assemblability) can be computed

in this way as an alternative procedure to that intro-
duced in [1].

5 Example
The evaluation of assembly cost is illustrated in this

section using the four-part example assembly shown
in figure 6. The bottom part (P1) has two holes
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Figure 6: ANSI dimension and tolerance specification
for the four part 2D example assembly: 1 Bottom (P1),
2 Shafts (P2 & P3), 1 Cover (P4).

where the left shaft (P2) and the right shaft (P3) are
inserted into. The top part (P4) with two holes is
assembled with the two shafts. The holes of part P1
have a diameter of 1.0 with size tolerance of £0.01
and position tolerance of 0.10. The holes of part P4
have a diameter of 1.02 with size tolerance of £0.01
and position tolerance of 0.10. The shafts, P2 and P3,
have a diameter of 0.97 with size tolerance of £0.02.
The simulation counts the number of objects that
must be moved in order to successfully assemble the
parts. Therefore, it assumes that the cost is the same
for moving the same number of objects (i.e. moving
two objects {P1,P2} or {P1,M} costs the same),
although they may be different. It must be noted that
the algorithm described in section 4 accounts for all
possible results including the case of different objects.
Two assembly sequences were tested and compared
in simulation: (1) {P1,P2,P3} U {P4} and (2)
{P4,P2,P3} U {P1}, where {.} denotes a subassembly
and U denotes the assembly operation. It must
be noted that the subassemblies {P1,P2,P3} and
{P4,P2,P3} are serial chains whose assembly cost has
been ignored in this simulation. We only illustrate here
the cost of assembling the parallel chain. Although the
deviation frame requires three axes, the y-component
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sequence 1: {P1, P2, P3} U {P4}
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Figure 8: Probability bar graph for the assembly

sequence 2: {P4, P2, P3} U {P1}.

has been ignored since it hardly affects the results and
these can be better illustrated.

In simulation (1), tolerance and clearance accumu-
lation ellipses are computed at the upper end of the
shafts, P2 and P3, propagated from P1. In simulation
(2), tolerance and clearance accumulation ellipses are
computed at the lower end of the shafts, P2 and P3,
propagated from P4. Figures 7 and 8 show the proba-
bilities of having to move N € {0,1,2,3,4} number of
objects (where 4 denotes the infeasible assembly) for
the simulations (1) and (2) respectively.

Assembly sequence (1) can be executed without
moving any object about 2.8% of the time, while in
sequence (2) it is only 0.32%. Also, for the case of
only one adjustment the percentage in sequence (2) is
smaller. The opposite situation occurs for the case
of two and three adjustments. Assuming that the
cost is directly related to the number of objects to

be moved, then the assembly sequence (1) is better
than the assembly sequence (2). The difference of
infeasible assembly probabilities between the assembly
sequences (1) and (2) is the result of approximations
and numerical computation errors.

6 Conclusion

This work complements the work previously done by
Lee and Yi [1]. Using those results and algorithms,
this work proposes a novel approach to evaluating
the assembly by statistically counting the number of
objects that must be moved for a successful assembly.
The approach can be used to select a particular
assembly sequence from a pool of possible assembly
sequences. A complete algorithm and simulation
results were presented.
The contributions of this paper are:

e A new cost metric is proposed based on the concept
of adjustability of the assembly.

e The proposed approach can compute both the
assemblability and the cost of assembly.

e Assembly sequences can be evaluated and selected
using this metric, thus bringing the assembly se-
quence evaluation closer to more realistic problems.
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