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Abstract— This paper presents an efficient algorithm to com-
pute independent contact regions on the surface of complex 3D
objects such that a finger contact anywhere inside each of these
regions assures a force-closure grasp despite the exact contact
position. Independent contact regions provide robustnessin
front of finger positioning errors during an object grasping,
and give relevant information for finger repositioning duri ng
the object manipulation. The object is described with a mesh
of surface points, so the procedure is applicable to objectsof
any arbitrary shape. The proposed approach uses information
from the wrench space, and generates the independent regions
by growing them around the contact points of a given starting
grasp. A two-phase approach is also provided to find a locally
optimum force-closure grasp that serves as starting grasp,
considering as grasp quality measure the largest perturbation
wrench that the grasp can resist with independence of the
perturbation direction. The approach has been implemented
and several examples are provided to illustrate its performance.

Index Terms— Frictional grasp, independent contact regions.

I. I NTRODUCTION

Grasp synthesis for real world complex objects that assure
the immobility of the object despite the influence of external
disturbances has been a topic of great interest in grasping and
manipulation of objects. These grasps satisfy the properties
of form or force-closure [1]. In a form-closure grasp the
position of the contacts ensure the object immobility; this
property is mostly used in the fixture design for object
inspection or to do some action on it, basically when the
task requires a grasp that does not rely on friction. When the
forces applied by the fingers ensure the object immobility,
the object is in a force-closure grasp; this is commonly used
in grasp and manipulation of objects with frictional contacts.
The synthesis of force-closure grasps has been tackled
mainly for precision grasps (i.e. grasps formed by a set of
particular finger contact points on the object surface) in 2D
polygonal [2] or non-polygonal objects [3], 3D polyhedral
objects [4], objects with smooth curved surfaces [5] or 3D
discretized objects [6].

In a real world execution, the actual and the theoretical
grasp may differ due to finger positioning errors; to provide
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robustness in front of these errors, the computation of
independent contact regions (ICRs) on the object boundary
was introduced [7]. Each finger can be positioned on an ICR
assuring a force-closure (FC) grasp, with independence of
the exact position of each finger. The determination of ICRs
has been solved for 2D polygonal [8] and non-polygonal
objects [9], and for 3D polyhedral objects [4] [10]. The
ICRs have also been used to determine contact regions on
3D objects based on initial examples, although the results
depend on the chosen example [11].

A previous work of the authors [12] presented an algorith-
mic approach to compute ICRs for frictionless contacts on
3D discrete objects; this paper extends the previous approach
to determine independent contact regions on a 3D discrete
object using any numbern of frictional contacts (provided
that n ≥ 3). The proposed algorithm generates the ICRs by
growing them from a starting FC grasp. In order to use a
good starting FC grasp, a procedure to obtain a locally opti-
mum one is also proposed. The optimization procedure is an
oriented search that looks for the grasp that resists the largest
perturbation wrench, with independence of the perturbation
direction [13]. Then, the obtained ICRs assure a FC grasp
with a controlled minimum quality. The approach does not
take into account the kinematical constraints imposed by the
mechanical hand or gripper.

The rest of the paper is organized as follows. Section II
provides the required background on frictional grasps, in-
cluding the force-closure test and the quality measure used
in the paper. Section III presents the approach to compute a
starting FC grasp, and the algorithm to compute the indepen-
dent contact regions. Section IV shows the application of the
approach on different objects. Finally, Section V summarizes
the work and discusses some future applications.

II. PRELIMINARIES

A. Assumptions

The following assumptions are considered to compute the
independent contact regions for a frictional grasp on an
arbitrary 3D object:

• The object surface is represented with a large setΩ of
points, described by position vectorspi measured with
respect to a reference system located in the object’s cen-
ter of mass. Each point has an associated unitary normal
directionn̂i pointing toward the interior of the object.



• The number of points inΩ is large enough to accurately
represent the surface of the object; each point is con-
nected with some neighboring points forming a mesh.

