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Abstract— Grasp synthesis on real 3D objects is a critical
problem in grasp and manipulation planning. This paper
presents a geometrical approach to compute force closure
(FC) grasps, with or without friction and with any number of
fingers. The object’s surface is discretized in a cloud of points,
so the algorithm is applicable to objects of any arbitrary
shape. One or more FC grasps are obtained with a geometrical
approach, which embeds the FC test in the algorithm to
simplify achieving the force-closure property. This initial FC
grasp may be improved with a complementary optimization
algorithm. The grasp quality is measured considering the
largest perturbation wrench that the grasp can resist with
independence of the perturbation direction. The efficiency of
both algorithms is illustrated through numerical examples.

Index Terms— Grasp planning, force-closure grasps.

I. I NTRODUCTION

Grasps capable of ensuring the immobility of the object
under external disturbances satisfy one of the following
properties: form-closure, when it is the positions of the fin-
gers that guarantee the object immobility, or force-closure,
when it is the forces applied by the fingers that guarantee
the object immobility [1]. Based on any of these properties,
the grasp planners calculate the position of the fingers on
the object surface. The property to be used largely depends
on the field of application: form-closure is used when the
task requires a robust grasp not relying on friction, e.g. the
fixture of objects to be manufactured or inspected, while
force-closure is specially used in grasping and manipula-
tion of objects with a lower number of frictional contacts
using for instance mechanical grippers or hands. Several
algorithms have been developed to determine grasps with
different number of fingers and satisfying the form or force-
closure condition in 2D polygonal [2] or non-polygonal [3]
objects, 3D polyhedral objects [4] or objects with smooth
curved surfaces [5]. However, the development of algo-
rithms to efficiently synthesize grasps in 3D complex real-
world objects is still an open research problem.

A widely used technique to represent an arbitrary object
is the approximation of the object surface with a triangular
mesh with a high number of faces, or equivalently, with
a set of surface points and their corresponding normal
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direction [6], provided that the number of triangles or
points is large enough to accurately represent the surface.
The application of current algorithms developed for grasp
synthesis of polyhedral objects to this kind of object
representations would have a large computational cost, so
new algorithms are being developed. A strategy based on
random generation of grasps was shown to be quick and
efficient to generate good grasps on arbitrary objects [7];
the complexity of such grasp planner depends on the
geometric form of the object (not on its number of faces),
but the generated grasps are not optimal. Wang [8] pro-
poses an algorithm for fixture synthesis on discrete objects
minimizing the workpiece positioning errors due to uncer-
tainties in the position of the locators and in the geometry
of the workpiece. Ding et al. [9] propose an algorithm
to generate a form-closure grasp with seven frictionless
contact points; however, it can be trapped in local minima.
Liu et al. [10] extend the previous algorithm to find one
force-closure grasp with frictional or frictionless contact
points, and Niparnan and Sudsang [11] generate several
4-finger concurrent force-closure grasps; their contribution
and the comparison with the algorithms presented in this
paper will be discussed later.

This paper deals with the problem of finding a force-
closure (FC) grasp with frictional or frictionless contact
points, and with any numbern of contacts, provided that
n ≥ 3 for frictional grasps andn ≥ 7 for frictionless
grasps. The proposed approach comprises two algorithms.
The first algorithm finds at least one FC grasp with a
geometrical procedure that avoids a costly FC test in each
iteration. The second algorithm optimizes an initial FC
grasp to get a locally optimum grasp; the optimization
procedure looks for the grasp with the largest resisted
perturbation wrench, with independence of the perturbation
direction [12].

The rest of the paper is structured as follows. Section II
provides an overview of the problem, including the main
assumptions in the object and contact models, and discusses
the used FC test and grasp quality measure. Section III
presents the algorithm to compute at least one FC grasp.
Section III provides an additional algorithm to compute
locally optimum FC grasps with any number of fingers.
Both algorithms have been implemented and Section V
shows the results of their application to several objects.
Finally, Section VI presents the conclusions of the work.



