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Abstract— Independent Contact Regions provide robustness
in front of finger positioning errors during an object graspi ng.
However, different sources of uncertainty may be present like,
for instance, the friction model used in grasp planning, inde-
termination of the friction coefficients, and errors in the model
of the object that affect the positions of the boundary points as
well as the direction normal to the object surface. These sources
have not been previously considered in the computation of the
Independent Contact Regions. This paper discusses how to take
into account these factors when computing the Independent
Contact Regions for discretized objects, i.e. objects described
with a cloud or a mesh of points. The considerations provided
allow a more robust result for application in grasp synthesis
and regrasp planning.

I. I NTRODUCTION

Planning the actions to grasp an object is a complex
task, particularly when a multi-finger grasping device is
used. When a precision grasp is desired (i.e. grasping the
object by using only the fingertips) the problem usually
involves different sub-problems that can be summarized as:
determining a proper set of contact points on the object
surface, determine the proper hand configuration to reach
these contact points, and determine the forces that the fingers
must apply at each contact. Then, there is still the hard
work of controlling the hand joints in order to execute the
grasp. In general, the goal of the grasp is to immobilize the
object in front of any potential external disturbance (in this
context the own weight of the object can be considered an
external disturbance), and when this condition is reached,it
is said that either the form or force-closure properties are
satisfied [1].

A form-closure grasp means that the position of the
contacts on the object surface ensure the object immobility,
only forces normal to the object boundary at each contact are
enough to balance any external perturbation and therefore the
grasp does not depend at all on friction. A force-closure grasp
means that the object immobility is ensured by the forces
applied by the fingers. If there exists friction, a finger can
applied forces at the frictional contact point along different
directions, and therefore the required number of contacts
to produce a force-closure grasp is smaller. For instance, a
minimum of 7 frictionless or 4 frictional contacts are required
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to get, respectively, a form- or force-closure grasp on a
general 3D object [2]. Obtaining a form- or force-closure
grasp depends on the proper selection of the grasp contact
points. Several works were already presented dealing with
this problem like, for instance, in 2D polygonal [3] or non-
polygonal objects [4], 3D polyhedral objects [5], objects with
smooth curved surfaces [6], or 3D discretized objects [7], [8].

In order to provide robustness to the grasps in front of
possible finger positioning errors during a grasp execution
with n fingers, the concept of Independent Contact Regions
was introduced [9], this is a set ICRS of regions ICRi,
i = 1, ..., n, on the object boundary such that a finger
contact in each region allows a form/force-closure (FC) grasp
independently of the exact position of each finger. Finger
positioning errors on the object surface may be due to
different causes, like for instance joint control errors orthe
fact that the fingers do not touch the object simultaneously
and the object is slightly moved before completing the grasp.
A set of regions ICRS is also useful to extend the range of
solutions in the search of a hand configuration to perform a
given FC grasp [10].

Several works have been presented determining ICRS for
2D polygonal [11] and non-polygonal objects [12], and for
3D polyhedral [5] or general objects [13]. Previous works
of the authors have presented an algorithmic approach to
compute ICRS on 3D discrete objects using any number
n ≥ 7 of frictionless contacts orn ≥ 3 frictional contacts
by growing the regions around the contact points of a given
FC grasp and ensuring a controlled minimum quality for any
grasp produced with finger contacts inside the ICRS [14].

The influence of uncertainties on grasp planning has
been addressed few times, despite that some amount of
uncertainty is inevitable in the real world, and that uncer-
tainties can lead even to lose the FC condition. Friction
and contact position uncertainty have been considered in
the force closure analysis [15], where the minimum friction
coefficient and the maximum uncertainty in position of the
contact points that still guarantee an FC grasp are also
computed. Uncertainties on shape and contact locations are
considered in the vision-based grasp planning process for
2D objects [16], or taken as sources of error that are corrected
during the grasp execution [17]. Other approaches deal with
the uncertainties in the object geometry by using compliant
actuators [18]. However, the consideration of uncertaintyin
the determination of ICRS has not been tackled before. This
work discusses the influence of the type of contact, the
uncertainty in the friction coefficient, and the uncertainty
in the actual object boundary due to errors in the model



of the object (which affects the positions of the contact
points as well as the direction normal to the object surface).
The adjustments required to compute ICRS considering these
uncertainties are also provided. These considerations allow
a wider use of ICRS both in robust grasp synthesis and in
regrasp planning.