Coulomb’s friction model is used in this work, stating
that there is no slipping at the contact point iff t

i ≤ µfn
i ,

with fn
i andf t

i being the tangential and normal components
of the applied force, respectively, andµ being the friction
coefficient. In the three-dimensional physical space this is
a nonlinear model, defining a friction cone that includes
all the possible grasp forces. To simplify the model, the
cone is linearized with am-side polyhedral convex cone
(the more sides the better the approximation, but the greater
the computational cost to deal with the linearized cone). The
grasping force at the contact point is given by

f i =

m
∑

j=1

αijsij , αij ≥ 0 (1)

with sij representing the normalized vector of thej-th edge
of the convex cone. The wrench produced by the forcef i is

ω̃i =
m

∑

j=1

αijωij , ωij =

(

sij

pi × sij

)

(2)

whereωij are called the primitive contact wrenches. There-
fore, each contact point in the physical space hasm asso-
ciated points in the wrench space, one for each edgesij

of the convex cone. Letωi be the “normal contact wrench”
for the forcef i, i.e. the primitive contact wrench in case
of a frictionless contact point, where the grasp forces can
only be applied in the direction normal to the object surface.
The relation between the normal contact wrenchωi and the
primitive contact wrenchesωij for the linearized friction
cone in a particular contact point is:

ωi =
1

m

m
∑

j=1

ωij (3)

For a given graspG = {p1, . . . , pn} the wrenches applied
through the contact points on the object are grouped in a
wrench setW = {ω11, . . . , ω1m, . . . , ωn1, . . . , ωnm}. Each
physical pointpi in Ω has a corresponding normal contact
wrenchωi in the wrench space; when it is clear, both of them
will be used to indicate a fixture constraint (in general, the
same wrench can be produced at different contact points).

B. Force-closure condition

A necessary and sufficient condition for the existence of
a FC grasp is that the origin of the wrench space lies strictly
inside the convex hull (CH) of the primitive wrench set [14].
This condition is employed in this work using the following
lemma.

Lemma 1: Let G be a grasp with a setW of contact
wrenches,I the set of strictly interior points ofCH(W ),
andH a supporting hyperplane ofCH(W ) (i.e. a hyperplane
containing one of the facets ofCH(W )). The originO of
the wrench space satisfiesO ∈ I if and only if anyP ∈ I
andO lie in the same half-space for everyH of CH(W ).
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Fig. 1. Synthesis of a FC grasp. The convex hull for the grasp set
F = {ω1, ω2, ω3} ∪ {0} (in continuous lines) defines the supporting
hyperplanesH1 andH2 that contain the origin. The convex setC1 contains
primitive wrenches corresponding to 3 points (depicted as white squares),
thus the algorithm provides 3 FC grasps, one of them illustrated with the
convex hull in discontinuous lines.

From Lemma 1, checking whether a given pointP ∈ I
and the originO lie in the same half-space defined by each
supporting hyperplaneH is enough to prove whetherO
lies insideCH(W ), i.e. to prove the FC property for the
graspG. P is chosen as the centroid of the primitive contact
wrenches, which is always an interior point ofCH(W );
therefore, the FC test checks whether the centroidP and
the origin O lie on the same side for all the supporting
hyperplanes ofCH(W ).

C. Grasp quality measure

Several grasp quality measures have been proposed in
the literature [15]; this work uses as a quality measure the
largest perturbation wrench that the grasp can resist, with
independence of the perturbation direction [13]; this is one of
the most popular grasp quality measures. Geometrically, this
quality is the radius of the largest ball centered at the ori-
gin O of the wrench space and fully contained inCH(W ),
i.e. it is the distance fromO to the closest facet ofCH(W ).

