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Abstract— The paper deals with the determination of
optimal force-closure grasps for 2D polygonal objects. The
problem is analyzed and some intrinsic properties of grasps
are determined. The approach is applied to the determination
of the position of a fourth finger given the positions of
three other fingers. Moreover, the range of solutions that
allow the force-closure property as well as the optimal value
are analytically determined, checking only four points in
the worst case. The algorithm has been implemented and
numerical examples are included in the paper.

I. I NTRODUCTION

Grasping and manipulation of objects using multi-finger
mechanical hands has become a field of great interest in
the two last decades. Good overviews of the state of the
art in this field and related problems can be found in [14]
and [2].

Grasps capable of resisting external disturbances satisfy
one of the following properties: form-closure (the position
of the fingers ensures the object immobility) or force-
closure (the forces applied by the fingers ensure the
object immobility) [1]. Finding the optimal position of
the fingers that produce a grasp satisfying either of these
properties is a frequent problem. A criterion for grasp
quality evaluation must be chosen, and several ones have
therefore been proposed. Ferrari and Canny [6] proposed
a criterion based on the maximum wrench that the grasp
can safely resist, and algorithms for grasp synthesis based
on this criterion were proposed by Pollard [13] and
Borst et al. [3], though they do not generate optimal
grasps. Ponce et al. [11] proposed the minimization of
the distance between the object’s center of mass and the
geometric center of the grasping points. This criterion is
used by Ding et al. [5], among others. One variation of
the problem is the determination of independent regions
on the object boundary such that a finger in each region
ensures a form/force-closure grasp, thus dealing with some
uncertainty in the finger positioning. The works of Ponce
et al. [12] and Nguyen [10] are remarkable in this line.

In general, the algorithms proposed for the search
of an optimal grasp are based on linear or non-linear
programming, thereby implying an iterative procedure.
This paper tackles the problem of finding optimal grasps
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(in the sense of the most robust force-closure grasp) of 2D
objects using the minimum number of frictionless contacts
(four for 2D objects [9]) and the quality measure proposed
by Ferrari and Canny, and avoiding iterative procedures.
Some intrinsic properties of the problem that help in the
solution search are presented here. In particular, the prob-
lem of determining the optimal position of a fourth finger
given the positions of the other three and the contact edge
for the fourth is solved in an analytical way (the problem
has already been solved even for 3D objects [5], but the
approach proposed here does not involve hard searches
or iterative processes). Solving this problem is of special
relevance in re-grasping actions. The main assumptions
considered in this work are:1) Grasped objects are planar
and polygonal-shaped;2) The object edge where the fourth
finger will contact is given;3) Forces applied by the
fingers act only against the object boundary (positivity
constraint);4) Frictionless contacts (then the force-closure
solution is also form-closure);5) The fingertip is a point.

Note that there is no constraint regarding the number
of fingers per edge. In this approach it is then possible
to consider two fingers on the same edge (for polygonal
objects a minimum of three edges must be contacted to
allow a force-closure grasp).

II. GRASP QUALITY MEASURE

A. In the Wrench Space

One of the most intuitive and accepted criterion for
quality evaluation of a grasp that satisfies the force-closure
condition (hereafter called FC grasp) was proposed by
Ferrari and Canny [6]. This criterion indicates the module
of the maximum wrench that a grasp may resist regardless
of the wrench direction: the larger the module, the better
the grasp.

Each finger can exert a forcef i on the object boundary
at each contact point (in the absence of friction,f i is the
applied force normal to the object boundary). Forcef i

produces a torqueτ i with respect to the object’s center of

mass, and the vectorωi =
(
fT

i λτT
i

)T

is called a wrench
or a generalized force (λ defines the metric of the wrench
space and, in order to have a physical meaning in terms
of energyλ is considered to be the radius of gyration. The
proposed approach is valid for any value ofλ; thus, for
simplicity it is consideredλ = 1).