II. PROBLEM OVERVIEW

A. Problem definition

The problem to be tackled is the search of a FC grasp
in a set of points representing the surface of an arbitrary
3D object. The work relies on the following assumptions:

• The object surface is represented with a large setΩ of
points, described by position vectorspi measured with
respect to a reference system located in the object’s
center of mass (CM ). Each point has an associated
normal directionn̂i pointing towards the interior of
the object.

• The number of points inΩ is large enough to accu-
rately represent the surface of the object.

This paper proposes a geometric approach to synthesize
appropriate FC grasps, with two main algorithms:

1) An algorithm to search the set of pointsΩ for one
or several FC grasps, regardless of its quality.

2) An optimization algorithm that searches for a local
optimum grasp, measured with the largest perturba-
tion wrench that the grasp can resist, and starting
from one FC grasp obtained, for instance, with the
previous algorithm.

B. Frictionless grasps

Seven frictionless contacts are necessary and sufficient to
hold a 3D object with a FC grasp, provided that the object
has no rotational symmetries [13]. With frictionless contact
points, the grasp forces can only be applied in the direction
normal to the object surface. A forcef i = αin̂i applied on
the object at the pointpi generates a torqueτ i = pi × f i

with respect toCM , with αi being a nonnegative value
representing the magnitude of the grasping force. The force
and the torque are grouped together in a wrench vector
(also known as generalized force vector) given by

ω̃i =

(

f i

τ i

)

= αi

(

n̂i

pi × n̂i

)

(1)

The wrenches applied through the contact points
on the object can be grouped in a wrench set
W = {ω1,ω2, . . . ,ω7}, where eachωi, i = 1, . . . , 7, is
called a primitive contact wrench whenαi = 1 in
equation (1). Each physical pointpi in the setΩ has a
corresponding wrenchωi in the generalized force space;
both of them will be used to indicate a grasp point.
C. Frictional grasps

Coulomb’s friction model is used in this work, sta-
ting that there is no slipping at the contact point if
f t

i ≤ µfn
i , with µ being the friction coefficient. In the

three-dimensional physical space this is a nonlinear model,
defining a friction cone that includes all the possible grasp
forces. To simplify the model, the cone is linearized with a
m-side polyhedral convex cone (the more sides the better
the approximation, but the greater the computational cost
to deal with the linearized cone).

The grasping force at the contact point is given by

f i =

m
∑

j=1

αijsij , αij ≥ 0 (2)

with sij representing the normalized vector of thej-th edge
of the convex cone. The wrench produced by the forcef i is

ω̃i =
m

∑

j=1

αijωij , ωij =

(

sij

pi × sij

)

(3)

whereωij are the primitive contact wrenches in the fric-
tional case. Therefore, each contact point hasm associated
points in the wrench space, one for each sidesij of the
pyramid. Letωi be the “normal contact wrench” for the
force f i, i.e. the primitive contact wrench in case of a
frictionless contact point. The following relation can be
established between the normal contact wrenchωi and the
primitive contact wrenchesωij for the linearized friction
cone in a particular contact point:

ωi =
1

m

m
∑

j=1

ωij (4)

For a given graspG = {p1, . . . ,pn} (or equivalently,
G = {ω1, . . . ,ωn}), the corresponding wrench set is
W = {ω11, . . . ,ω1m, . . . ,ωn1, . . . ,ωnm}.

D. Force-closure test

Several criteria have been proposed to test the force-
closure property in a particular grasp. A necessary and
sufficient condition for the existence of a FC grasp is that
the origin of the wrench space lies strictly inside the convex
hull (CH) of the primitive contact wrenches [14]. This
condition can be solved as a linear programming problem
using a ray-shooting technique [15], or as a particular
application of an algorithm to find the distance between
a point and a polytope [16]. The FC test used in this work
is based on the following lemma.