III. C OMPUTATION OF INDEPENDENT CONTACT REGIONS

A. Starting grasp for the ICR computation

The synthesis of a starting FC to be used for the search
of the ICRs is performed using two algorithms, the first one
generates an initial grasp with uncontrolled quality and the
second one uses it to generate a grasp with locally optimum
quality for the ICRs search. The initial FC grasp is obtained
using an algorithm presented in a previous work [16]. This
algorithm randomly chosesn − 1 points from Ω, and the
convex hull CH(W ) of the primitive wrenches of the
selected points plus the originO is computed, as illustrated
in Fig. 1 for a hypothetical 2D wrench space (the actual
wrench space is 6-dimensional). Two regions,C1 and C2,
are defined by the intersection of the half-spaces determined
by the supporting hyperplanes ofCH(W ) that contain the
origin. If there is at least one primitive wrench lying inC1,
then the corresponding grasp point is added to the setF 1,
the conditions of theLemma 1 are fulfilled and a FC grasp
is provided. IfC1 is empty, the algorithm iteratively replaces
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Fig. 2. Optimization procedure. The setC of wrenches that improve the
actual quality (depicted as white squares in the gray areaS) is defined by
the hyperplanesH′

1
andH′

2
= HQ. The grasp for the next iteration cycle,

F k = {ω1, ω2, ω3, ωr} is also shown.

one of the points inF 1 and performs another search of
points in the newC1, until it contains at least one primitive
wrench, i.e. until it finds at least one FC grasp. Further
details and discussion on the completeness and advantages
of the algorithm are provided in [16].

Algorithm 1: Search of an initial FC grasp

1) Generate a random setF k = {ω1, . . . , ωn−1}, k = 1
2) Build W k = {ω11, . . . , ω1m, . . . , ωn−1 1, . . . , ωn−1 m}

∪ {O}
3) ComputeCH(W k)
4) Find C1 =

{

ωi | ωi ∨ ωi1 ∨ . . . ∨ ωim ∈
⋂

H+

l

}

and
C2 =

{

ωj | ωj ∧ ωj1 ∧ . . . ∧ ωjm ∈
⋂

H−

l

}

5) If C1 6= ∅ then returnG = {ω1, . . . , ωc}, with a
randomly chosenωc ∈ C1

Else
Pick up aωl /∈ C1 ∪ C2

Form F k+1 by replacing a ωi ∈ F k such that
dL2

(ωi, ωl) be a minimum. Proceed to Step 2
Endif

From the initial FC grasp a locally optimum one is
obtained to be used as the starting grasp of the ICR search
algorithm; it is done by looking for the grasp that resists
the largest perturbation wrench with independence of its
direction (Section II-C), using the following procedure:

Algorithm 2: Search of a locally optimum grasp

1) Find an initial FC graspGk = {ω1, . . . , ωn}, k = 1,
with the corresponding wrench setW

2) ComputeCH(W ) and determineHQ such that the
distanceD to the origin is a minimum. The current grasp
quality is Qk = DQ

3) Build T = {ω̃j , | ‖ω̃1‖ ≤ . . . ≤ ‖ω̃j‖}, j = 1 . . . J
(J ≤ n) such that at least onẽωjm lie on HQ

4) Initialize j = 1. For the hyperplanesHl of CH(W )
containing at least one primitive wrench ofω̃j , build the
hyperplanesH ′

l containing all the primitive wrenches not
belonging toω̃j and lying to a distanceQk from the
origin O

5) Let S =
⋂

H ′

l

+, with H ′

l

+ the half-space such that
O /∈ H ′

l
+. Find C = {ωi | ωi ∨ ωi1 ∨ . . . ∨ ωim ∈ S}
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Fig. 3. Search of the independent contact regions. The search zonesSi

for each grasp point are depicted in gray, and the neighbor points within
each ICR are depicted as white squares.