The rest of the paper is organized as follows. Sec-
tion II provides the required background on frictional grasps,
and summarizes the procedure already presented to com-
pute ICRS. Section III presents the influence of the friction
coefficient and the type of contact on the computation of
ICRS, while Section IV discusses the influence of uncertain-
ties in the location and normal direction at a given contact
point. Finally, Section V summarizes the work and discusses
some future applications.

II. BACKGROUND

This section presents the assumptions and some basic
background required for the proposed approach, and a
summary of the procedure to compute the ICRS already
presented in [14].

A. Object and contact model

The following assumptions are considered to compute the
independent contact regions on an arbitrary 3D object:

∙ The object surface is represented by any type of mesh,
i.e. a setΩ of N points plus some neighboring infor-
mation among them (the number of neighbors has no
influence on the proposed approach).N is assumed to
be large enough so that if a grasp is FC with a given
finger in any two neighboring points, then a grasp with
such finger in any intermediate position is also FC.

∙ The points of the mesh are described by position
vectorspi measured with respect to a reference system
located in the center of mass (CM) of the object,
and each pointpi has an associated surface normal
direction n̂i pointing toward the interior of the object.
The discretization of the object should guarantee that the
object normal direction varies monotonously between
two neighboring points.

The frictional contact between each finger and the object
can be modeled as a punctual contact or as a soft finger
contact. For a punctual contact, Coulomb’s friction model is
used, i.e. to avoid slipping the forcef i applied atpi must
lie inside the friction cone defined byf t

i ≤ �fn
i , where� is

the friction coefficient andf t
i andfn

i are the tangential and
normal components off i, respectively. In the 3-dimensional
physical space this model is nonlinear and, to simplify it,
the friction cone is linearized using anm-side polyhedral
convex cone. Thus, usinĝnij to represent the unitary vector
along thej-th edge of the convex cone at thei-th contact, a
grasping force is given by

f i =
m
∑

j=1

�ijn̂ij , �ij ≥ 0 (1)

The forcef i applied on the object atpi generates a torque
� i = pi × f i with respect toCM. f i and � i are grouped
together into a wrench vector given by

!i =

(

f i

� i/�

)

(2)

where� is a parameter with units of length used to adjust
the metric of the wrench space [14], and without loss of
generality it will be considered unitary here to simplify
the expressions. The wrench!ij generated by a unitary
force f i along an edge of the linearized friction cone,
i.e. f i = n̂ij , is called a primitive wrench. A grasp
defined by the set of contact pointsC = {p1, . . . ,pn}
is also associated with the set of primitive wrenches
W = {!11, . . . ,!1m, . . . ,!n1, . . . ,!nm}.

B. Force closure test and grasp quality

A necessary and sufficient condition for the existence of an
FC grasp is that the originO of the wrench space lies strictly
inside the convex hull ofW , represented asCH(W ) [19].
In this work, the conditionO ∈ CH(W ) is checked
by verifying that O and the centroidP of the primitive
contact wrenches inW (which is always an interior point
of CH(W )) lie on the same side of the hyperplaneHk

containing the facetk of CH(W ), ∀ k [14].
To quantify the goodness of a grasp, the considered

grasp quality measure is the largest perturbation wrench
that the grasp can resist independently of the perturbation
direction [20]. This grasp quality is equivalent to the radius
of the largest hypersphere centered onO and fully contained
in CH(W ), i.e. it is the distance fromO to the closest facet
of CH(W ).

C. Independent contact regions

A general procedure to compute Independent Contact
Regions (ICRS), such that if each finger is located at any
point inside its corresponding ICRi an FC grasp with a
desired minimum grasp qualityQr is always obtained, was
presented in a previous work [14]. ICRS are computed
starting from any given FC grasp. Taking into consideration
the presented assumptions, each ICR is obtained as a set of
neighboring points, assuming that a contact between them
also generates an FC grasp.

