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Abstract—Planning a precision grasp for a robot hand is
usually decomposed into two main steps. First, a set of contact
points over the object surface must be determined, ensuring
they allow a stable grasp. Second, the inverse kinematics of
the robot hand must be solved to verify whether the contact
points can actually be reached. Whereas the first problem has
been largely solved in a general posing, the second one has only
been tackled with local convergence methods. These methods
only provide one solution to the problem, even if many are
possible, and depending on the initial estimation they use, they
may fail to converge, which results in grasp re-planning in
situations where it could be avoided. This paper overcomes both
issues by providing a complete method to solve the kinematics
of human-like hands. The method is able to find all possible
configurations that reach the specified contact points, even when
positive-dimensional sets of such configurations are possible.

I. INTRODUCTION

Human-like mechanical hands are flexible end effectors

capable of performing complex manipulation tasks [1]–[6].

A recurrent topic in this context is the so-called grasp

problem, or, given an object, determine how to hold it. For

an anthropomorphic hand, this amounts to determine where

and how to place the hand fingers so that they firmly hold the

object. This definition is general enough to include different

types of grasps [7] [8], but we are particularly interested

in precision grasps, i.e., those in which only the fingertips

contact the object, with just one contact point per finger

allowed, assuming that the fingertips are locally convex and

non-deformable.

Several constraints must be fulfilled in grasp planning.

First, the forces exerted on the object must be able to com-

pensate for the application of external perturbation forces.

This is accomplished by satisfying force- or form-closure

conditions, depending on whether the object is fully con-

strained by the finger forces or by the finger positions,

respectively [9]. Second, it must be ensured that the contact

points on the object are reachable by the fingers, by solving

the inverse kinematics of the hand. Third, the grasp must

be planned avoiding collisions between the different solids

involved (the fingers, the palm, the object, and the environ-

ment). Finally, the solutions must be optimized taking into

account dexterity, isotropy, or energetic criteria. In sum, a
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grasp planning problem must address constraints of differ-

ent nature using different techniques, forcing the planning

problem to be solved in a sequential way. This implies that

if any of the steps in the sequence fails, then the overall

process has to be restarted, which makes completeness an

important issue. In particular, if one solution exists in the

inverse kinematics stage, then it must be found. If several

solutions are possible, it would be desirable to find them all

so that subsequent planning steps can take all possibilities

into account, in order to minimize the chances of re-planning.

While the problem of finding grasps satisfying the force-

or form-closure conditions has been largely solved in a

general posing since the early works (see e.g. [10]–[13]),

the inverse kinematics of robot hands has only been ap-

proached with local convergence methods. Usually, these

methods return a single solution, which depends on an initial

estimation given to the solver, but their convergence is not

always guaranteed. In other words, they can fail to provide

a solution, even if one exists. Examples of local methods

include those of Borst et al. [14], who formulate the problem

as a set of unconstrained optimization problems where the

contact and kinematic constraints and the joint limits are

introduced as penalty terms in the objective function, Gorce

and Rezzoug [15], who rely on a neural network to learn the

finger inverse kinematics, and later employ reinforcement

learning to optimize the pose of the hand, and Rosell et

al. [16], who propose an optimization method to iteratively

compute joint movements that maximally reduce the distance

from the fingertips to the contact points.

In contrast to local methods, this paper offers a complete

method to solve the inverse kinematics of a robot hand, based

on a recent technique for the position analysis of general

linkages [17]–[19]. In other words, the method is able to find

all possible configurations that reach the specified contact

points, even when positive-dimensional sets of such configu-

rations are possible. The method has been implemented and

tested succesfully on the four-finger hand MA-I [3], [20],

[21] mounted on a Stäubli robot arm (Fig. 1), but it remains

applicable to any anthropomorphic hand.

The rest of the paper is organized as follows. Section II

specifies the addressed problem. Section III describes the

kinematic structure of the hand-object system. Section IV

gives a proper algebraic formulation to the problem, suitable

to the resolution method proposed in Section V. Section VI

describes some experiments illustrating the method’s perfor-

mance and, finally, Section VII summarizes the conclusions

and points deserving further attention.



Fig. 1. Mechanical Hand MA-I performing a two-finger precision grasp.

II. PROBLEM STATEMENT AND ASSUMPTIONS

A precision grasp is a set of contact points on the object

surface, X = {x1, . . . ,xn}, where n is the number of fingers

used in the grasp. Given a robot hand and a precision grasp,

our goal is to determine all hand configurations for which

the fingers can reach the specified contact points. In this

paper, we will consider that the hand adopts the so-called

anthropomorphic structure, i.e., the one that closely mimics

the human hand, but the approach could be applied to other

hand structures, as long as the mathematical formulation

adopted follows the guidelines provided in [17]–[19]. The

following additional hypotheses will be made.