6) If C = ∅ andj 6= J
Let j = j + 1. Proceed to Step 4

Elseif C = ∅ andj = J
A local maximum has been reached; returnGk

Elseif C 6= ∅
Replaceω̃j with a randomωr ∈ C. Let k = k +1. Go
to Step 2

Endif
Fig. 2 illustrates the procedure in a hypothetical 2D

wrench space. Step 3 looks for the grasp points that con-
tribute with at least one primitive wrench to the facetFQ

defining the current grasp quality, and sorts them according
to its norm. Step 4 builds the hyperplanes required to find the
points that improve the actual grasp quality; the parameters
of H ′

l are computed from a set of linear equations (all the
primitive wrenches not belonging to the actualω̃j must lie
on H ′

l ) and one non linear equation (distance ofH ′

l to the
origin equal toQk). The set of equations admit 2 solutions;
the hyperplane required is that one leavingO and ω̃j in
different half-spaces. Step 5 looks for the points that have
at least one primitive wrench lying inS; one of these points
will be a new grasp point. The procedure is followed until
finding a local maximum, which implies that there are no
more points that improve the actual qualityQk.

Note that Steps 3 to 6 do not involve an explicit FC test;
the procedure is based on pure geometric reasoning that
avoids such test, thus reducing the computational complexity
when compared to previous works [16]. The total number
of iterations required to reach the local maximum depends
directly on the number of local maximums in the wrench
space, i.e. it is directly related with the object to be grasped.

B. Computation of the independent contact regions

The computation of the independent contact regions
(ICRs) ensuring a minimum grasp qualityQ is based on
an arbitrary starting grasp fulfilling the FC property. In this
work a locally optimum grasp, obtained with the procedure
described above, is used as the starting grasp.

For a given FC grasp, the grasp qualityQ is fixed by
the facetFQ of the convex hull closest to the origin. Let
Fk denote a facet ofCH(W ) which contains at least
one primitive wrench for a particular grasp pointpi. The



proposed approach builds several hyperplanesH ′′

k parallel to
each facetFk, but lying at a distanceD = Q of the origin
of the wrench space (i.e. they are tangent to the hypersphere
of radiusr = Q), as illustrated in Fig. 3 for a hypothetical
2D wrench space. These hyperplanes defineSi, the search
zone containing the ICR for the grasp pointpi; Si is the
intersection of the half-spacesH ′′

k

+ which do not contain
the originO. The ICR is determined by the set of neighbor
points ofpi such that at least one of its primitive wrenches
falls into the corresponding search zoneSi. The steps in the
algorithm are:

Algorithm 3: Search of the independent contact regions
1) Find a locally optimum FC grasp,G = {ω1, . . . , ωn}
2) Fix the minimum acceptable qualityQ
3) Build the hyperplanesH ′′

k such thatDH′′

k
= Q

4) Let Si =
⋂

H ′′

k

+ with H ′′

k

+ the half-space such that
O /∈ H ′′

k
+ (i.e. ωi ∨ ωi1 ∨ . . . ∨ ωim ∈ Si)

5) Initialize Ii = {ωi}. Label the points in eachIi as open
6) Check the neighbor pointsωp of every open point

ωj ∈ Ii

If ωp ∨ ωp1 ∨ . . . ∨ ωpm ∈ Si

Ii = Ii ∪ {ωp}; label ωp as open
Endif
Label ωj as closed

7) If there are open points inIi, go to Step 6. Otherwise,
the algorithm returns the set of pointsIi, i.e. the ICR for
the contact pointpi. Steps 3 to 7 are repeated for the
rest of the contact points,i = 1, . . . , n.

Note that algorithm 3 is computationally very simple. In
Step 3, the hyperplanesH ′′

k are computed for the corre-
sponding facetsFk of CH(W ). Let Hk be the hyperplane
containing the facetFk, described as

ek · x = e0k (4)

The hyperplaneH ′′

k parallel toHk but lying to a distance
D = Q from the origin is

ek · x = e′0k, with e′0k = Q ‖ek‖ (5)

Therefore, only the computation of the scalar valuee′
0k is

required to build each hyperplaneH ′′

k . Step 4 only identifies
for every hyperplane the closed half-spaceH ′′

k
+ that does

not contain the origin, and forms the search zonesSi; note
that the selection of any arbitrary point from eachSi always
generates a FC grasp. Step 6 is the more complex step in
the algorithm; every checked point involves its classification
with respect to the number of hyperplanesHk that contain
at least one primitive wrench for the contact pointpi.