The procedure is conceptually illustrated in Fig. 1 with
a hypothetical 2D wrench space. In this space, for each
physical contact pointpi on the object 3 wrenches are rep-
resented: one in white representing the wrench!i produced
by a unitary contact force in the direction normal to the
object surface, and two in black representing the primitive
contact wrenches due to friction. A hypotheticalCH(W )
is illustrated with four facetsFk, k = 1, ..., 4, involving
primitive wrenches of four contact points. Now, the ICR1

is the set of neighboring points ofp1 such that at least one
of its primitive wrenches falls into the regionS1 defined by
the two hyperplanesH ′′

1 andH ′′

2 , which contain the originO
of the wrench space and are parallel to the facetsF1 andF2

respectively (F1 andF2 include at least one primitive wrench
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Fig. 1. Search for ICRS ensuring a minimum grasp quality. Search zonesSi

for each grasping point are depicted in gray, and the wrenches associated
with neighboring points within each ICRi are depicted with squares. The
computation of ICR1 for the contact pointp1 is illustrated.

associated withp1). Wrenches corresponding to physical
points in ICR1 are represented by colored squares, and the
condition of neighboring points in the physical space are
represented with a link between the corresponding wrenches
!i. Note that changing the contact atp1 on the object
boundary (i.e changing the wrench!1) to any other point
inside ICR1 will always satisfy the FC condition with a
quality Q ≥ Qr becauseCH(W ) will always contain the
origin O. The same principle is applied to determine the
remaining ICRi, thus obtaining ICRS={ ICR1, ICR2, ICR3,
ICR4}. The algorithm to compute ICRS is the following

Algorithm 1: Determination of ICRS
1) Find a starting FC graspC = {p1, . . . ,pn}, and obtain

the corresponding setW and its qualityQs

2) Select the minimum acceptable qualityQr = �Qs,
with 0 < � ≤ 1

3) ComputeCH(W )
4) For i = 1 to n (i.e. for each contact pointpi ∈ C), do

a) For each facetFk of CH(W ) having at least one
vertex!ij , build the hyperplaneH ′′

k parallel to
Fk and at a distanceQr from the originO, leav-
ing O andFk in different half-spaces. LetH ′′

k
+

be the open half-space such that!ij ∈ H ′′

k

+

b) Initialize ICRi = {pi}
c) Labelpi as open
d) While there are open pointspℎ ∈ ICRi, do

i) For all the neighboring pointsps of pℎ, do
If ∃j such that!sj ∈

∩

k H
′′

k

+, then
ICRi = ICRi ∪ {ps}
Labelps as open

ii) Label pℎ as closed
5) Return the ICRs
Note that the sizes of the ICRS are strongly influenced

by the choice of the desired minimum qualityQr (the
larger theQr the smaller the ICRS), and by the set of
primitive wrenchesW , which is directly related to the
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Fig. 2. Representation of the friction cones in the wrench space for each
contact point of a discretized ellipse: a) Discretized ellipse; b) Friction cones
for � = 0.2; c) Friction cones for� = 0.4. Line segments join the primitive
wrenches corresponding to the same friction cone.

friction coefficient (the smaller the friction coefficient,the
smaller the ICRS).

III. I NFLUENCE OF FRICTION

The real estimation of parameters that define the contact
between two objects is, in general, a difficult task. On the
one hand side, depending on the materials and geometry of
the fingertips, a soft or hard finger contact model must be
chosen to represent the actual contact between the fingertips
and the object. On the other hand, the friction coefficient can
be difficult to estimate from the information usually available
for grasp planners. This section deals with these two factors
and its influence on the computation of ICRS.