Lemma 1: Let G be a grasp with a setW of primitive
contact wrenches,I the set of strictly interior points of
CH(W ), andH a supporting hyperplane ofCH(W ) (i.e.
a hyperplane containing one of the facets ofCH(W )). The
origin of the wrench spaceO ∈ I if and only if anyP ∈ I
andO are in the same half-space for everyH of CH(W ).

From Lemma 1, checking whether a given pointP ∈ I
and the originO lie in the same half-space defined by
every supporting hyperplaneH of CH(W ) is enough to
prove whetherO lies inside CH(W ), i.e. to prove the
FC property for the graspG. P is chosen as the centroid
of the primitive contact wrenches, which is always an
interior point ofCH(W ). Then, the FC test verifies if the
centroidP and the originO lie on the same side for all
the supporting hyperplanes ofCH(W ); Fig. 1 illustrates
the concept with a FC grasp and a non FC grasp in a
hypothetical 2D wrench space (the actual wrench space is
6-dimensional).

E. Grasp quality

A quality measure is required to quantify the quality
of a grasp; it also provides an optimization criterion for
the algorithm presented later in this paper. Several grasp
quality measures have been proposed in the literature [17];
this work uses as a quality measure the largest perturbation
wrench that the grasp can resist, with independence of the
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Fig. 1. Force closure test. The grasp with wrench set
W = {ω1, ω2, ω3} (with CH represented in discontinuous lines) is
non-FC. The grasp with wrench setW ∗

= {ω1, ω2, ω4} (with CH

represented in continuous lines) is a FC grasp.

perturbation direction [12]. Geometrically, that qualityis
the radius of the largest ball centered at the origin of the
wrench space and fully contained inCH(W ), i.e. it is
the distance from the origin of the wrench space to the
closest facet ofCH(W ). This is one of the most popular
grasp quality measures, and will be referred hereafter as
the largest ball criterion.

III. SYNTHESIS OF A FORCE-CLOSURE GRASP

A. The algorithm

The synthesis of a FC grasp is based on geometric
reasoning, avoiding the inclusion of an explicit FC test in
the synthesis algorithm. A setS1 of n − 1 random points
(n = 7 for a frictionless grasp) is selected fromΩ, and
the convex hullCH(W ) of the selected points plus the
origin O of the wrench space is computed; the missing
contact required to get a FC grasp must be found (in
this sense, the approach uses the necessary and sufficient
condition provided in [4] for the FC grasp when one
or more contacts are missing). LetH be a supporting
hyperplane ofCH(W ) containing the origin, and letH+

be the half-space defined byH that containsCH(W ). The
intersection of all of the half-spacesH+ is the union of
two convex sets,C1 andC2, as illustrated in Fig. 2. LetC1

be the convex set containingCH(W ), then, if there is at
least one wrench inC2, it will provide a FC grasp when
added to the setS1, according toLemma 1. If C2 is empty,
the algorithm iteratively replaces one of the wrenches inS1

and performs another search of points in the newC2, until
it contains at least one point, i.e. until it finds at least one
FC grasp. The steps in the algorithm are:
Algorithm 1: Search of a FC grasp
1) Generate a random setSk with the wrenches

corresponding to n − 1 contact points,
Sk = {ω1, . . . ,ωn−1}, k = 1.

2) Build the wrench setW k adding the originO of the
wrench space to the setSk.

3) Compute the convex hullCH(W k).
4) Use the supporting hyperplanes ofCH(W k) containing

the origin to look for the points lying in the setsC1

andC2.
5) If there is at least one point inC2, then the algorithm

finishes and returns at least one FC graspG. If C2 is
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Fig. 2. Synthesis of a FC grasp. The convex hull of the wrench set
W = {ω1, ω2,0} (in continuous lines) defines the supporting hyper-
planesH1 and H2 that contain the origin. The convex setC2 contains
4 points (depicted as white squares), thus the algorithm provides 4 FC
grasps, one of them illustrated with the convex hull in discontinuous lines.

empty, choose one of the wrenches inΩ − C1 − C2, and
use it to replace the closer wrench in the setSk, thus
generatingSk+1. Go to Step 2.