The forces applied by the fingers can be subject to
different constraints, depending on the characteristic of the
grasp to be optimized. The constraint used in this work
(other constraints with their physical and geometric mean-
ing can be found in [9]) is that the total force exerted by
all the fingers is limited, for instance, due to a maximum
available power for all the finger actuators. This implies
that the applied forces can generate a resultant wrench
ω =

∑
i βiωi with

∑
i βi ≤ 1 and ωi being the wrench

produced by forces satisfying‖f i‖ = 1. Geometrically,
the resultant wrench can be any inside the polytope

P1 = ConvexHull(
n⋃

i=1

{ωi}) (1)

Considering this constraint, the quality measureQ of an
FC grasp is given by the maximum wrench that the finger
forces can generated in any direction of the wrench space:

Q = min
ω∈∂P1

‖ω‖ (2)

where∂P1 is the boundary of polytopeP1.
In the case of 2D objects,P1 is a polyhedron and

the quality measure is equivalent to the radius of the
greatest sphere centered at the origin and fully contained
in polyhedronP1.

The quality measureQ is determined by one of the
distances from the origin to the faces ofP1. Consider
three wrenchesωi (i = 1, .., 3) expressed in cylindrical
coordinates asωi = (cos αi, sin αi, τi), αi being the angle
that indicates the direction off i. The distanceD from the
origin to the face (plane) ofP1 determined byω1, ω2 and
ω3 can be written as a function of the torque of one of
them; for instance, as a function ofτ3 of ω3, we obtain:

D(τ3) =

∣∣∣∣∣
k1 + k2τ3√

(k3 + k4τ3)2 + (k5 + k6τ3)2 + k2
7

∣∣∣∣∣ (3)

where:

k1 = sin(α3−α2)τ1 + sin(α1−α3)τ2 (4)

k2 = sin(α2−α1) (5)

k3 = (sin α2−sin α3)τ1+(sin α3−sin α1)τ2 (6)

k4 = sinα1−sin α2 (7)

k5 = (cos α3−cos α2)τ1+(cos α1−cos α3)τ2 (8)

k6 = (cos α2−cos α1) (9)

k7 = sin(α2−α3)+sin(α3−α1)+sin(α1−α2)(10)

This function has four important properties (an example
is shown in Fig. 1):

1. It is a continuous function (the denominator can only
be zero if all the forces are in the same direction, and
then the FC grasp is not possible).

2. It becomes zero atτ3 = −k1/k2.

−k1/k2
τ

L

τM

M

Fig. 1. Qualitative shape of distance D(τ)

3. It tends to a finite positive value whenτ3 → ±∞,
L = limτ3→±∞ D(τ3) = k2/

√
(k2

4 + k2
6).

4. It has only one maximumM at

τM =
(k2

3 + k2
7 + k2

5)k2 − (k3k4 + k5k6)k1

−k2(k3k4 + k5k6) + k1(k2
4 + k2

6)
(11)

B. In the Force Space

Similarly to Mirtich and Canny’s application of the
quality measure to two particular sets of forces and
moments [7], the quality measure described in equation (2)
can be applied in the force space (i.e. the 2D subspace of
the wrench space defined by pure forces) as

Qf = min
f∈∂Pf

‖f‖ (12)

wherePf is the polygon defined in the force space by
the contact forces and∂Pf is its boundary (Pf coincides
with the projection ofP1 on the force space).

Proposition 1: Consider three wrenches that define a
face ofP1. If the componentτ of one of them tends to
±∞, the distance between the origin of the wrench space
and the face tends to the distance between the origin and
the straight line defined by the projection of the other two
wrenches on the force space. �

Proof: The proof is straightforward from the property 3
of the distance in equation (3). If constantsk2, k4 andk6

are substituted by their expressions from equations (5),(7)
and (9), then whenτ3 → ±∞ the distance between the
origin andf1f2 is obtained. �

Lemma 1: The quality measure in the force space,Qf ,
is an Upper Bound for the grasp quality measureQ. �

Proof: Consider a prismP∞
1 in the wrench space

with infinite edges parallel to theτ -axis, such that the
intersection ofP∞

1 with the force space isPf . The radius
of the greatest sphere centered at the origin and inscribed
in P∞

1 is determined by the minimum distance from the
origin to Pf , i.e. Qf .

Given the torques of the four contact forces, the corre-
sponding wrenches generate a polyhedronP1 that satisfies
P1 ⊂ P∞

1 by construction. Therefore, the greatest sphere
centered at the origin and inscribed inP1 is smaller or
equal to the one inscribed inP∞

1 . As a result, its maximum
radius isQf . �
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Fig. 2. Examples of the Upper Bound Qf and the Internal Bounds
C24 and C13.

