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Abstract— This paper deals with the problem of deter-
mining independent grasps regions on the object boundary
such that a four frictionless grasp with a contact point in
each region assures a form-closure grasp independently of
the exact position of the contact point. These regions are
useful to provide some robustness to the grasp in front of
finger positioning errors as well as in the design of fixtures.
Given a discrete description of a 2D object, the methodology
takes into account the uncertainty in the object description
and it determines the independent regions without using
hard iterative search procedures. The procedure has been
implemented and an example of the proposed methodology is
included in the paper.

Index Terms— Grasp synthesis, fixture design, form-closure
independent regions, discrete objects.

I. INTRODUCTION

Grasps capable of ensuring the immobility of the object
despite external disturbances are characterized by one of
the following properties: form-closure when the position of
the fingers ensures the object immobility, or force-closure
when the forces applied by the fingers ensure its immo-
bility [1]. During the last two decades, several algorithms
has been developed to determine form and force-closure
grasps of objects. Some of these works consider that the
model of the object is known and they use quality criterions
(for instance [2][3][4]) or heuristics criterions (for in-
stance [5][6]) to select the final grasp. Other works consider
that the model of the object is not known, implying that the
selection of the final grasps should consider the description
of the object made by an artificial vision system [7] [8]. In
both cases, these algorithms determine “precision” grasps,
i.e. grasps formed by a set of contacts points on the
object boundary where the fingertips will be placed, and
they require a good precision in the fingertip placements.
In a real execution, the final grasp and the theoretical
grasp may differ due to finger positioning errors. A metric
for measuring the sensitivity of a grasp with respect to
positioning errors can be found in [9]. In order to provide
robustness to the grasp in front of these errors, Nguyen [10]
introduced the concept of independent regions, i.e. regions
on the object boundary such that a finger in each region
ensures a form or force-closure grasp independently of the
exact contact point, and he developed a geometrical ap-
proach to determine the maximum independent regions on
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polygonal objects using four frictionless contacts and two
friction contacts. The problem of determining independent
regions considering polygonal or polyhedral objects has
been treated in [11][12][13][14]. Nevertheless, the determi-
nation of independent regions considering non-polygonal
objects has not aroused the same attention. In [15] a
methodology to determine two friction contact grasps of
2D objects was developed and in [16] a general approach
to determine independent regions on 3D objects based on
initial examples was proposed, although the selection of a
good initial example for a given object remains as a critical
step. Closely related to the independent regions, some
algorithms determine all the N -finger force-closure grasps
of polygonal objects [17][18]. These algorithms have not
been used to compute independent regions, although in [18]
the most stable grasp considering finger positioning errors
is determined.

This paper deals with the problem of determining in-
dependent regions on the boundary of irregular objects
considering the minimum number of frictionless contacts
(four for 2D objects [19]) such that a contact point in each
region ensures a form-closure grasp (hereafter FC grasp).
A sufficient condition is developed stating whether any
two contact points are compatible with a FC grasp. The
conditions that the other two contact points must satisfy
to produce a FC grasp are also presented and, using this
information, a procedure to obtain independent regions is
developed. The procedure is valid for a discrete description
of the object boundary with restricted uncertainty between
two consecutive points, and it does not imply hard iterative
search procedures. Besides, since the solution does not rely
on friction, the proposed methodology is useful to design
fixtures for planar objects [20].

Recently, an algorithm to determine form-closure grasps
of 3D objects described by discrete points has been pre-
sented in [21]. This algorithm is based on an iterative
search through the points. Even when the methodology
presented here has been developed considering 2D objects,
the main contributions respect to the application of [21] to
2D objects are: 1) Iterations are only needed to find some
characteristic points of the object and they do not imply
hard iterative search procedures with the risk of falling in
local minima (local minima are the critical point in terms
of computational cost in [21]); 2) The methodology can
deals with some uncertainty between the discrete points in
the object description.