A. Uncertainty in the friction coefficient

As the material and the surface properties (e.g. roughness,
deformations) for the grasped object are, in general, not well
known, it is difficult to provide an exact friction coefficient
between the fingers and the object. Besides, the coefficients
are very sensitive to environment conditions (temperature



or vibration, dust, oil or water on the surfaces). In general,
these factors tend to diminish the nominal friction coefficient
�nom. The effect of this uncertainty could be modelled as

�min =
1

�
�nom (3)

with � ≥ 1 the reduction coefficient. Fig. 2 illustrates the
influence of the friction coefficient on the primitive wrenches
(i.e. on the representation of a friction cone) in the wrench
space for a discretized ellipse. Note that for a frictional
contact pointpc on a 2D object, the possible forces applied
at pc within a linearized friction cone are mapped as a
2-dimensional subspace in the 3-dimensional wrench space.
The points represent primitive wrenches corresponding to the
friction cone at different contact points on the ellipse fora
friction coefficient� = 0.2 (Fig. 2b) and� = 0.4 (Fig. 2c).
Note that the higher the friction coefficient, the more spread
are the corresponding wrenches in the wrench space, and
therefore the more easier to get an FC grasp (and the larger
the ICRS obtained using such FC starting grasp).

With the expression provided in (3), two different ICRS
can be computed for the object:

1) ICRSnom: nominal ICRS, computed for�nom. This is
the ideal case.

2) ICRSmin: minimal ICRS, computed for�min.
Note that diminishing� may potentially lead to a situation

where the force closure property for the starting grasp cannot
be guaranteed any longer. If this is the case, then the
computation of ICRS using Algorithm 1 will lead to an
empty set of ICRS.

The minimal ICRS (if they exist) allow an FC grasp
despite any variation of�, i.e. they are the most secure
ICRS to grasp the object. If at least one finger is outside
its ICRmin, then getting an FC grasp cannot be guaranteed
due to friction uncertainty.

As an example, Fig. 3 shows the computation of the
ICRSnom and ICRSmin for a parallelepiped, with� = 0.2,
� = 2 and frictional cones linearized withm = 8 sides. The
real ICRS must lie in the ambiguity zone, i.e. somewhere
between the ICRS nominal and minimal.

B. Soft vs. hard finger

The procedure for ICRS computation presented in Sec-
tion II-C can also be extended to consider soft finger contacts
by changing the setW of primitive contact wrenches. The
soft finger contact model assumes a finite contact area
between the object and the finger, therefore allowing the
application of a moment around the local surface normal.
Two main models are considered in the literature for soft
fingers, depending on the relation between the shear and
torsional forces. For a local coordinate frame(n,o, t) at the
i-th contact point (withn the normal direction ando andt
the tangential directions to the surface of the object), the
linear (SFL) and elliptical (SFE) models state that to avoid
separation and slippage at the contact point, the forcef i

must satisfy [21], [22]:

SFL : 0 ≤
1

�

√

f2
io + f2

it +
1

�l

∣� in∣ ≤ f in (4)

a)

b)

Fig. 3. Independent contact regions on a parallelepiped with Qr = 0.05:
a) Minimal ICRS,�min = 0.1; b) Nominal ICRS,�nom = 0.2. Note that
the higher the friction coefficient, the larger the ICRi obtained.

SFE : 0 ≤

√

1

�2
(f2

io + f2
it) +

1

�2
e

� 2
in ≤ f in (5)

with � the coefficient of tangential friction, and�l and�e the
(different) coefficients of torsional friction. To get a proper
set of primitive wrenches, the SFE model can be linearized
in a local coordinate frame as

!i =

[

1, � cos
2�j

J
cos

�k

2K
, � sin

2�j

J
cos

�k

2K
, 0, , 0 , �e sin

�k

2K

]T

(6)

where j = 1 for k = ±K, and j = 1, 2, ..., J (J ≥ 3)
for k = −(K − 1), ...,−1, 0, 1, ...,K − 1. J and K are
parameters that can be adjusted to improve the quality of
the linearization [22].