Definition 1: An Internal Bound, Cij , of a grasp is
the distance between the origin of the force space and
a segment determined by two non-consecutive verticesf i

andf j of Pf . �
Note that a four-finger grasp has two Internal Bounds.

If the four applied forces have different directions,Pf is
a quadrilateral polygon and the Internal Bounds are the
distances from the origin to each diagonal of the polygon.
Moreover, if there are two parallel applied forces (e.g. two
fingers on the same object edge),Pf degenerates into a
triangle and the Internal Bounds are given by the distances
from the origin to two sides of the triangle. Fig. 2 shows
an example of the Internal Bounds.

III. O PTIMAL FOURTH CONTACT POINT

Geometrically, the specific problem of determining the
position of the fourth finger on the given edge is: given
three points in the wrench space (i.e.ω1, ω2, ω3) and the
applied forcef4 = (fx4, fy4)T , determine the component
τ4 such that the polyhedronP1 defined byω1, ω2, ω3

and ω4 = (f4x, f4y, τ4)T includes the greatest possible
sphere centered at the origin.

A. Range of possible solutions

In order to produce an FC grasp,P1 must contain
the origin [8]. The following necessary and sufficient
condition can be stated from this condition.

Necessary and Sufficient condition. Let Rfc4 be the
range ofτ4 that allows an FC grasp givenω1, ω2, ω3 and
f4, and let∂Rfc4 be the boundary ofRfc4 . Then, in order
for a givenτ∗

4 to satisfyτ∗
4 ∈ ∂Rfc4 , it is necessary and

sufficient that0 ∈ ∂P1, P1 being the polyhedron defined
by ω1, ω2, ω3 andω4 = (f4x, f4y, τ∗

4 )T . �
Proof: It is straightforward sinceP1 is convex. �
Using this condition, the extremes ofRfc4 can be found

as follows. First, three candidates are obtained from the
intersection of the three planes defined by the sets of
wrenches{ω2, ω3, 0 }, {ω1,ω3, 0 } and {ω1,ω2, 0 },

respectively with the straight line determined byx = fx4,
y = fy4. The three candidates are given by

τ4j =
−Alimjfx4 − Blimjfy4

Climj
(13)

whereAlimj , Blimj andClimj are the coefficients of each
plane forj = 1, ..., 3.

These candidates are then tested in the force-closure
condition (i.e. the origin must be insideP1):

β1j(fx1, fy1, τ1)T + β2j(fx2, fy2, τ2)T +
β3j(fx3, fy3, τ3)T = (fx4, fy4, τ4j)T (14)

whereβij ≤ 0 for i = 1, ..., 3. Only one or two of the three
candidatesτ4j can be valid extremes ofRfc4 . Depending
on the number of valid extreme points ofRfc4 , the type
of range is:

Infinite range: if only one valueτ4j satisfies the necessary
and sufficient conditions (here denoted asτ4k) then
Rfc4 is the range determined byRfc4 = [τ4k,∞) or
Rfc4 = (−∞, τ4k] such thatRfc4 does not contain the
other twoτ4j with j �= k.

Limited range: if two valuesτ4j satisfy the necessary and
sufficient conditions (here denoted asτ4k and τ4l) then
Rfc4 = [τ4k, τ4l].

Proposition 2: Given four wrenches ωi with
i=1, ..., 4, the type of rangeRfci

of each τi is
independent of the componentsτi, and can be determined
just from forcesf i (this is equivalent to saying that the
type of range can be automatically determined knowing
the edges of the object to be contacted by the fingers,
regardless of the exact contact point). �

Proof: Without loss of generality it will be proved that
rangeRfc4 (i.e. for τ4) does not depend on components
τ1, τ2 andτ3 of ω1, ω2 andω3, respectively.

The candidates to be extremes ofRfc4 are obtained
from equation (13) as a function of only two other
wrenches (consider, for instancej = 1, i.e. candidateτ41

obtained fromω2 and ω3). This implies that one of the
coefficientsβi1 in equation (14) will be null when the
sufficient condition is applied; for the case of candidate
τ41, we obtain β11 = 0, and equation (14) can be
expressed as

β21fx2 + β31fx3 = fx4 (15)

β21fy2 + β31fy3 = fy4 (16)

