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Abstract— This paper deals with the problem of determining
independent contacts regions (ICRs) on 2D articulated objects,
such that a finger contact in each region guarantees a force-
closure (FC) immobilization, independently of the exact position
of the finger. These regions allow a robust finger or fixture
placement on the links of the articulated object, despite of
possible errors in the position of the contacts. The proposal
defines a generalized wrench space for articulated objects
and then computes the ICRs starting from an initial FC
grasp, considering frictional contacts. The approach has been
implemented, and some illustrative examples are provided.

Index Terms— Fixturing, force-closure grasp, grasping, inde-
pendent contact regions.

I. INTRODUCTION

Immobilizing an object by using fingers or fixtures to
constrain its degrees of freedom despite the possible exis-
tence of external perturbations has been an active research
topic that still presents open problems [1]. The objects that
can be grasped, manipulated or fixed by a robotic hand are
of different shapes and sizes, and they can be either rigid
or articulated. Articulated objects are formed by rigid links
connected by some type of joint or hinges, such as a truck
toy, staplers, or scissors (Fig. 1).

Fig. 1. Examples of articulated objects.

There are two properties commonly required for a grasp:
force-closure or form-closure [2]. Both properties can be
characterized in the object configuration space, that for a 2D
rigid body has dimensiond = 3. Any 2D rigid object can
be always immobilized withd+ 1 = 4 frictionless contacts
or with 3 frictional contacts [3], [4].
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Several algorithms have been proposed to obtain precision
grasps that satisfy the properties mentioned above, eitherfor
2D or 3D objects. In 2D, grasp planning approaches have
been proposed for polygonal objects with frictionless [5] and
frictional contacts [6], [7], and for non polygonal objectswith
frictionless [8], [9] and frictional contacts [10], [11]. There
are also works dealing with the grasp of 3D objects, either
polyhedral [12], [13] or non polyhedral with frictionless and
frictional contacts [14], [15], [16], [17].

In a real application, the actual grasp may differ from the
expected one due to finger positioning errors. To deal with
these errors and provide robustness to the grasp, the concept
of independent contact regions (ICRs) was introduced [18],
such that the fingers can be independently positioned inside
their corresponding regions while ensuring a FC grasp, re-
gardless of the exact position of the fingers. The computation
of ICRs has been done in 2D for either polygonal [7], [19] or
irregular objects [20] with frictional and frictionless contacts;
and for the case of 3D objects, several works have dealt with
polyhedrons [21] or objects with any shape considering any
number of contacts [22], [23].

The work done in the area of robotic grasping has focused
mainly on the search of FC grasps in both 2D and 3D single
objects with different types and number of contacts.

However, few works have dealt with articulated objects,
but nevertheless there are some relevant ones using different
approaches, such as interactive perception [24], occlusion-
aware systems [25], or even the modeling and static anal-
ysis of an articulated object with three-rigid links [26] for
achieving a non-prehensile manipulation. Another relevant
work [27] presents a systematic procedure to find a set
of frictionless contact points that immobilizes a 2D serial
chain withn polygons, based on second order effects. The
lower bound of the number of contact points necessary to
immobilize any chain ofn 6= 3 hinged polygons without
parallel edges was demonstrated to ben+2, while for n = 3
using 5 contacts allows only the immobilization of some
chains with particular shapes of the polygons. In the general
case,n+3 frictionless points are enough to immobilize any
chain ofn polygons.

Although these different approaches deal with finding pre-
cision FC grasps, we are not aware of any work dealing with
the computation of ICRs on articulated objects. Note that for
the case of articulated objects the ICRs must guarantee the
immobilization of all the object internal degrees of freedom
and the spatial immobilization of the object as a whole.
This means that traditional procedures for ICRs computation
cannot be directly applied to the case of articulated objects,
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Fig. 2. Articulated object withn links (a generic forcef i,j acting on a
point pi,j is represented on each linki).

since the wrench space needs to be generalized to deal
with the internal degrees of freedom provided by the object
articulations. Therefore, the aim of this paper is the proposal
of a procedure to compute ICRs on 2D articulated objects
considering frictional contacts. The proposed approach has
the following phases: a) find an initial FC grasp using the
algorithm proposed in [28] extended to the case ofn links
and considering frictional contacts, and b) determine ICRs
by extending the algorithm presented in [22] to the case of
articulated objects. Note that the approach presented in [22]
works in 3- or 6-dimensional wrench spaces for 2D and 3D
objects respectively, and it is extended here to a generalized
wrench space whose dimension will depend on the number
of links of the articulated object (for a 2D serial articulated
chain withn links, the dimension isn+ 2).

