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Abstract: A key problem in the automatic planning and execution of robotized assembly

tasks is the estimation of the current contact situation using con�guration and force

information. This paper analyzes the force information processing necessary to achieve

this goal in the case of planar movements with uncertainty. First, the o�-line computation

of the set of feasible reaction force directions in any contact situation of an assembly task is

described. Then, the on-line classi�cation of measured forces into one or more of the previous

computed sets is presented. The method allows a fast classi�cation of forces, compatible

with the real time requirements of task execution.
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1. INTRODUCTION

The automatic planning and execution of assembly tasks

with robots is still an open research �eld, particularly

when the geometric uncertainty allows deviations of

the same order as the part matting clearance. The

uncertainty can be decreased by using reaction force

information. Thus, sensing and control of reaction forces

during task execution has become an important topic on

which a lot of work has been done (Whitney, 1987).

In order to correctly perform an assembly task, some

reaction force control strategies are needed. The o�-

line determination of these strategies can become quite

di�cult when geometric uncertainty is signi�cant, and

it is the main goal of the �ne-motion planning (e.g.

Dufay and Latombe, 1984; Lozano-Perez et al., 1984;

Erdmann, 1984; Buckley, 1987; Laugier, 1989; Xiao

and Volz, 1989; Su�arez and Basa~nez, 1991; Basa~nez

and Su�arez, 1992). In many cases, the execution of a

�ne-motion plan needs the identi�cation of the current

contact situation between the objects (e.g Basa~nez

and Su�arez, 1992; Xiao, 1993; Spreng, 1993), or

the veri�cation of some termination-conditions to �nish

a movement and to begin the execution of another

command (e.g Lozano-Perez et al., 1984; Erdmann,

1984; Buckley, 1987; Desai and Volz, 1989); in both

cases the reaction forces that could be sensed in a given

contact situation play an important role.

This paper deals with the use of the force information

to achieve a fast on-line identi�cation of the current

contact situation of polygonal objects, considering

planar movements, friction and di�erent sources of

uncertainty.

After this introduction, sections 2 and 3 briey review

the dual representation of forces and the uncertainty

a�ecting the force measurements respectively. Section 4

presents an improved version of the method previously

proposed by the authors (Su�arez et al., 1994) to

compute the sets of possible reaction forces in the

contact situations. This method is used in section 5 to

tackle the next problem: determining if a measured force

is compatible with a given contact situation. Finally,

section 6 presents the conclusions of the work.
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Fig. 1. Dual representation of a line of force.

2. DUAL REPRESENTATION OF FORCES

A force f = [f

x

f

y

]

T

acting in the plane and producing

a torque � with respect to a reference origin O, is

represented in a tridimensional force space F

3

by a

generalized force g = [f

x

f

y

� ]

T

.

The direction

1

of the generalized force g in F

3

can be

represented by the coordinates of the intersecting point

of the supporting line of g with the unitary torque plane

jointly with the sign of � , i.e. P = [f

x

=j� j f

y

=j� j]

T

and sign(� ). This representation of generalized force

directions is easily obtained from the dual representation

of pure forces acting in a plane (Brost andMason, 1989).

The force f with force line ax+by+c = 0 is represented

by the dual point F

0

= [a=c b=c]

T

. Geometrically, F

0

lies on the normal to the force line through the reference

origin O and at a distance 1=d from O, d being the

distance between the force line and O (�gure 1). The

sense of f is included by associating to F

0

the sign of the

torque � produced by f around O. P can be obtained

by a �=2 clockwise rotation of F

0

around O. The

dual representation does not preserve the force module

though, in this case, it does not matter since the module

is irrelevant for the estimation of the contact situation.

Thus, the direction of a generalized force g in F

3

associated with a force f in the working plane will be

represented by F

0

and the corresponding sign.