To progressively explore the search space and assure
the completeness of the algorithm, the wrenches lying
in C1 are labeled as explored wrenches. WhenC2 is empty,
any combination ofn − 1 wrenches inC1 (including the
wrenches inSk) will not yield a FC grasp, thus all of these
possible combinations are left out for subsequent searches.
The algorithm keeps running and finishes when at least one
FC grasp is obtained; the algorithm provides as many FC
grasps as points lie inC2.

The algorithm was extended to frictional grasps. The
primitive contact wrenches are used to compute the convex
hull CH(W ), and any primitive wrench lying inC2 will
provide a FC grasp when the wrenches of the corre-
sponding grasp point are added to the setSk. A more
conservative approach may require that all of the primitive
contact wrenches for a frictional grasp point lie insideC2 to
consider it as valid grasp point; this would lead only to the
more robust FC grasps, but may miss some other solutions.
B. Comparison with previous works

There is relatively little work concerning the synthesis
of a FC grasp on discretized 3D objects. Niparnan and
Sudsang [11] generate a number of 4-finger concurrent FC
grasps to provide the user with a large set of grasps, so the
user can choose an optimum one according to a quality
measure appropriate for the particular task. The algorithm
is based on the localization of regions in the 3D space
where the axes of the friction cones seem to intersect. For
each region, subsets of four grasp points are tested for the
FC condition, by choosing an arbitrary point in the region
and test if it is included in the four friction cones. The
algorithm is capable of computing hundreds of FC grasps;
the running times are below 3 seconds to get one FC grasp
in objects described with 2000 surface points. However,
they do not take into account any measure of grasp quality.

In a work closer to ours, Liu et al. [10] look for a
force-closure grasp with frictional or frictionless contact
points. First, an initial random grasp is chosen, and the
algorithm iteratively moves the fingers to decrease the
distance between the convex hull and the origin. When
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Fig. 3. Selection of the subsetΩk
C

of candidate points (depicted as
white squares in the gray area) that may improve the grasp quality; in
this example,FQ = ω2ω3.

the procedure is trapped in a local minimum, the point set
is divided into subsets by using a separating hyperplane
in the wrench space, and the FC search is decomposed
into subproblems, based on existence conditions for the FC
grasp. The algorithm uses a FC test in each iteration; the FC
test implies the solution of a linear programming problem
based on the ray-shooting technique [15]. The algorithm is
complete, in the sense that it finds a FC grasp if it exists
in the discrete sampling of the surface, but it does not
assure any optimality. The number of iterations in several
examples is provided, but no information is reported on
computational times.

The algorithm presented here also looks for the FC grasp
in the wrench space; it is applicable to any number of
frictional or frictionless fingers, and progressively covers
the search space until it finds a FC grasp, or until all of
the space has been covered and no FC grasp is found. It
is computationally simpler than the algorithm in [10], as it
does not include an explicit FC test in the algorithm; the
FC condition is embedded in the search process. Moreover,
the algorithm finds one or more FC grasps, depending on
the number of wrenches lying in the subsetC2; if there
are several FC grasps, they can be classified according to
a quality measure to pick the best candidate among the
grasps provided by the algorithm. If a more robust grasp is
required, the selected initial grasp may be optimized with
the algorithm presented in the following section.

IV. SYNTHESIS OF A LOCALLY OPTIMUM GRASP

The optimization algorithm begins with an initial FC
grasp obtained, for instance, with the procedure described
in the previous section. The optimization is done according
to the largest ball criterion. The steps in the algorithm for
the frictionless case are:
Algorithm 2: Search of a locally optimum FC grasp

1) Find an initial FC grasp,Gk = {ω1, . . . ,ω7}, k = 1,
using the algorithm presented in Section III, and form
the corresponding wrench setW k.