This paper is organized as follows. Section II summa-
rizes some results of previous works ([3][14]) obtained
for polygonal objects that are the starting point of the
developments for irregular objects. Section III tackles the
problem of finding FC grasps of irregular objects and
presents a method to obtain independent regions on the
object boundary. An example of the proposed methodology
is included in Section IV. Finally, some concluding remarks
and possible future lines to extend this work are pointed
out in Section V.

II. FORM-CLOSURE GRASPS OF POLYGONAL OBJECTS

Consider a polygonal object and let θi be the direction
of the applied force on the edge i. In the absence of
friction, θi is the inward direction normal to the contact
edge, and an unitary applied force on this edge is given by
f i = [cos θi sin θi].

Let τi be the torque produced by f i with respect to
the object’s center of mass. Since f i is known given the
contact edge i, there is an univocal relation between τi

and the exact contact point pi on the edge i. Based on this
relation and considering i=1, ..., 4 the following concepts
are defined [14].
Definition 1: The Real Range of τi, Ri, is the set of values
of τi produced by the contact force f i that are physically
possible due to the length of the contact edge. �
Definition 2: The Directional Range of τi, Rfci

, is the
set of values of τi produced by the contact force f i that
allow a FC grasp given any other three wrenches and
considering that the contact edge has infinite length (i.e.
only the “direction” of the edge is considered). �

Let Pf be the polygon defined by the unitary forces f i

with i = 1, ..., 4 in the force space (i.e. the space defined
by pure forces as in Fig. 1), and consider that 0 ∈ Pf

(otherwise the contact edges do not allow a FC grasp [22]).
From the two definitions above, the existence of a FC grasp
implies that Ri ∩ Rfci

�= Ø. Since Ri is known, the set of
valid torques that produces a FC grasp can be determined
by finding Rfci

.
The following remarks related with the Directional

Ranges will be used here (they are proved in [14]):
1. There are two types of Directional Range Rfci

: Infinite
if Rfci

has only one finite extreme and the other tends
to ±∞, and Limited if Rfci

has two finite extremes.
2. The number of finite extremes and, therefore, the type

of Directional Range Rfci
, can be determined knowing

how many pairs βi,jk and βi,kj are non-positive, being:

βi,jk =
sin(θi − θk)
sin(θj − θk)

(1)

βi,kj =
sin(θj − θi)
sin(θj − θk)

(2)

where θi, θj and θk are the directions of the forces f i,
f j and fk with {i, j, k} ∈ {1, 2, 3, 4} and i �= j �= k.
βi,jk and βi,kj cannot be simultaneously null.

3. There are always at least two Infinite Directional
Ranges that correspond to the torques generated by two
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Fig. 1. Examples of types of Directional Ranges from the applied forces:
a) Rfch

and Rfck
are Limited and Rfci

and Rfcj
are Infinite; b) Rfck

is Limited and Rfch
, Rfci

and Rfcj
are Infinite.

forces that define consecutive vertices of Pf and lie
between the negated of the other two forces (Fig. 1
shows two different examples).

4. Let Rfci
and Rfcj

be two Infinite Directional Ranges
with f i and f j defining two consecutive vertices of Pf .
In a FC grasp Rfci

tends to±∞andRfcj
tends to ∓∞.

Based on these four remarks, the following necessary
and sufficient condition for the existence of a FC grasp
was enunciated and proved [14].
Necessary and sufficient condition: Four frictionless con-
tacts allow a FC grasp iff for f i and f j defining two
consecutive vertices of Pf and τi and τj having Infinite
Directional Ranges

sign(Γi) �= sign(Γj) (3)

where

Γρ = βρ,hkτh + βρ,khτk − τρ with ρ∈{i, j} (4)

�
Equation (4) has an useful geometrical property on the

object space: the lines of action of the forces whose torques
appear in equation (4) intersect at the same point when
Γρ =0. In this case, the grasp is critical and it separates
the FC grasps from the non-FC grasps [13]. Generally, the
intersection involves the three lines of forces, although if
either βρ,hk or βρ,kh are null (it happens when the angle
between the directions of two forces is π), the intersection
only involves the lines of action of two forces. An example
of a FC grasp of a polygonal object and critical point
positions is shown in Fig. 2.