3. FORCE UNCERTAINTY

Geometric uncertainty and friction a�ect the direction

of the reaction forces that can really appear; the

measurement of these forces is also a�ected by the

uncertainty of the force/torque sensor.

Typical force/torque sensors give forces and torques

as independent values with a speci�ed resolution.

Therefore, the acual value f

i

of a measured component

f

im

satis�es f

i

2 [f

im

� �

f

i

; f

im

+ �

f

i

], being �

f

i

the

1

From now on, unless it is explicitly indicated, direction means

direction and sense.
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Fig. 2. Generalized force uncertainty U and its representation

on the plane � = 1.

sensor resolution for f

i

. Then, for planar movements

the force uncertainty model in F

3

is a rectangular

parallelepiped U , of sides �

f

x

, �

f

y

and �

�

centered in

the measured generalized force g

m

= [f

xm

f

ym

�

m

]

T

.

Figure 2 illustrates the uncertainty U of a measured

force g

m

and the representation on the plane � = 1

of the directions of the generalized forces with head in

U . A �=2 rotation of the plane � = 1 counterclockwise

around the � -axis gives rise to the dual representation

U

0

of the forces in U .

4. DOMAINS OF POSSIBLE REACTION FORCES

Due to the uncertainty, the contact point(s) and the

direction of the reaction force cannot be exactly deter-

mined. Nevertheless, it is possible to compute the do-

main G of all the possible reaction forces for any con-

tact situation of an assembly task by using the nominal

models of the objects and the models of geometric un-

certainty and friction. Geometric uncertainty includes

manufacturing tolerances, inaccuracy in the observation

of the object position, errors in the robot position and

orientation, and slipping of the object in the gripper

(Basa~nez and Su�arez, 1991).

Due to the paper space constraints, only basic contacts

between a mobile-object vertex and a static-object edge

will be illustrated in this paper. Basic contacts between

a mobile-object edge and a static-object vertex are

solved in an analogous way. Let be:

V : region where the actual contact-vertex position

should lie due to uncertainty (Basa~nez and Su�arez,

1991).

V

0

: region of the dual points of force lines crossing V .

�: friction coe�cient.

�

l

: orientation of the lower bound of the friction cone

decreased with uncertainty �

 

of the edge normal

orientation  , i.e. �

l

=  � arctan(�) � �

 

.
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Fig. 3. Domain G

0

for one basic contact.

�

u

: orientation of the upper bound of the friction cone

enlarged with uncertainty �

 

of the edge normal

orientation  , i.e. �

u

=  + arctan(�) + �

 

.

a, c: tangents to region V with orientation �

l

.

b, d: tangents to region V with orientation �

u

.

W: union of cones

2

c

a b and

c

c d.

d

a

0

b

0

: cone containing the dual points of force lines

with directions in the range [�

l

; �

u

] (note that a

0

and b

0

are lines through the reference origin and

perpendicular to a and b respectively).

H(P

1

; :::; P

n

): convex hull de�ned by points P

1

; :::; P

n

.

The following subsections describe an improved method

to compute the dual representation G

0

of the possible

reaction forces in a given contact situation. The method

is based on a previous proposal by the authors (Su�arez

et al., 1994).

4.1. Case of One Basic Contact

The domain G of a contact situation with only one basic

contact is composed of the forces satisfying the following

two conditions:

1) Contact-point condition: the line of the reaction

force must intersect region V .

2) Direction condition: the reaction force direction �

must belong to the range [�

l

; �

u

].

2

A cone on the plane, represented by

c

a b, a and b being two

straight lines, refers to the sector swept by line a when it is rotated

counterclockwise around the intersection point of a with b until b

is reached.

Then, G

0

is computed from two sets of dual points as:

G

0

= V

0

\

d

a

0

b

0

(1)

V

0

and

d

a

0

b

0

being the regions representing forces

satisfying, respectively, the contact-point condition and

the direction condition (�gure 3). It must be noted that

the vertices of G

0

are the dual points A

0

, B

0

, C

0

and D

0

of the lines a, b, c and d, respectively.