β21τ2 + β31τ3 = τ41 (17)

i.e. three equalities with two unknowns,β21 and β31.
Therefore, one of the equalities is linearly dependent on
the other two. Iff2 and f3 have different directions,
(15) and (16) are independent, and equality (17) can be
neglected. As a result,β21 andβ31 can be determined as



a function off2 and f3 without taking into accountτ2

andτ3:

β31=
sin(α4−α2)
sin(α3−α2)

(18)

β21=
cos(α4) sin(α3−α2)−cos(α3) sin(α4−α2)

cos(α2) sin(α3−α2)
(19)

whereαi is the angle that indicates the direction off i in
the force space. According to equation (14), ifβ21 ≤ 0
andβ31 ≤ 0, thenτ41 is an extreme ofRfc4 (even when
the exact value ofτ41 is not known!). In the same way,
β12 andβ32 are obtained forτ42, andβ13 andβ23 for τ43,
and the analysis of their signs determines ifτ42 and τ43

are extremes ofRfc4 .
If either of the applied forces has the same direc-

tion (e.g. two fingers on the same edge), equations (15)
and (16) have no solution and the corresponding candidate
does not exist. Then, since at least two of the three
applied forces have different directions, two candidates
are possible.

Then, althoughτ41, τ42 and τ43 are not known, it is
possible to know how many of them are extremes ofRfc4

and therefore the corresponding type of range.
Equivalent reasoning can be applied forRfc1 , Rfc2 and

Rfc3 . �

B. Determination of the Optimal Value

Proposition 3: Given three wrenches,ωi, ωj and ωk

(with {i, j, k} = {1, 2, 3}) and f4, the valueτ4 that
produces an optimal grasp (τ4opt) can be analytically
determined according to the following four cases. LetCij

be the Internal Bound that does not depend onf4 andDρ

the distance from the origin to the plane defined byων ,
ωσ, andω4, with {ρ, ν, σ} = {i, j, k}. Then,

Case 1: Rfc4 is Infinite andCij ≥ Qf ; then,
τ4opt = ±∞ according toRfc4 .

Case 2: Rfc4 is Limited andCij ≥ Qf ; then, there are
three candidates forτ4opt given by the solutions of

Di(τ4) = Dj(τ4) (20)

Di(τ4) = Dk(τ4) (21)

Dj(τ4) = Dk(τ4) (22)

Case 3: Rfc4 is Limited andCij < Qf ; then, there are
four candidates forτ4opt given by the three obtained in
Case 2 plus the value ofτ4 that maximizesDk, i.e. the
solution of

∂Dk(τ4)
∂τ4

= 0 (23)

If more than one of these candidates belongs toRfc4 ,
they must be tested to identifyτ4opt.

Case 4: Rfc4 is Infinite andCij < Qf ; then, there are
three candidates forτ4opt given by the solutions of

Dk(τ4) = Di(τ4) (24)

Dk(τ4) = Dj(τ4) (25)
∂Dk(τ4)

∂τ4
= 0 (26)

If none of the candidates belong toRfc4 , then
τ4opt = ±∞ according toRfc4 . �
Proof: The proofs of the four cases are based on

- Qf > Q(τ4) ∀τ4 ∈ Rfc4 .
- Lρ = limτ4→±∞ Dρ(τ4) is finite (ρ = i, j, k).
- Dρ(τ4) has only one maximumMρ (ρ = i, j, k).
- Q(τ4) is defined by pieces ofDρ(τ4) (ρ = i, j, k).

Case 1: Rfc4 Infinite, Cij ≥ Qf

1. If Cij ≥ Qf ⇒ ∀ρ Lρ ≥ Qf , ρ = i, j, k.
2.Dρ(τ4) has only one maximumMρ.
3. From 1 and 2, we obtainMρ > Qf .
4. From 3,Q(τ4) < Mρ; then from 2, all the pieces of

Dρ(τ4) that defineQ(τ4) are monotonous.
5. If Rfc4 is Infinite, there is only oneτ4

∗ where
Q(τ4

∗) = 0; then from 4, the pieces ofDρ(τ4) belong-
ing to Q(τ4) increase ifRfc4=[τ4

∗,∞) or decrease if
Rfc4=(−∞, τ4

∗]. Then,τ4opt = ±∞ accordingRfc4 .