The rest of the paper is structured as follows. Section II
provides an overview of the problem, including the main
assumptions. Section III presents a procedure to find the ele-
ments of the vector of generalized wrenches for an articulated
object withn links. Section IV summarizes the algorithm to
find a FC grasp. Section V presents the procedure to compute
ICRs. Section VI shows illustrative examples of the proposed
approach. Finally, Section VII presents some conclusions and
future work.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider a 2D serial articulated object withn links and
with rotational joints, as illustrated in Fig. 2. The problems
to be addressed are the following:

1) Search a set of contact points on the surface of the
links that allows a FC grasp.

2) Compute the ICRs for a FC grasp on the surface of
the links.

The following assumptions are considered in this work:

• The links are connected by rotational joints.
• The links can overlap each other when they rotate

(i.e. the problem could be of dimension 21

2
, treated as

2-dimensional for simplicity).
• The boundary of each link is represented with a large

enough set of pointsΩ (i.e. the links can be of any
shape, either polygonal or non-polygonal).

• The normal direction pointing towards the interior of
the object at each boundary point is known.

• The contacts between the fingers and the object are
frictional, and Coulomb’s friction law is considered.

• The reachability of the contact points for a particular
device is not considered, although the approach in this

paper can be integrated in other algorithms that include
such analysis [29], [30].

III. G ENERALIZED WRENCHES FOR ARTICULATED

OBJECTS

For a single 2D solid object and considering frictional
contact points, the grasp forcef i applied at a contact point
pi can be decomposed in two componentsf i,n and f i,t

which are respectively normal and tangent to the object
boundary. To avoid slippage of the finger, Coulomb’s law
must be satisfied:f i,t ≤ µf i,n, where µ is the friction
coefficient. This implies that the force applied by the finger
must lie inside a friction cone centered on the direction
normal to the object boundary and limited by the so-called
primitive forces,f r

i andf l
i. f i is a positive combination of

fr
i andf l

i, i.e. f i = αf l
i + βf r

i with α, β ≥ 0. The primi-
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.
This section describes the generalization ton links of the

procedure developed in [28] to obtain generalized wrenches
for a serial articulated object. The method considers a virtual
robot of n + 2 joints (Fig. 3) wherein the first and second
joints are virtual ones and the other joints correspond to the
articulated object to be immobilized. The introduction of the
virtual links and corresponding joints is done to represent
the degrees of freedom of the first real link. The following
basic nomenclature will be used:

Li: Links of the virtual robot,i = −1, . . . , n. L−1 and
L0 are virtual ones, andL1 to Ln correspond to
the real ones.

qi: Generalized joint coordinates for the virtual robot,
i = −2, . . . , n− 1. Joints−2 to 0 are virtual ones,
and joints 1 ton− 1 correspond to the real ones.

Qi: Position of the jointqi, for i = 0, . . . , n − 1. For
i = n, Qn is the position of the final end of the
link with respect to the base frame.

P i,j : Contact pointj on link Li with respect to the base
frame.

pi,j : Position vector (in the base frame) of contact point
j on link Li as measured fromQi−1 (i.e. pi,j =
P i,j − Qi−1), i = 1, . . . , n, j = 1, . . . , ki, where
ki is the number of contact points on linkLi. The
total number of contacts isk =

∑

i ki.
ri: Position vector ofQi measured fromQi−1 (i.e.

ri = Qi −Qi−1).
si,j : Position vector of contact pointj on link Li mea-

sured fromQi (i.e. si,j = P i,j −Qi = pi,j − ri).
f i,j : Forcej applied to linkLi at contact pointpi,j .