4.2. Case of More than One Basic Contact

The domain G for several basic contacts is the set of

the forces resulting from the composition of all possible

compatible reaction forces, one at each basic contact.

Therefore, the dual representation G

0

is the set of all

non-negative linear combinations of possible compatible

dual reaction forces, one at each basic contact.

From now on, force domains will be particularized by

a subscript indicating the set of related basic contacts.

Let be:

S: a set of n compatible basic contacts.

s: any sub-set of S with inf(n� 1; 3) basic contacts.

Proposition 1:

G

S

�

[

8s�S

G

s

(2)

Proof: If a generalized reaction force g

m

satis�es

g

m

2 G

s

then it is the resultant of one force at each

of the basic contacts of s and zero force at the other(s).

Therefore g

m

2 G

S

3

From proposition 1, G

0

S

can be expressed as:

G

0

S

= [

S

G

0

s

] [ [E

0

S

] (3)

E

0

S

being a dual region associated to the basic contacts

of S.

The following propositions indicate how the sets G

0

are

computed according to the number of involved basic

contacts. The proofs can be found in (Basa~nez et al,

1995).

Proposition 2: For a contact situation with only one

basic contact i, E

0

fig

= G

0

fig

.

Proposition 3: For a contact situation with two

basic contacts i and j, G

0

fi;jg

= G

0

fig

[ G

0

fjg

[ E

0

fi;jg

,

with E

0

fi;jg

= H(A

0

i

; B

0

i

; A

0

j

; B

0

j

) [ H(A

0

i

; B

0

i

; C

0

j

; D

0

j

) [

H(C

0

i

; D

0

i

; A

0

j

; B

0

j

) [H(C

0

i

; D

0

i

; C

0

j

; D

0

j

).

Figure 4 shows the four convex hulls that compose

the region E

0

fi;jg

and �gure 5 shows the domain

G

0

fi;jg

= G

0

fig

[ G

0

fjg

[ E

0

fi;jg

.
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Fig. 4. Regions H(A

0

i

; B

0

i

; A

0

j

; B

0

j

), H(A

0

i

; B

0

i

; C

0

j

;D

0

j

), H(C

0

i

;D

0

i

; A

0

j

; B

0

j

) and H(C

0

i

;D

0

i

; C

0

j

;D

0

j

).

Proposition 4: For a contact situation with three

basic contacts i, j and k, G

0

fi;j;kg

= G

0

fi;jg

[ G

0

fi;kg

[

G

0

fj;kg

[ E

0

fi;j;kg

, with E

0

fi;j;kg

= H(F

0

i

; F

0

j

; F

0

k

), for any

F

0

i

2 G

0

fig

, F

0

j

2 G

0

fjg

and F

0

k

2 G

0

fkg

.

Proposition 5: For a contact situation with n > 3

basic contacts E

0

S

= ;.

5. CLASSIFICATION OF OBSERVED REACTION

FORCES

5.1. General procedure

A generalized reaction force g

m

measured with uncer-

tainty U is compatible with the contact situation deter-

mined by a set S of n basic contacts if and only if

U \ G

S

6= ; (4)

It must be noted that, due to uncertainty, g

m

could

be compatible with more than one contact situation.

Condition (4) is expressed in the dual plane as

U

0

\ G

0

S

6= ; (5)

and, from equation (3), this condition is satis�ed if and

only if at least one of the following two conditions is

satis�ed:

U

0

\ [

S

G

0

s

] 6= ; (6)

U

0

\ E

0

S

6= ; (7)

Given a sensed reaction force g

m

and the domainG

0

S

of a

contact situation, the following algorithm evaluates the

above conditions. The algorithm returns \compatible"

when g

m

is compatible with G

0

S

and \incompatible"

otherwise; this result is stored in a global variable

C

S

that is used to speed up further evaluations of

condition (6) for other contact situations. The function

test(E

0

S

, g

m

) directly evaluates condition (7) for a given

measured reaction force g

m

; it returns \true" when the

condition is satis�ed and \false" otherwise.