III. FORM-CLOSURE GRASPS OF IRREGULAR OBJECTS

A. Object Description

Let B(u) and pi =B(ui) be the actual object boundary
parameterized on u and a point on it for a given ui,
respectively. B(u) is assumed to be a smooth and closed
curve.

Let Bd(n) = {qj , j = 1, ..., n}, be a discrete description
of B(u), with n being the number of points in the dis-
cretized boundary and qj being one of its points. It is
assumed that Bd and the normal direction θj on each of
its points are known. Besides, it is also assumed that if
pi ∈ [qj , qj+1] then θi ∈ [θj , θj+1].
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Fig. 2. a) Example of a FC grasp of a polygonal object (black points) and
of the determination of critical positions for p3 and p4 (grey points); b)
Determination of the types of Directional Ranges from the applied forces:
Rfc1 and Rfc2 are limited and Rfc3 and Rfc4 are Infinite.
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Fig. 3. a) Example of a FC grasp of an irregular object; b) Determination
of the types of Directional Ranges from the applied forces: Rfc1 and
Rfc2 are limited and Rfc3 and Rfc4 are Infinite.

B. Form-Closure Conditions

The necessary and sufficient condition enunciated for
polygonal objects is based only on the directions of the
applied forces. Given four contact points on the boundary
of an irregular object the directions of the applied forces
are also known, implying that the necessary and sufficient
condition developed for polygonal objects can also be
applied to check if these contact points allow a FC grasp (as
in Fig. 3). Based on the necessary and sufficient condition
for polygonal objects, the following lemma is enunciated.

Lemma 1: Let θh, θi, θj and θk be the directions of the
applied forces on any four points on B(u), and let τj and
τk be the torques that have Infinite Directional Ranges
(as in the necessary and sufficient condition developed for
polygonal objects). In a FC grasp, these four directions
must satisfy the following relations:

0 < θk − θh < π (5)
θh + π ≤ θρ ≤ θk + π with ρ ∈ {i, j} (6)

�
Proof: From equations (1) and (2) the coefficients βρ,hk

and βρ,kh of equation (4) are:

βρ,hk =
sin(θρ − θk)
sin(θh − θk)

(7)

βρ,kh =
sin(θh − θρ)
sin(θh − θk)

(8)

and from the remark 2 of the previous section they must be
non-positive. From equations (7) and (8) it can be checked
that the coefficients are non-positive only if equations (5)
and (6) are satisfied. �
Definition 3: An opposite point, po

i of a point pi, both
on B(u), is a point such that fo

i and f i are in opposite
directions. �
Definition 4: (From [23]) An antipodal point, pa

i of a
point pi, both on B(u), is a point on the object boundary
such that fa

i and f i are in opposite directions and they are
collinear (therefore pa

i is also an opposite point of pi). �
From Lemma 1 the contact points pρ, with ρ ∈ {i, j},

must be between opposite points of ph and of pk. Consi-
dering a grasp formed by ph, pk, pi = po

h and pj = po
k

(i.e. the extremes of the piece of boundary where pρ must
lie) the necessary and sufficient condition developed for
polygonal objects is equivalent to:

sign(Γh) �= sign(Γk) (9)

with

Γν = sin θν(xo
ν − xν) − cos θν(yo

ν − yν) (10)

where pν =(xν , yν), po
ν =(xo

ν , yo
ν) and θν is the direction

of the applied force fν for ν ∈ {h, k}.
Given two contact points ph and pk, it is possible to

assure that they allow a FC grasp with two other contacts
points between po

h and po
k if they satisfy equation (9).