For the SFL model, the set of primitive wrenches is
linearized with

!i =

[

1, � cos
2�j

J
cos

�k

2
, � sin

2�j

J
cos

�k

2
, 0, , 0 , �l sin

�k

2

]T

(7)

where k = −1, 0, 1, with j = 1 for k = ±1, and
j = 1, 2, ..., J (J ≥ 3) for k = 0. In other words, for
the SFL model the setW of primitive wrenches in the
object coordinate frame defined in Subsection II-A sim-
ply contains two additional wrenches per finger, namely
!il = (01×3 ± n̂i�l)

T .
The consideration of a hard finger model for computing

the ICRS, neglecting the torsional components of the wrench



a)

b)

Fig. 4. Independent contact regions on a parallelepiped, with minimum
quality Qr = 0.03, and using: a) A soft finger model,� = 0.3, �l = 0.5;
b) A hard finger model,� = 0.3.

at the contact points, leads to smaller ICRS. To illustrate
this effect, Fig. 4 shows the computation of ICRS on a
parallelepiped discretized with 3422 triangles, using in both
cases the same starting 4-finger FC grasp. For this object
the regions computed using the soft finger model are 42%
larger (in average) than the corresponding regions using
the hard finger model. The relation of size between the
regions computed with both models depends on the friction
coefficients, the minimum quality and the starting FC grasp.

IV. U NCERTAINTIES RELATED TO THE OBJECT MODEL

The representation of a real 3D object as a cloud of
points or as a triangular mesh could involve several errors
due, for instance, to possible locations occluded in the
images used to build the model, or to intrinsic errors in the
acquisition system. As the grasp quality depends strongly
on the location of the contact points and its corresponding
normal directions, the effects of geometrical uncertainties
should also be considered. The goal of this section is getting
a proper way to represent these uncertainties, and to include
them in the computation of ICRS.

Fig. 5 shows the effect of the uncertainties in the location
and normal direction at one contact point on the location
of the wrench cone in the wrench space, using the same
ellipse of Fig. 2a. Note the different nature of the influence
of uncertainties due to position and direction, which callsfor
a different treatment for both sources of uncertainty.

A. Uncertainty in the location of the boundary points

The locationpib of the actual boundary (contact) point
is considered to be inside a closed sphere of radiusΔpi

a)

b)

fx

fx

fy

fy

�

�

Fig. 5. Influence of uncertainties on the wrench cone for a contact on
the discretized ellipse: a) Variation of∥Δpi∥ = 0.1 in the location of the
contact point; b) Variation of� = 3o in the normal direction.

centered at the nominal positionpi of the boundary point, i.e.
pib = pi + �Δpi, with 0 ≤ � ≤ 1. The primitive wrenches
produced at the potential locations of the real contact point
are described with

!ij =

(

n̂ij

pib × n̂ij

)

=

(

n̂ij

pi × n̂ij

)

+

(

0

�Δpi × n̂ij

)

(8)

Thus, the uncertainty in the location of the contact point
is a perturbationΔ� affecting only the torque components
of the wrench. Note that the magnitude ofn̂ij in Eq. (8)
is 1, so the magnitude of the maximum perturbation in the
torque direction is

∥Δ�∥max = ∥Δpi × n̂ij∥ = ∥Δpi∥ (9)

To illustrate the effect of this perturbation in the com-
putation of the ICRS, Fig. 6 illustrates a hypothetical
2-dimensional wrench space, with the horizontal axis rep-
resenting the force componentf and the vertical axis repre-
senting the torque component� for the wrench. Let a generic
hyperplaneHk be described with the equatione ⋅ ! = e0,
wheree is the vector normal to the hyperplane. The distance
of the hyperplane to the origin is given by

D =
∣e0∣

∥e∥
(10)

Now, let every point of a hyperplaneH ′′

k (which partially
defines a search zoneSi in Algorithm 1, Section II-C) be
moved by a distanceΔ� in the torque direction. A new
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Fig. 6. Uncertainty in the contact location results in a displacement of the
hyperplanes defining the search zonesSi.

hyperplaneHb
k is obtained in this way, which takes into

account the maximum error in the location of a contact point.
The original hyperplaneH ′′

k is tangent to a hypersphere
with radius Qr; the new hyperplaneHb

k is tangent to a
hypershpere with radiusRb given by

Rb = Qr +Δ� ⋅ e (11)

Note that this holds true for the 6-dimensional wrench space,
as the radiusRb is computed as the original radius plus the
projection of the uncertaintyΔ� on the vectore normal to
the hyperplaneH ′′

k .
Therefore, the consideration of uncertainty in the location

of the contact points can be taken into account with the
computation of the following ICRS:

1) ICRSnom: nominal ICRi, computed with Algorithm 1
using the nominal positionpi for all the contact points.