A. Determination of the generalized wrenches

The JacobianJi for each link Li (i = −1, . . . , n) is
computed to relate the external forces applied to each link
Li with the forces or torques required in each joint for
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Fig. 3. General scheme of the virtual robot,L−1 . . . Ln represent all the
links of the virtual robot andL1 . . . Ln are the articulated object’s links.

an equilibrium condition. The total forces or torquesτk
(k = −2, ..., n − 1) to be applied at jointsqk are the
components of a vectorτ given by:

τ =
n
∑

i=−1

ki
∑

j=1

τ i,j =
n
∑
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ki
∑

j=1

J
T
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n
∑

i=−1
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j=1

J
T
i (1)

[
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]

whereMsi,j = si,j × f i,j .
Therefore, expanding eq. (1) the components
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(2)

Now, it is possible to consider a generalized wrench space
W defined by the base{τ̂−2, τ̂−1, τ̂ 0, τ̂ 1, . . . , τ̂ 2, τ̂n−1} for
the articulated object, where the generalized wrenchesW i,j

generated respectively by forcesf i,j are
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Taking into account the above considerations, the primitive
wrenchesW c

i,j (wherec ∈ {l, r} is used to represent the left
and right boundaries of the friction cone) generated by the
primitives forcesfc

i,j that constrain a forcef i,j to be inside
a friction cone, are defined by
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(4)

The dimension ofW is n + 2, and therefore the generalized
wrenchesW i,j andW c

i,j haven+2 components. Note that this is
different from the traditional wrench space for a rigid object, whose
dimension is 3 for 2D objects and 6 for 3D objects. Moreover, note
also that each generalized wrenchW i,j (or W c

i,j) has only three
independent components, which come from the two independent
parameters definingfxi,j

(or fc
xi,j

) andfyi,j (or fc
yi,j

), and a third
parameter defining the contact pointpi,j on the object boundary.

From the representation of generalized wrenches in eq. (4),since
the last component depends only on the forcesfn,j applied on
the last linkLn, it is straightforward that the forces in the link
n must be able to produce positive and negative torques in order
to counterbalance any perturbation. This in turn means thatfor
frictionless contacts it must bekn ≥ 2, i.e. there must be at least
two applied forcesfn,1 andfn,2 on the last link in order to expand
the whole space ofτn−1, while for frictional contacts only one
contact could be enough if the forces in the friction cone allow
both positive and negative torques (which is not always allowed by
the link shape). Since the virtual links can be added to any extreme
of the articulated object, the same reasoning applies for the first
link L1.

B. Force-closure Test
Considering the setG =

{

pi,j , i = 1, ...n, j = 1, ..., ki
}

of
k =

∑

i ki contact points (with ki is the number of
contact points on link Li), and a force f i,j applied at
each pi,j , two setsW = {W i,j , i = 1, ..., n, j = 1, ..., ki} and
Wp =

{

W c
i,j , i = 1, ..., n, j = 1, ..., ki, c ∈ {l, r}

}

are obtained.
The necessary and sufficient condition for the existence of aFC
grasp is that the origin of the generalized wrench space liesinside
the convex hull CH(Wp) of the contact wrenchesWp [4], [31].
This guarantees that the grasp can generate appropriate wrenches
to counteract perturbation wrenches in any direction, i.e.to counter-
balance any force(s)f i,j applied on any linkLi of the articulated
object. Note that this test is a generalization of the traditional FC
test for objects without internal degrees of freedom. The test used
in this work to verify this condition is derived from [16] forthe case
of a single rigid object and then extended in [28] for an articulated
2D object. Let P be the centroid of the primitives wrenches,O
the origin of the wrench space andHi a boundary hyperplane of
CH(Wp): in order for a graspG to be FC,P andO must lie on
the same side ofHi ∀i.