Otherwise, it is not possible to assure anything even when
they still may allow a FC grasp. Then, equation (9) can be
used as a sufficient condition for a FC grasp.
Proposition 1: Considering frictionless contacts, a grasp
including two antipodal points pν and pa

ν is critical (i.e.
equation (10) gives Γν = 0). �
Proof: The antipodal points are a subset of the opposite
points. Then, equation (9), developed for two opposite
points, also determines whether two antipodal points can
produce a FC grasp. Geometrically, Γν of equation (10)
is the distance between the point po

ν and the straight line
containing fν applied at pν . Since the forces applied at
two antipodal points are collinear, pa

ν of pν belongs to this
straight line. As a result, Γν = 0 and a critical grasp is
obtained. �
Proposition 2: Let pa

h and pa
k be two consecutive points

with antipodal points on the object boundary. The result of
equation (10) has the same sign for any point between pa

h

and pa
k. �

Proof: From Proposition 1, only antipodal points make
equation (10) equal to zero. Therefore, since the sign of
equation (10) can change only at the antipodal points
and the object boundary is closed, all the points between
two consecutive antipodal points make the solution of
equation (10) to have the same sign. �

When the object boundary is described by Bd as a finite
number of points, it is not possible to exactly compute the
antipodal points. Nevertheless, it is possible to determine



the regions where the antipodal points are located; it is
done with the following algorithm.

Algorithm 1: For each pair of consecutive points qn and
qn+1 of Bd, do:
1. Find two points qv and qw of Bd that satisfy:

θv ≤ θo
n ≤ θw (11)

θv ≤ θo
n+1 ≤ θw (12)

if more than two pairs of points satisfy equations (11)
and (12) select those with minimum number between
them.

2. Compute the straight lines containing the forces fn

fn+1 applied at qn and qn+1, respectively.
3. If qv and qw are on different sides of the two straight

lines determined in step 2, there is an antipodal point
between qn and qn+1. �

Let the hk−space be the 2D space defined by the pa-
rameters that fix the position of two points (the parameters
are uh and uk for ph and pk, and h and k for qh and
qk). The values of these parameters that define antipodal
points make a partition of the hk−space into rectangular
cells (Fig. 4). If B was known this would be an exact
partition. When the object boundary is described by Bd,
it is not possible to compute exactly the antipodal points,
but it is possible to determine regions where they lie using
Algorithm 1. Then, the partition of the hk−space is not
exact and there are uncertainty regions between the cells.
Fig.4a shows an example for an ellipse, where the exact
antipodal points correspond to u = 0, π

2 , π, 3π
2 . Fig. 4b

shows the same ellipse described by 25 points and, in
this case, there are some uncertainty in the localization
of the antipodal points (the antipodal points are located
in the portions of the boundary between crosses, which
correspond to the shaded regions in the hk−space).

From Proposition 2, the result of equation (10) has the
same sign for any contact point between two consecutive
antipodal points. Then, all the combinations of any two
contact points that belong to the same cell of the hk−space
either satisfy equation (9), defining a FC cell, or do not
satisfy equation (9), meaning that it is not possible to assure
a FC grasp in that cell. Then, checking a combination of
two contact points from each cell, it is possible to determine
the FC cells (black cells in Fig.4) and the cells requiring a
more exhaustive analysis (white cells), which are initially
discarded.

C. Independent regions

In the previous subsection the FC cells has been deter-
mined such that for any two points from one of them it
is possible to find other two contact points that allow a
FC grasp. In this subsection, the selection of these other
two contact points and a procedure to obtain independent
regions that allow a FC grasp are presented.