2) DetermineFQ, the facet of the convex hullCH(W k)
closest to the origin. The distance from the originO to
FQ is the current grasp qualityQk.

3) Build the subsetΩk
C with the candidate points that may

produce an improvement in the grasp if they replace

a) b) c)
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Fig. 4. Possible cases for a candidate grasp in the optimization procedure:
a) Non-feasible candidate grasp, b) Discarded candidate grasp, c) Feasible
candidate grasp.

one point inFQ. Let HQ be the hyperplane containing
the facetFQ. The subsetΩk

C contains the points lying
in the open half-space defined byHQ that does not
contain the originO, i.e. H+

Q , as illustrated in Fig. 3
for a hypothetical two-dimensional wrench space.

4) Generate 6 candidate graspsG∗

i , i = 1, . . . , 6, by
picking one pointω∗ from Ωk

C and replacing each
one of the vertices defining the facetFQ. Due to the
selection procedure, all the wrenchesω∗ ∈ Ωk

C are
external points toCH(W ), therefore, when replacing
one vertexωi from the actualCH with the candidate
wrenchω∗, the latter will become a vertex of the new
CH. The explicit computation of the newCH is not
required, as its facets are constructed from the old ones
replacingωi with ω∗.

5) Check the candidate grasps for the FC property using
Lemma 1. For the FC candidate grasps, the expected
grasp qualityQ∗ is computed; if for any candidate grasp
Q∗ > Qk, then the candidate becomes the new grasp
Gk+1. Fig. 4 illustrates three possible cases related to
the candidate grasps; case (a) is a non-feasible grasp
because it loses the FC property, case (b) is discarded
because the grasp has a smaller quality than the previ-
ous one, and case (c) is a FC grasp that improves the
current grasp quality, thus it becomes the grasp for the
next iteration cycle. If any candidate grasp improves the
quality, the algorithm goes back to Step 2. If there is no
improvement inQk once all the points inΩk

C have been
considered, then a local minimum has been reached, the
algorithm finishes and returns the current graspG.

When frictional contacts are considered, the vertices
defining the facetFQ are primitive contact wrenches as-
sociated to different grasp pointspi (Fig. 5). Therefore,
the candidate grasps in Step 4 are generated by replacing
all the contact pointspi that contribute with at least one
primitive contact wrench in the facetFQ. When a grasping
point is substituted by a new one in Step 5, the explicit
computation of the new convex hull is required, which
increases the computational complexity of the algorithm
in the frictional case.

To the best of the authors knowledge the algorithms
presented in the literature for FC grasp synthesis in dis-
cretized 3D objects focus only on getting one FC grasp,
regardless of whether it is (locally) optimal or not. As
a consequence, no direct comparison can be established
between the present and other previously published works.
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Fig. 5. Optimization procedure for frictional grasps. White circles rep-
resent normal contact wrenches, and black circles are the corresponding
primitive contact wrenches. Wrenches falling in the gray zonebelong to
the subsetΩk

C
of candidate points that may improve the grasp quality.
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Fig. 6. Objects used in the examples: a) Parallelepiped discretized with
a mesh of 1628 triangles, b) Knight discretized with 4750 triangles.

V. EXAMPLES

The proposed algorithms have been implemented using
Matlab on a Pentium IV 3.2 GHz computer. The perfor-
mance of the approach is illustrated using the two objects
shown in Fig. 6: a parallelepiped and a chess knight. The
object surfaces are represented with triangular meshes.
The contact pointspi considered on the object surface
are the centroids of the triangles in the mesh, and the
corresponding surface normal directions are the directions
normal to the triangles.