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

CCCC
CCCC
CCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

V

i

V

j

E

0

fi;jg

G

0

fig

and G

0

fjg

Fig. 5. Domain G

0

fi;jg

= G

0

fig

[ G

0

fjg

[ E

0

fi;jg

.

classify(G

0

S

, g

m

)

FOR EACH s 2 S

IF G

0

s

has not been yet classi�ed

THEN C

s

= classify(G

0

s

, g

m

)

END IF

IF C

s

= \compatible"

THEN C

S

= \compatible"

RETURN(C

S

)

END IF

END FOR

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

c

o

n

d

(6)

IF test(E

0

S

, g

m

) = \true"

THEN C

S

= \compatible"

ELSE C

S

= \incompatible"

END IF

RETURN(C

S

)

9

>

>

>

>

>

=

>

>

>

>

>

;

c

o

n

d

(7)

end

5.2. The function test(E

0

S

, g

m

)

For a given sensed force g

m

, let be:

V

0

q

: the dual point representing the force on the

vertex q of U , with q 2 f1; :::; 8g.

e

0

q

: the straight segment containing the dual points

representing forces on the edge q of U , with

q 2 f1; :::; 12g.



P

0

q

: the polygon containing the dual points represent-

ing forces on the face q of U , with q 2 f1; :::; 6g.

E

q

: the point in the physical space whose dual line

contains e

0

q

.

The function test evaluates condition (7) by sequentially

testing the following three conditions and returning

\true", as soon as one of them is satis�ed, or \false"

otherwise:

V

0

q

2 E

0

S

; for any q 2 f1; :::; 8g (8)

e

0

q

\ E

0

S

6= ;; for any q 2 f1; :::; 12g (9)

P

0

q

� E

0

S

; for any q 2 f1; :::; 6g (10)

The evaluation of any of the conditions (8) to (10)

assumes that the previous ones are not satis�ed and it is

performed in a di�erent way depending on the number

of the basic contacts involved, as it is speci�ed below.

One Basic Contact i: From proposition 2,

E

0

fig

= G

0

fig

, and from equation (1), G

0

fig

= V

0

\

d

a

0

b

0

,

then:

� Condition (8). V

0

q

2 E

0

fig

if it belongs to both V

0

and

d

a

0

b

0

, which is tested as:

[V

0

q

2 V

0

]\ [V

0

q

2

d

a

0

b

0

] (11)

Figure 6a shows a case in which the dual representations

of two vertices of U are inside G

0

fig

.

� Condition (9). A segment e

0

q

crosses E

0

fig

if it crosses

either V

0

being inside

d

a

0

b

0

, or

d

a

0

b

0

being inside V

0

, or

both regions being its supporting line the dual line of a

point of W. All this is tested as:

[(e

0

q

� V

0

) \ (e

0

q

\

d

a

0

b

0

6= ;)][

[(e

0

q

\ V

0

6= ;) \ (e

0

q

�

d

a

0

b

0

)][

[(e

0

q

\ V

0

6= ;) \ (e

0

q

\

d

a

0

b

0

6= ;) \ (E

q

2 W)] (12)

Figures 6b and 6c show two situations in which an

edge e

0

q

intersects G

0

fig

.

� Condition (10). A polygon P

0

whose edges do not

cross E

0

fig

contains E

0

fig

if any arbitrary point (e.g.

vertex A

0

) of G

0

fig

belongs to P

0

. So, the condition is

tested as:

A

0

2 P

0

q

(13)

Figure 6d shows a case in which a face P

0

q

(dashed)

contains G

0

.