IV. F INDING AN INITIAL FC GRASP

The algorithm described in this section is the extension to
frictional contacts of the algorithm presented in [28] for frictionless
contacts. The procedure generates an initial graspGm, m = 1,
by selectingk random points from the setΩ that describes the
object boundary, then computes the corresponding setWm when
frictionless contact points are considered, andWm

p with primitives
contact wrenches for frictional contacts. The next step is to check
whether the points inGm lead to a FC grasp. IfGm does not



Algorithm 1 Search of an initial FC grasp
Ensure: : GraspGm with FC

1: Generate a random initial graspGm, m = 1.
2: while Gm is not a FC graspdo
3: Form the corresponding set of wrenchesWm and primitives

wrenchesWm
p

4: Determine a subsetGm
R of grasp points onGm to be

replaced.
5: Generate a subsetΩm

C with candidate points to replace one
of the points inGm

R .
6: Obtain an auxiliary graspGaux replacing a point inGm

R

with one point fromΩm
C .

7: Update the counterm = m+ 1.
8: Gm=Gaux.
9: end while

10: return (Gm)

provide a FC grasp, then a search of new contact points is done,
based on separating hyperplanes in the wrench space that define
candidate points to replace one of the current points inGm to obtain
another graspGm+1. This is iteratively repeated until a FC grasp
is found. The procedure is detailed in Algorithm 1 and explained
below.

If grasp Gm fails the FC-test mentioned in Section III-B, the
search procedure, Steps (3) to (8), iteratively tries to improve the
grasp by changing one of the points inGm.

In Step (4) a subsetGm
R ⊂ Gm is generated with the points of the

wrench space that simultaneously define all the critical hyperplanes
H defining the boundary of CH(W ) that produce a failure of the
FC-test (i.e.P andO lie on different sides of the plane).

In Step (5) a subsetΩm
C with candidate points to replace one

point in Gm
R is determined by hyperplanesH

′

passing through the
origin and parallel to the critical hyperplanesH . The replacement
candidate points are those that simultaneously lie on the opposite
side of the pointP with respect to all the hyperplanesH

′

.

In Step (6) one of the points inGm
R is replaced by a point

producing a wrenchW∗ randomly taken fromΩm
C , W∗ replaces

the closest point inGm
R , generating an auxiliary graspGaux. The

centroidP ∗ and the distance
∣

∣P ∗O
∣

∣ are computed for the wrenches
of the auxiliary graspGaux. Let Pm be the centroid of the set of
wrenchesW in the iterationm. If the relation

∣

∣P ∗O
∣

∣ <
∣

∣PmO
∣

∣

is satisfied then the auxiliary graspGaux is selected as new grasp.
If all the points inGm

R were replaced and none of them reduces
the distance

∣

∣PmO
∣

∣, the selection is the candidateG∗ that has
the smaller distance

∣

∣P ∗O
∣

∣. When frictional points are considered,
the subsetΩm

C is built using the generalized wrenchesW i,j .The
graspGm generated in each iteration is saved so it is not taken into
account in subsequent iterations. This consideration avoids falling
in local minima and allows the exploration of wrench space to
continue until a FC grasp is found (if there is one).

Fig. 4 shows an example with frictional contacts in a hypothetical
2-dimensional wrench space, thus it can be graphically represented
(remember that the dimension of the real wrench space isn+ 2).
The graspGm producing wrenchesWm = {W 1,1,W 2,1,W 3,1}
andWm

p =
{

W l
1,1,W

r
1,1, ...,W

l
3,1,W

r
3,1

}

is not force-closure,
being H3 the hyperplane that produces the FC-test failure. Then,
the set of possible points to be replaced isGm

R =
{

p1,1,p2,1

}

, i.e.
the points producing the wrenchesW 1,1 andW 2,1 and its corre-
sponding primitive wrenches, some of which defineH3. The contact
points that produce wrenches lying in the gray area determined by
the hyperplaneH

′

3 belong toΩm
C . The auxiliary graspGaux with

W∗ replacingW 2,1, i.e. with Wm+1 = {W 1,1,W∗,W 3,1} and
Wm+1

p =
{

W l
1,1,W

r
1,1,W

l
∗,W

r
∗ ,W

l
3,1,W

r
3,1

}

, is FC.

H3
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3
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Fig. 4. Illustration of the search procedure to find one FC grasp in
a hypothetical 2D wrench space using frictional contacts. The gray zone
contains the candidate points.

V. DETERMINING THE ICRS

This section presents the algorithm to compute the ICRs, such
that if a contact is located inside each region the resultinggrasp is
always FC. The algorithm works as follows.