A. Example 1: frictionless grasp on a parallelepiped

The parallelepiped is described with a mesh of 1628
triangles. This simple figure makes more difficult the search
of the first FC grasp, as the initial randomized grasp may
place all the fingers on just one or two faces (because
there are two large faces, the probability of placing a finger
on those faces is greater than on the others). Fig. 7a and
7b show the initial and locally optimal FC grasps for a
particular case. The time elapsed to obtain the initial FC
grasp is 0.13 seconds in 2 iterations; Algorithm 1 provides
other 22 possible FC grasps. The time to get the locally
optimum grasp with Algorithm 2 is 16.8 seconds in 21
iterations. Fig. 7c plots the grasp quality in the optimization
phase; the quality always increases monotonically until it
finds the locally optimum grasp.

The obtained locally optimum grasp depends on the
initial FC grasp. In the example, the initial grasp quality
is QI = 0.04, and the locally optimum gasp has a quality
of QF = 0.212. The improvement factorQF /QI is 5.3.
However, as the improvement factor depends on the initial
FC grasp, 50 locally optimum grasps were computed to
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Fig. 7. FC grasp on the parallelepiped: a) Initial FC grasp, b) Locally
optimum FC grasp, c) Increase in the grasp quality.
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Fig. 8. Initial vs. final quality for the parallelepiped frictionless grasps.

obtain a better insight into the performance of the whole
process. The correlation between the initial and final qual-
ities is shown in Fig. 8. The average qualities give an idea
of the behavior of the algorithm, they are 0.025 and 0.227
for the initial and locally optimum FC grasps, respectively;
the average improvement factor is 9.

B. Example 2: frictionless grasp on a knight

The knight is discretized with 4750 triangles (Fig. 6b).
Fig. 9 shows the results for a particular case; the initial
grasp is found in 0.2 seconds with no iterations (the initial
random wrenches yield a FC grasp), and 49 additional FC
grasps are provided. The locally optimum grasp is obtained
after 35 iterations in 31.6 seconds. The grasp qualities are
0.009 and 0.058 for the initial and locally optimum FC
grasps, respectively, with an improvement factor of 6.4.
Fig. 10 shows the correlation between initial and final grasp
qualities in 50 cases. The average quality for the initial FC
grasp is 0.0052, and 0.067 for the locally optimum grasp;
the average improvement factor is 12.9.
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Fig. 9. Frictionless grasp on the knight: a) Initial FC grasp, b) Locally
optimum FC grasp.
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Fig. 10. Initial vs. final quality for the knight frictionless grasps.

C. Example 3: frictional grasp on a knight

The frictional grasps on the knight are computed con-
sidering a friction coefficient of 0.2 and 4 fingers (the
minimal number of fingers to guarantee a frictional FC
grasp). The friction cones have been linearized with an
8-side polyhedral convex cone. Fig. 11 shows the results
for a particular case; Algorithm 1 provides 16 FC grasps
in 11 seconds and 1 iteration. The locally optimum grasp
is obtained after 16 iterations in 13 minutes. Fig. 12 shows
the correlation between initial and final grasp qualities for
50 initial and locally optimum grasps. The average quality
for the initial FC grasp is 0.015, and 0.04 for the locally
optimum grasp. The average improvement factor is 2.8.

VI. CONCLUSIONS

This paper proposes a geometrical approach to obtain at
least one force-closure (FC) grasp in 3D discretized ob-
jects, with frictional or frictionless contacts and with any
number of fingers. The presented algorithm embeds the FC
condition in the procedure to avoid an explicit FC test in
each iteration. The initial FC grasp may be improved with
an oriented search procedure, optimizing the grasp quality
according to the largest ball criterion. The algorithms were
implemented and the execution results (as the examples
shown in the paper) illustrate the relevance and efficiency
of the approach. Future work includes the determination
of independent contact regions for 3D discretized objects,
such that placing a finger in each contact region assures a
force-closure grasp on the object, independently of the ex-
act position of the contact points, and providing robustness
in front of finger positioning errors in grasp and fixturing
applications.
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