Lemma 2: Let ph, pi, pj and pk be four contact points
that satisfy Lemma 1. If these points produce a FC grasp,
there are an odd number of critical points pc between pi
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Fig. 4. a) Exact antipodal points on an ellipse and partition of the
hk−space (the FC cells are the black ones); b) Discrete description of an
ellipse with the regions where the antipodal points are located (portions
of the boundary between crosses) and partition of the hk−space with
uncertainty regions (shaded regions).

and pj such that pc, ph and pk produce a critical grasp
(i.e., the lines of action of f c, fh and fk intersect at the
same point). �
Proof: In order to obtain a FC grasp, equation (3) must
be satisfied implying that Γi and Γj have different signs.
The values of Γi and Γj are obtained from equation (4)
considering the contact points pi and pj , respectively.
Since the object boundary is smooth, pi and pj define a
continuous piece of the object boundary. As a result, there
must be an odd number of critical points pc between them
that make equation (4) equal to zero (i.e. fh, fk and f c

produce a critical grasp) and allow the result of equation (4)
to change its sign. �

Based on Lemmas 1 and 2 the following algorithm was
developed to obtain the points qi and qj that allow a FC
grasp.

Algorithm 2: Let (qh, qh+1) and (qk, qk+1) be two pairs
of consecutive positions of Bd with h, h + 1, k and k + 1
belonging to the same FC cell. For these points, do:
1. Compute the straight lines containing the forces fh,

fh+1, fk and fk+1 applied at their respective points.
2. Intersect the line containing fh and the line containing

fh+1 with the lines containing fk and fk+1. Four
intersection points are obtained.

3. Determine ql− and ql+ that satisfy θl− ≤ θo
h ≤ θl+ and

θl− ≤ θo
h+1 ≤ θl+ with the minimum number of points

between them.
4. Determine qs− and qs+ that satisfy θs− ≤ θo

k ≤ θs+

and θs− ≤ θo
k+1 ≤ θs+ with the minimum number of

points between them.
5. Determine qρ that satisfy θl+ ≤ θρ ≤ θo

s− for ρ ∈ {i, j}



(it is equivalent to satisfy Lemma 1).
6. Compute the straight lines containing fρ and fρ+1

applied at their respective points.
7. Evaluate the positions of the points obtained in step 2

with respect to the straights lines obtained in step 6. If
these points are on different sides of the two straight
lines, there are critical points between qρ and qρ+1.

8. Determine qc− and qc+ as the minimum and maximum
values of qρ that satisfy step 7. qc− and qc+ define a
critical region where the critical points lie.

9. Chose qi ∈ [ql+ , qc− ] and qj ∈ [qc+ , qs− ]. Then, qi

and qj jointly with qh and qk satisfy Lemma 2, and
they form a FC grasp. �

If Algorithm 2 is applied considering the entire ranges of
a FC cell (i.e., the values of h and k that define the FC cell)
the values of l+ and s− (step 5 of Algorithm 2) describe
two limit surfaces, and c− and c+ (step 8) describe two
critical surfaces (Fig. 5 shows an example considering a FC
cell for an ellipse). Therefore, a set of independent regions
is obtained by determining two parallelepipeds between the
limit surfaces with the same projection on the hk−space
such that the critical surfaces c− and c+ are between them.
The ranges of the edges of these parallelepipeds define, on
the object boundary, the independent regions where a FC
grasp is possible. The maximization of the shortest inde-
pendent region is used as optimization criterion (as in [11]).
With this criterion the determination of the independent
regions is done with the following algorithm.

Algorithm 3: For each FC cell, do:
1. Determine an initial set of independent regions in the

FC cell. It is done as:
1.1. Select the intervals H =[h, h + 1], K = [k, k + 1]

such that they define a square in the middle of the
FC cell.

1.2. Determine the maximum values of l+ and c+ and
the minimum values of c− and s− for the vertices
of the square obtained in step 1.1. H = [h, h + 1],
I = [l+, c−], J = [c+, s−] and K = [k, k + 1] are
independent regions.

2. Maximize the length of the minimum independent
regions, as:
2.1. Increase H and K with its neighbor positions and

determine I and J in analogous way as in step 1.2.
2.2. If the length of the minimum region increase, then

update H , K, I and J and go to step 2.1.
Else return H , K, I and J . �

Actually, step 2.2. can be applied until a decreasing in
the minimum region is detected, producing in this way the
same minimum region but enlarging some or all of the
other three regions.