For a given FC grasp, the grasp qualityQg is fixed by the facet
FQ of the convex hull closest to the origin. LetFv denote a facet
of CH(W ) that contains at least one primitive wrenchW c

i,j for a
particular grasp pointpi,j . Several hyperplanesH

′

v parallel to each
facet Fv are built at a distanceQg from the origin (i.e. tangent
to the hypersphere of radiusQg). The role of these hyperplanes is
determining regionsSi,j of the wrench space where new wrenches
(associated with new contact points) can generate FC graspswith
equal or greater quality. The regionsSi,j are the intersection of the
half-spacesH

′
+

v that do not contain the originO. The ICRs are
determined by the set of neighbor points ofpi,j such that at least
one of its primitive wrenches falls into the corresponding search
zoneSi,j .

The procedure to determine the ICRs is given in Algorithm 2
and illustrated in Fig. 5 for, again, a hypothetical 2-dimensional
wrench space. An initial FC graspG =

{

p1,1,p2,1,p3,1

}

gen-
erating the set of wrenchesW = {W 1,1,W 2,1,W 3,1} and
Wp =

{

W l
1,1,W

r
1,1, ...,W

l
3,1,W

r
3,1

}

was obtained using Algo-
rithm 1; its initial grasp qualityQg and the closest facet to the
origin FQ are also shown in Fig. 5. Now, in order to determine
the search region associated with the pointp2,1 with primitives
wrenchesW l

2,1 and W r
2,1, the hyperplaneH

′

1 parallel to H1

at a distanceQg from O is built (note that at least oneW c
2,1,

c ∈ {l, r}, must belong toH1, which in this case isW l
2,1). H

′

1

andFQ define the regionS2,1 in the wrench space where, in the
example, the wrenches corresponding to two neighboring points
of p2,1 are located, and therefore selected for the corresponding
ICR. The search zonesSi,j for each grasp point are depicted in
different color, and the wrenches associated with neighboring points
within each ICR are depicted with squares (black ones representing
W c

i,j ). The core of Algorithm 2 are Step (6) and the loop starting
in Step (9). In Step (6) the hyperplanesH

′

v parallel toFv and at
a distanceQg from O, as well asH

′
+

v are computed. Step 9 is
the most costly one because it is necessary to check whether the
primitive wrenchesW c

o,j of an unknown number of pointspo,j

belong to each half-spaceH
′
+

v .

VI. EXAMPLES

In this section the approach proposed for the computation ofthe
ICRs is illustrated with examples for articulated objects with 2, 3
and 4 links. The considered friction coefficient wasµ = 0.5. The
implementation was done using Matlab and C++ on an Intel Core2
Duo 2.0 GHz computer. The library Qhull [32] was used to compute
the convex hulls. The figures of the examples show: a) the initial
randomly generated grasp, which in general is a non-FC grasp, and,
b) the obtained FC Grasp and corresponding ICRs.



Algorithm 2 Computation of ICRs
Ensure: : Independent contact regions ICRs.

1: Find an initial FC graspG using Algorithm 1.
2: Compute the initial qualityQg.
3: Compute CH(Wp).
4: for i = 1 to n do
5: for j = 1 to ki (i.e. for each contact pointpi,j ∈ G) do
6: For each facetFv of CH(Wp) with at least one vertex

W c
i,j , build the hyperplaneH

′

v parallel toFv and at dis-
tanceQg from the originO, leavingO andFv in different
half-spaces. LetH

′
+

v be the open half-space such that
W c

i,j ∈ H
′
+

v . The search regionsSi,j are determined by
intersecting the half-spacesH

′
+

v , i.e Si,j = ∩vH
′
+

v

7: Initialize ICRi,j = {pi,j}.
8: Label pi,j as open
9: while there are open pointspi,u ∈ ICRi,j do

10: for all the neighboring pointspi,s of pi,u do
11: if ∃c such thatwc

i,s ∈ Si,j then
12: ICRi,j = ICRi,j ∪ {pi,s}
13: Label pi,s as open
14: end if
15: end for
16: Label pi,u as closed
17: end while
18: end for
19: end for
20: return ICRs= {ICRi,j , i = 1, ..., n and j = 1, ..., ki}

W 2,1

W 1,1

W 3,1

W l
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2
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′

1

H2,H
′

2

FQ

Fig. 5. Search for ICRs ensuring a minimum grasp quality. Search zones
Si,j for each grasping point are depicted in color, and wrenches associated
with neighboring points within each ICR are depicted as squares.