Two Basic Contacts i and j: From proposi-

tion 3, E

0

fi;jg

= H(A

0

i

; B

0

i

; A

0

j

; B

0

j

) [ H(A

0

i

; B

0

i

; C

0

j

; D

0

j

) [

H(C

0

i

; D

0

i

; A

0

j

; B

0

j

) [H(C

0

i

; D

0

i

; C

0

j

; D

0

j

), then:

� Condition (8). V

0

q

2 E

0

fi;jg

if V

0

q

belongs to any of the

four polygons that compose E

0

fi;jg

, which is tested as:

[V

0

q

2 H(A

0

i

; B

0

i

; A

0

j

; B

0

j

)] [

[V

0

q

2 H(A

0

i

; B

0

i

; C

0

j

; D

0

j

)][

[V

0

q

2 H(C

0

i

; D

0

i

; A

0

j

; B

0

j

)] [

[V

0

q

2 H(C

0

i

; D

0

i

; C

0

j

; D

0

j

)] (14)

Figure 5 shows a case in which a sensed reaction force

is compatible with a domain G

0

fi;jg

because the dual

representations of three vertices of U lies inside E

0

fi;jg

.

� Condition (9). Since it is already known that the

vertices of e

0

q

are not inside E

0

fi;jg

, then e

0

q

\ E

0

S

6= ; if

e

0

q

intersects any arbitrary polygon of those composing

E

0

fi;jg

. Selecting one of these polygons the condition is

tested as:

e

0

q

\H(A

0

i

; B

0

i

; A

0

j

; B

0

j

) 6= ; (15)

� Condition (10). It is never satis�ed since

P

q

6� G

0

i

, P

q

6� G

0

j

8q 2 f1; :::; 6g and e

0

q

\ E

0

fi;jg

= 0

8q 2 f1; :::; 12g.

Three Basic Contacts i, j and k: From proposi-

tion 4, E

0

fi;j;kg

= H(F

0

i

; F

0

j

; F

0

k

), and by construction, the

border of E

0

fi;j;kg

satis�es @E

0

fi;j;kg

� (G

0

fi;jg

[ G

0

fi;kg

[

G

0

fj;kg

). Since the function test is only called when

condition (6) is not satis�ed it is already known that

U

0

\ G

0

fi;jg

= ;, U

0

\ G

0

fi;kg

= ; and U

0

\ G

0

fj;kg

= ;;

therefore U

0

is either completely inside E

fi;j;kg

or com-

pletely outside. As a consequence, it is only necessary

to test if a point of U

0

is inside E

fi;j;kg

; then:

� Condition (8). It is tested as

V

0

q

2 H(F

0

i

; F

0

j

; F

0

k

) for any given q (16)

� Conditions (9) and (10). They are never satis�ed.

More Than Three Basic Contacts: From proposi-

tion 4, E

0

S

= ;, then the function test(E

0

S

, g

m

) always

returns \false".

6. CONCLUSIONS

The dual force representation leads to an e�cient

methodology for determining the sets G of possible

reaction force directions that can appear, in the presence

of uncertainty, in any contact situation of an assembly

task of polygonal objects moved on the plane.

With this methodology, a reaction force measured

during the task execution by a force/torque sensor can

be e�ciently classi�ed into one or more of the o�-line
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Fig. 6. Examples of the classi�cation conditions for one basic contact.

computed sets G. The classi�cation algorithms proposed

in the paper are, in fact, combinations of simple

geometric tests, satisfying the real time requirements

of the task execution. The algorithms have been

implemented in C++ on a Silicon Graphics workstation

(Crimson/ELAN). Typical classi�cation times are about

50 �s for a one basic contact domain, and 2 ms for the

19 contact situations feasible during the positioning of

a block into a corner with uncertainty.

This classi�cation, based on force data, together with

the classi�cation based on con�guration data, allows

the fast on-line determination of the current contact

situation during the assembly. This is a key aspect for

the automatic planning and execution of assembly tasks.
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