The procedure can also be applied to generate ICRs with
contact points that produce a lower grasp qualityQr = αQ,
with 0 < α < 1 andQ the quality of the starting grasp. This
is achieved considering a hypershpere of radiusQr instead
of Q in the procedure described above. Whenα → 0, the
ICRs contain FC grasps without a lower limit on the grasp
quality. In fact α = 0 is a forbidden value, as it does not
assure that anyCH(W ) will strictly contain the originO.

a) b)

Fig. 4. Objects used to illustrate the approach: a) Parallelepiped discretized
with a mesh of 3422 triangles, b) Workpiece discretized witha mesh of
3946 triangles.

The number of points in every ICR may be different for
eachpi, depending on factors such as the level of detail in
the representation of the object surface and the smoothness
of the surface, i.e. the rate of change in the normal vectors
around the contact location. Finally, considering the ICRs
for each finger, several grasps can be formed when each
finger is placed in a different position inside its ICR; the
geometrical procedure assures that all these grasps satisfy
O ∈ CH(W ) and have a qualityQ > Qr. However, the
obtained ICRs depend on the starting grasp; the search of
the optimal ICRs is not addressed in this paper, but it is an
interesting issue to explore in the future.

IV. A PPLICATIONS

The algorithms presented above have been implemented
in Matlab on a Pentium IV 3.2 GHz computer, and the
performance is illustrated using the two objects shown in
Fig. 4, whose boundary is described by a triangular mesh.
The contact pointspi are the centroids of the triangles in the
mesh, and the corresponding surface normal directions are
the directions normal to the triangles. Two points are consid-
ered neighbors if its corresponding triangles share an edge.

The first object is a parallelepiped described with a
mesh of 3422 triangles; the frictional grasps are computed
considering 4 fingers and a friction coefficient ofµ = 0.2,
and the friction cones have been linearized with an 8-side
polyhedral convex cone. Fig. 5 shows an instance of the
results obtained with the proposed approach. Algorithm 1
provides the first FC grasp (Fig. 5a) in 2.2 seconds and 0
iterations, plus other 5 possible FC grasps (corresponding
to the points whose primitive wrenches fall in the setC1).
Algorithm 2 optimizes this grasp to get the locally optimum
FC grasp (Fig. 5b) in 110 seconds and 25 iterations. Fig. 6
plots the evolution of the grasp quality in the optimization
phase; the quality always increases monotonically until it
finds the locally optimum grasp. The local optimum depends
on the initial grasp; in this example, the initial grasp quality
is 0.015, and the locally optimum grasp quality is 0.185; the
improvement factor, i.e. the ratio between the quality of the
optimized grasp and the initial FC grasp is 12.3.

Algorithm 3 provides the corresponding independent con-
tact regions (Fig. 5c) in 70 seconds, using as minimum
quality Qr = 0.139 (α = 0.75). The points within the ICRs
may be combined to obtain 45000 different grasps; Fig. 7



a) b) c)

Fig. 5. Computation of ICRs on a parallelepiped: a) Initial FC grasp,Q = 0.015 (Algorithm 1), b) Locally optimum FC grasp,Q = 0.185 (Algorithm 2),
c) Independent contact regions for each finger,Qr = 0.139 (Algorithm 3).
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Fig. 6. Performance in the optimization phase (Algorithm 2)for the
parallelepiped: increase in the grasp quality.
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Fig. 7. Grasp quality distribution for all the possible grasps within the
ICRs on the parallelepiped forQr = 0.139 (α = 0.75).