Case 2: Rfc4 Limited, Cij ≥ Qf

1. Same as steps 1 to 4 from Case 1; then, all the pieces
of Dρ(τ4) that defineQ(τ4) are monotonous.

2. If Rfc4 is Limited, there are two valuesτ4
∗
1 and

τ4
∗
2 where Q(τ4

∗
1) = Q(τ4

∗
2) = 0; then, there are

increasing and decreasing pieces inQ(τ4).
3. From 1 and 2, the optimal ofQ(τ4) is located where

an increasing piece and a decreasing piece intersect
each other.

4. The values ofτ4 where two pieces ofQ(τ4) intersect
each other are the solutions of equations (20) to (22)
andτ4opt is one of these solutions.

Case 3: Rfc4 Limited, Cij < Qf

1. If Cij ≤ Qf ⇒ Lρ ≥ Qf with ρ = i, j.
2. Same as steps 1 to 4 from Case 1 but considering

only valuesρ = i, j. Then, all the pieces ofDρ(τ4)
that defineQ(τ4) are monotonous while the pieces of
Q(τ4) from Dk(τ4) might not be.

3. Same as step 2 from Case 2.
4. From 2 and 3, the optimal ofQ(τ4) is located where

an increasing piece and a decreasing piece intersect
each other, or whereDk(τ4) has the maximumMk

(i.e. Dk(τ4) changes from increasing to decreasing).
5. The values ofτ4 where two pieces ofQ(τ4) intersect

each other are the solutions of equations (20) to (22),
the value ofτ4 whereMk takes place is the solution
of equation (23) andτ4opt is one of these solutions.



Case 4: Rfc4 Infinite, Cij < Qf

1. Same as steps 1 and 2 from Case 3. Then, all the
pieces ofDρ(τ4) that defineQ(τ4) are monotonous
for ρ = i, j while the pieces ofQ(τ4) from Dk(τ4)
might not be.

2. If Rfc4 is Infinite, there is only oneτ4
∗ where

Q(τ4
∗) = 0.

3. From 1 and 2, the pieces ofQ(τ4) from
Dρ(τ4) increase if Rfc4 = [τ4

∗,∞) or decrease if
Rfc4 = (−∞, τ4

∗], while the pieces ofQ(τ4) from
Dk(τ4) might not be.

4. From 3, any transition from an increasing piece of
Q(τ4) to a decreasing one involvesDk(τ4).

5. The values ofτ4 whereQ(τ4) changes from increas-
ing to decreasing are the solutions of equations (24)
to (26) andτ4opt is one of these solutions. �

C. Constraint of the edge length

It is possible that the optimal value ofτ4 found above
cannot be generated due to the finite length of the contact
edges. This constraint is included here.

The length of the edge for the fourth finger defines a
new range,R4, of values ofτ4 that are physically possible
in the real execution of the grasping. ConsideringR4,
Rfc4 andτ4opt, three cases are possible:

R4 ∩ Rfc4 = Ø: An FC grasp is not possible by placing
the fourth finger on the assigned edge.

R4 ∩ Rfc4 �= Ø andτ4opt ∈ (R4 ∩ Rfc4) : The actual op-
timal position is that corresponding toτ4opt.

R4 ∩ Rfc4 �= Ø andτ4opt �∈ (R4 ∩ Rfc4): The actual op-
timal position is the extreme of(R4 ∩ Rfc4) closer
to τ4opt, because functionQ(τ4) grows monotonously
towardsQ(τ4opt) insideRfc4 .

Note that the optimal position may be on an object vertex
or close to it. In this case, it is necessary to consider a
security distance.

D. Efficient Procedure

When Proposition 3 is applied, with the exception of
Case 1 whereτ4opt can be directly found, it is necessary
to solve three four-order equations. If these equations
are solved in the right sequence,τ4opt may be obtained
without arriving to solve all of them. The right sequence
is determined by the following steps:

1. Check thatR4 ∩ Rfc4 �= Ø.
2. Find τ4

′ from Dj(τ4) = Dk(τ4), j and k being such
that:

Cases 2 and 3:Dj(τ4) andDk(τ4) makeQ(τ4) = 0.
Case 4:Dj(τ4) makesQ(τ4) = 0 and Dk(τ4) → Cij

whenτ4 → ±∞.