Example 1: Articulated object with 2 links shown in Fig. 6. The
initial FC grasp was obtained after 2 iterations in 1 s, and the ICRs
were obtained in 0.6 s.

Example 2: Articulated object with 3 links shown in Fig. 7. The
initial FC grasp was obtained after 4 iterations in 4 s, and the ICRs
were obtained in 1.3 s.

Example 3: Articulated object with 4 links shown in Fig. 8. The
initial FC grasp was obtained after 14 iterations in 17 s, andthe
ICRs were obtained in 1.6 s.

Example 4: Articulated object with 4 links shown in Fig. 9. The
initial FC grasp was obtained after 6 iterations in 11 s, and the
ICRs were obtained in 2.1 s. Note that in this case there are no
contacts on the third link, which does not prevent the FC grasp.
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Fig. 6. Example 1: a) Non FC grasp, b) FC grasp and ICRs.

−1 0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

2

3

p1,1 p2,1
p2,2

p3,1

p3,2

a)

−1 0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

2

3
p1,1

p1,2
p2,1

p3,1
p3,2

ICR1,1

ICR1,2
ICR2,1

ICR3,1

ICR3,2

b)

Fig. 7. Example 2: a) Non FC grasp, b) FC grasp and ICRs.
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Fig. 8. Example 3: a) Non-FC grasp, b) FC grasp and ICRs.
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Fig. 9. Example 4: a) Non-FC grasp, b) FC grasp and ICRs.

VII. C ONCLUSIONS

In this paper we proposed an approach to obtain independent
contact regions (ICRs) for 2D articulated objects withn links
considering frictional contacts. The approach has two stages: the
first one performs the synthesis of a FC grasp, and the second one
computes the ICRs around the contact points of the FC grasp. The
algorithms were implemented and examples for articulated objects
with two, three and four links were presented.

As future work we consider the extension to the computation
of ICRs for objects with both rotational and prismatic joints; in
this case the analysis could be directly done using the proposed
approach based on the appropriate Jacobian matrices. Another
future work is the generalization of the approach for 3D articulated
objects considering frictionless and frictional contacts. 3D objects
imply more degrees of freedom and therefore higher dimensional
spaces; however, the algorithms were already running on wrench
spaces of any dimension, since the proposed approach is valid for
any number of links of a 2D articulated object. Thus, the complexity
of the generalization for 3D objects could be determined by the
development of the proper model for the generalized wrenches.
Finally, another future development is the consideration of branched
articulated objects and closed kinematic chains, for both 2D and 3D
articulated objects.
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[8] J. Cornellà and R. Suárez, “On computing form-closuregrasps/fixtures
for non-polygonal objects,” inProc. IEEE Int. Symp. Assembly and
Task Planning, 2005, pp. 138–143.

[9] N. Niparnan and A. Sudsang, “A Heuristic Approach for Computing
Frictionless Force-Closure Grasps of 2D Objects from Contact Point
Set,” in Proc. IEEE Conf. Robotics, Automation and Mechatronics,
2006, pp. 1–6.

[10] B. Faverjon and J. Ponce, “On computing two-finger force-closure
grasps of curved 2D objects,” inProc. IEEE Int. Conf. Robotics and
Automation, vol. 1, 1991, pp. 424–429.

[11] N. Niparnan and A. Sudsang, “Computing All Force-Closure Grasps
of 2D Objects from Contact Point Set,” inProc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, 2006, pp. 1599–1604.

[12] Y.-H. Liu, D. Ding, and S. Wang, “Constructing 3D frictional form-
closure grasps of polyhedral objects,” inProc. IEEE Int. Conf.
Robotics and Automation, vol. 3, 1991, pp. 1904–1909.
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