shows the quality distribution for all these possible grasps.
Obviously, for lower minimum grasp qualities the size

of each ICR grows; Fig. 8 shows the ICRs for other two
different minimum grasp qualities given byα = 0.5 and
α = 10−5 ≈ 0 (in the last case without a limit in the lower
grasp quality). Finally, Fig. 9 shows a comparison between
the ICRs generated for the same minimum quality, but
computed from the initial and the locally optimum FC grasp;
despite that the ICRs assure the same minimum quality for
every possible grasp inside them, the size of the ICRs is
larger for the second case, thus justifying the use of the
optimization in the proposed approach.

The second object is a workpiece proposed in [5], dis-
cretized with 3946 triangles (Fig. 4b); the approach is
initially applied for n = 4 fingers,µ = 0.2, and frictional
cones linearized withm = 8 sides. Fig. 10 shows the
results for an ICR search on the workpiece. Algorithm 1
provides the first FC grasp with no iterations in 2.3 seconds,
and it is optimized with Algorithm 2 after 29 iterations
in 114 seconds. The grasp qualities are 0.035 and 0.174
for the initial and locally optimum FC grasps, respectively,

a) b)

Fig. 8. Independent contact regions on the parallelepiped with different
minimum quality: a)Qr = 0.093 (α = 0.5), b) Qr ≈ 0 (α = 10−5).

a) b)

Fig. 9. Independent contact regions on the parallelepiped with the same
minimum quality,Qr = 0.005, but computed from: a) the initial grasp,
b) the locally optimum grasp.

with an improvement factor of 5. Algorithm 3 provides the
corresponding ICRs, withQr = 0.131 (α = 0.75), in 66
seconds. The points within the ICRs allow 320 different
grasps; Fig. 11 shows the quality distribution for all these
possible grasps. Fig. 12 shows the ICRs for two additional
quality ratios:α = 0.5 andα = 10−5.

Fig. 13 shows the obtained ICRs for the same optimum
FC grasp in Fig. 10b, but using a different version of
Algorithm 3 which considers all the wrenches inside the
search zoneSi to be part of the ICR for each finger, i.e. it
does not consider neighbors in the search of the ICRs, and
the ICRs may be composed of non contiguous contact points.
In the example of Fig. 13 one finger has an ICR composed
by two disjoint zones (compare with Fig. 12b), because the
wrenches of the points are neighbors in the wrench space,
although physically the points are not neighbors at all on the
object boundary. Finally, Fig. 14 shows another instance of
ICR computation, now for a 5-finger grasp andµ = 0.1.

V. SUMMARY

The computation of independent contact regions for fric-
tional contacts has been tackled with an approach that
includes two parts, the search of a starting grasp (obtainedas
the optimization of an initial FC grasp) and the computation
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Fig. 10. Example on a workpiece: a) Initial FC grasp,Q = 0.035 (Algorithm 1), b) Locally optimum FC grasp,Q = 0.174 (Algorithm 2), c) Independent
contact regions for each finger,Qr = 0.131 (Algorithm 3).
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Fig. 11. Grasp quality distribution for all the possible grasps within the
ICRs on the workpiece forQr = 0.131 (α = 0.75).

a) b)

Fig. 12. Independent contact regions on the workpiece with different
minimum quality: a)Qr = 0.087 (α = 0.5), b) Qr ≈ 0 (α = 10−5).

of the ICRs for the locally optimum grasp. The algorithms
were implemented and the execution results, as the examples
shown in the paper, illustrate the relevance and efficiency of
the approach.

The presented approach can be applied to search ICRs
starting from any provided FC grasp, and the proposed
algorithm ensures a controlled minimum quality for any
number of fingers (n ≥ 3). Future works include the
determination of ICRs for frictional contacts whenk contact
locations are fixed beforehand, and the application of such
algorithm in manipulation tasks (these issues are currently
under development), and the consideration of fingers with a
finite contact area.
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