IV. EXAMPLE

An example of the proposed methodology is presented in
this section. The object used in the example has been taken
from [23]. The exact object boundary B(u) is described by
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c+, for the FC cell h =[1, 6] and k=[7, 12] of the ellipse in Fig. 4.
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Fig. 6. a) Object and regions where the antipodal points lies (portions
of the boundary between crosses); b) hk−space and FC cell used in the
example (black cell with a white square).

the following parametric function:

B(u) =
(

3 cos(u)
1 + 0.5 cos(3u)

,
3 sin(u)

1 + 0.5 cos(3u)

)
(13)

for 0 ≤ u ≤ 2π. B(u) is used to check the results of the
discrete method proposed in this paper using Bd. Fig. 6a
shows the discrete description Bd of the object boundary
using 50 points and the regions where the antipodal points
lie (portions of the boundary between crosses) determined
by Algorithm 1. Fig. 6b shows the hk−space with the FC
cells and the uncertainty regions.

The application of Algorithm 3 for the FC-cell defined
by h = 42, ..., 48 and k = 17, ..., 24, gives the following
result:
1. Determination of the initial independent regions:

H1 =[45, 46], I1 =[26, 30], J1 =[36, 40], K1 =[20, 21].
Minimum length = 1.

2. Maximization of the minimum region length:
1rst iteration: H2 =[44, 47], I2 =[26, 30], J2 =[36, 40],
K2 =[19, 22]. Minimum length = 3.
2nd iteration: H3 =[43, 47], I3 =[26, 30], J3 =[36, 40],
K3 =[18, 22]. Minimum length = 4 (last iteration).

Fig.7 shows the limit surfaces, the critical surfaces and
the parallelepipeds that define the independent regions.
Fig.8a shows the initial independent regions H1 and K1 on
the hk−space and the iterations to obtain the final regions
H3 and K3. Fig.8b shows the final result on the object.

Considering the real object described by equa-
tion (13), the final independent regions correspond to
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Fig. 8. a) Steps to obtain the final Independent regions in the hk−space:
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regions obtained in the first iteration and H3 and K3 are the final
independent regions; b) Final independent regions (black regions) on the
object boundary.

	uh = [5.39, 5.73], 	ui = [3.27, 3.6], 	uj = [4.77, 5.1]
and 	uk = [2.5, 2.91]. It can be checked that any combi-
nation of points on the actual object boundary that belong
to these regions produce a FC grasp.

V. CONCLUSIONS AND FUTURE WORKS

Most of the algorithms to compute FC grasps and
fixtures for 2D determine a set of contact points on
the object boundary where the fingertips will be placed,
requiring a good precision in the fingertips placement. In
the real execution of the grasps, the final grasp and the
theoretical grasp may differ due to finger positioning errors.
The determination of independent regions was presented
as a possible solution to this problem. Existing solution
approaches has being mainly developed for polygonal or
polyhedral objects, and only a few works tackle the prob-
lem considering non-polygonal objects. In this paper a new
approach to compute independent regions for irregular 2D
objects and four frictionless contacts has been presented.
The procedure is valid for a discrete description of the
object boundary with restricted uncertainty between two
consecutive points, and it does not imply hard iterative
search procedures.

Future works include the consideration of friction con-
tacts in the proposed methodology (following the approach
in [14]), as well as the extension of the methodology to 3D
objects.

REFERENCES

[1] A. Bicchi, “On the Closure Properties of Robotics Grasping”,
Int. J. Robot. Res., 14(4) pp. 319-334, 1995.

[2] D. Ding, Y-H. Liu and S. Wang, “Computation of 3-D
Form-Closure Grasps”, IEEE Trans. Robot. Automat., 17(4)
pp. 515-522, 2001.
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