3. EvaluateDρ(τ4
′), ρ=i, j, k. Two situations are possible:

a. If Di(τ4
′) ≥ Dj(τ4

′) = Dk(τ4
′):

it is not necessary to solveDi(τ4) = Dj(τ4) and
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Fig. 3. 2D object and coordinates of its vertices

Di(τ4) = Dk(τ4) because the solutions of these equa-
tions never belong toQ(τ4); then, τ4

′ is a candidate
to beτ4opt.

b. If Di(τ4
′) < Dj(τ4

′) = Dk(τ4
′) ⇒ τ4opt �= τ4

′:
it is necessary to findτ4

′′ from Di(τ4) = Dj(τ4) and
τ4

′′′ from Di(τ4) = Dk(τ4); then, τ4
′′ and τ4

′′′ are
candidates to beτ4opt.

4. For Cases 3 and 4: Findτ4
′′′′ that maximizesDk(τ4);

then,τ4
′′′′ is a candidate to beτ4opt.

5. ComputeDρ(τ4), ρ = i, j, k, for the corresponding can-
didates, and select asτ4opt the candidate that produces
the maximum minimum.

IV. EXAMPLES

In this section, some numerical examples of the pro-
posed methodology are presented. A detailed example of
each case can be found in [4]. Fig. 3 shows the object
used in the examples. For each fingeri we have: the edge
that will contact, the directionαi of the applied force
(orthogonal to the edge) and the rangeRi = [τmini

, τmaxi
]

of possible actual torques produced on the contact edge.

Example of Case 1.The initial data are:

finger edge αi τmini
τmaxi

τi

1 L12 0 -0.6479 0.3521 -0.2
2 L23 4.9574 0.0321 1.2048 0.5
3 L56 2.7744 0.2443 1.6372 1
4 L67 4.1123 -2.4630 -0.1609 τ4opt?

Procedure:

1.Rfc4 = (−∞,−1.7568] ⇒ R4 ∩ Rfc4 �= Ø
2.Qf = 0.1826 (determined byf1f3)
3.C23 = 0.4612 (determined byf2f3)
4.C23 > Qf , Rfc4 is Infinite ⇒ Case 1
5. Then,τ4opt = −∞ �∈ R4 ∩ Rfc4

Solution: τ4opt = −2.4630 (extreme ofL67),

Q = D2(τ4opt) = 0.0383.
The distances to the unknown faces ofP1 as a function
of τ4 and the obtained solution are shown in Fig. 4. The
optimal solution is an extreme of an edge and it is so
indicated; in the real grasp, a given security distance from
the edge vertex should be considered.
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optimal position for the fourth finger (white circle).

Example of Case 3.The initial data are:

finger edge αi τmini
τmaxi

τi

1 L12 0 -0.6479 0.3521 0.2
2 L56 2.7744 0.2443 1.6372 1
3 L78 1.5708 -0.6039 2.1961 0.4
4 L67 4.1123 -2.4630 -0.1609 τ4opt?

Procedure:

1.Rfc4 = [−2.8409,−0.4430] ⇒ R4 ∩ Rfc4 �= Ø
2.Qf = 0.4665 (determined byf1f4)
3.C12 = 0.1826 (determined byf1f2)
4.C12 < Qf , Rfc4 is Limited ⇒ Case 3.
5. FromD3 = D2 ⇒ τ4

′ = −0.9386 ∈ Rfc4 ∩ R4

thenD1(τ4
′) = 0.3686, D2(τ4

′) = D3(τ4
′) = 0.1674

7.D1(τ4
′) ≥ D3(τ4

′) = D2(τ4
′)

8. From∂D3/∂τ4 = 0 ⇒ τ4
′′′′ = 1.1537 �∈ Rfc4

Solution: τ4opt = −0.9386, Q = 0.1674
The distances to the unknown faces ofP1 as a function
of τ4 and the obtained solution are shown in Fig. 5.

V. CONCLUSIONS

The paper deals with the problem of determining opti-
mal grasps of 2D objects using four fingers. An approach
to the deterministic solution of this problem is proposed
using the quality measure introduced by Ferrari and
Canny [6] and considering the particular case where three
fingers are already positioned and the position of the fourth
must be determined. The extension to the general case

of four unknown finger positions is under development.
The force space is used to establish bounds for the
quality measure that are quite useful for determining the
optimal grasp and proving some intrinsic properties of the
problem, like the type of range of solution on each object
edge. Although this property is marginally used in the
particular case of looking for the position of the fourth
finger, it seems quite a significant intrinsic property for
the solution search in the general case of four unknown
finger positions.
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