2) ICRSmin: minimal ICRi, obtained with Algorithm 1,
but using in Step 4a the hyperplanesHb

k parallel to the
nominal hyperplanesH ′′

k with a distance to the origin
given byRbmin

= Qr +Δ� ⋅ e.

Then, the consideration of this uncertainty implies com-
puting the ICRS with a minimum qualityRb larger that
the predefined qualityQr. Note that the uncertainty in the
location of the contact points has an upper boundary that
still allows to get an FC grasp. This boundary was computed
in [15]. In any case, increasing the uncertainty in position
leads to smaller ICRi, eventually reaching a case where every
ICRi is empty, i.e. there is no possible FC grasp under those
conditions.

B. Uncertainty in the direction normal to the object bound-
ary

In order to model this uncertainty, all the potential normal
directions are considered to be contained inside a cone with
semiangle� and with its axis along the nominal normal di-
rection (Fig. 7). The real friction cone is somewhere between
the minimal and maximal cones depicted in the figure. Let
� be the friction coefficient (assuming no uncertainty in its
determination, or considering� as a conservative friction
coefficient). The friction cones have a semiangle of:

Minimal cone
Nominal cone

Maximal cone

Cone of normals �

Fig. 7. Uncertainties in the normal direction define a cone ofnormals
containing all the possible normal directions. All the potential friction cones
can be found between a minimal and a maximal cone.

Minimal cone: �min = atan(�)− � (12)

Maximal cone: �max = atan(�) + � (13)

Therefore, a minimal and a maximal ICRi are com-
puted for each point, using pseudo-friction coefficients of
�min = tan(�min) and �max = tan(�max), respectively.
The real ICRi is somewhere between these two boundaries;
using ICRSmin leads to a safe (conservative) consideration
of this uncertainty. However, note that the FC condition can
only be guaranteed if�min > 0. The limit case appears when
the direction uncertainty is� = atan(�). In that case, the con-
tact forces may only be applied along the direction normal to
the object surface, i.e. the contacts become frictionless,and
therefore the FC condition cannot be guaranteed ifn < 7.

Fig. 8 shows the computation of the ICRS for a workpiece
proposed in [6], discretized with 3946 triangles and using
n = 4 fingers,� = 0.2, and frictional cones linearized with
m = 8 sides. It is considered that the normals to the object
surface have an uncertainty of� = 3o, and∥Δpi∥ = 0.5 is
the uncertainty in the location of the boundary points.

V. CONCLUSIONS

This paper has discussed the influence of uncertainties on
the computation of Independent Contact Regions to grasp
a discrete 3D object. First, the effect of the contact type
was presented, including the linearization of the friction
cone required to use a soft finger model in the computation
of ICRS. The influence of the uncertainty in the friction
coefficient was also discussed.

The consideration of uncertainties in the location of the
contact points is equivalent to consider a change in the
minimum quality used to compute the ICRS. The uncertainty
in the normal direction to the object surface was tackled by
reformulating the problem as the computation of ICRS using
equivalent pseudo-coefficients of friction. In all the cases, a
minimal Independent Contact Region is always computed,
such that it ensures always an FC grasp. As expected, the
existence of an FC grasp is compromised when there is
significant uncertainty that may produce an empty ICRi.



a)

b)

c)

Fig. 8. Independent contact regions on a workpiece: a) Nonimal ICRS
(no uncertainty),�min = 0.3, minimum qualityQr = 0.05; b) Minimal
ICRS, �min = 0.2438 (considering uncertainty in the normal direction),
minimum qualityQr = 0.05; c) Minimal ICRS with the combined effect
of uncertainty in the normal direction and in the location ofthe contact
points (∥Δpi∥ = 0.5).

The considerations presented in this paper enhance the real
applicability of ICRS, as they can now take into account
uncertainties coming from the real world, such as those
produced by an imperfect discrete model of a real continuous
physical object.
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