It will be assumed that the finger-to-point assignment is

given, letting finger j be assigned to point xj , and that

the given grasp already satisfies any force- or form-closure

conditions required. The fingertip and the object will be

smooth and rigid, with a local shape that allows the contact

to be established on a point only. Moreover, the paper will

be focused on dexterous manipulation tasks without sliding

or rolling on the contact point and, hence, this point will

be fixed both on the object and on the fingertip surfaces.

Finally, collisions among bodies will be neglected, as they

are supposed to be considered in later stages of the grasp

planning.

Note that if, as usual, the hand is mounted on a six-

degrees-of-freedom manipulator, then the kinematic structure

of the manipulator does not constrain the set of possible

solutions of the problem, as long as the hand-object system

is generically located in the interior of the robot’s workspace.

In general, thus, the problem boils down to computing the

possible object poses relative to the hand, together with the

finger joint angles that make the specified contacts possible.

The situation is depicted in Fig. 2. Since an homogeneous

transformation Tw,o placing the object relative to the world

is usually known, once the possible object posesTh,o relative

to the hand are determined, the possible configurations of

the robot manipulator are obtained by solving its inverse

kinematics using Tw,h = Tw,o · T
−1

h,o as input.

Tw,h

Tw,o

Th,o

w

o

h

φj,i

xj

Fig. 2. Principal involved frames, attached to the hand (h), the object (o),
and the world (w), and homogeneous transformations relating them.

III. STRUCTURE OF THE HAND-OBJECT SYSTEM

Although every anthropomorphic hand has its own design,

they are in general made up of a palm and several fingers, one

of them acting as the thumb. Usually, non-thumb fingers are

aligned with each other and with the palm, and the thumb is

mounted asymmetrically, so that it can push against the other

fingers to allow force-closure grasps. While some designs

add an extra degree of freedom in the thumb and/or in the

palm, a common trend is to design the fingers with the same

kinematic structure, due to economic and modularity reasons.

An anthropomorphic finger is usually designed with four

revolute joints, sequentially chained as follows (Fig. 3).

The first and second joints are placed at the finger base,

with their axes intersecting and orthogonal to each other,

modeling the metacarpophalangeal joint. The third joint is

placed in the middle of the finger, modeling the proximal

interphalangeal joint. The fourth joint is placed near the

fingertip, modeling the distal interphalangeal joint. While the

first joint is responsible for abduction/adduction movements,

the other three joints (whose axes are parallel) are used

for flexion/extension movements. In sum, each finger has

four degrees of freedom, which can either be independently

actuated [3], some of them coupled [2], [4], [6], or even

locked [5].

As for the kinematic model of the fingertip-object contact,

two choices are basically possible. Since the contact point

must be fixed on the two surfaces (see Section II), the

simplest possibility is to assume that the fingertip and the

object are linked by a spherical joint placed at the contact

point. This model is valid for wire-like fingers [22], but

it does not accurately implement the fact that, being solid

and rigid, the fingers cannot penetrate the object surface.

To model penetration-free contacts, we will assume that the

fingertip and the object are, instead, articulated through a

revolute joint placed at the contact point, with its axis aligned

with the common normal to both solids on that point (Fig. 4).
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Fig. 3. Kinematic structure of an anthropomorphic finger. Revolute joints
are represented as cylinders aligned with their axes. For clarity, the third
vector of each reference frame is omitted.

Note that the hand-object system can be seen as a parallel

robot. The object and the palm play the role of the “base” and

“platform” links, respectively, and the fingers act as the robot

“legs”. In the usual notation [23], it is a n-URRR parallel

platform, because each of its n legs involves a universal

joint (the two orthogonal rotations) and three additional

revolute joints (two for the phalanges, and another one for

the contact). Finding the hand configurations that satisfy the

given grasp is thus equivalent to the position analysis of

such platform. Although this analogy could in principle be

exploited, no technique seems to have been given yet to solve

the specific n-URRR structure. Moreover, while the problem

could be approached using elimination or homotopy tech-

niques, the fact that the geometric parameters of the problem

change every time a new grasp is presented frequently leads

to singular mechanisms, so that relying on a general tech-

nique robust to singularities seems unavoidable. This is the

reason that motivated the presented approach, which relies

on an existing technique based on linear relaxations [17]–

[19]. We next formulate the problem as required in [19],

which entails forming a system of polynomial equations of

special structure, characterizing the possible configurations

of the hand-object system described above.

IV. MATHEMATICAL FORMULATION

A. Basic constraints

Let us define a reference frame for each one of the

involved solids, namely the hand, the three phalanges of each

finger and the object to be held (Fig. 3). The hand reference

frame is defined by two orthonormal vectors h1 and h2, and

their cross product h3 = h1 × h2. We arbitrarily select the

fingertip

pj,4

n̂j

m̂j

φj,4

object

qj,4

Fig. 4. Geometry of the fingertip-object contact.

hand frame to be the absolute frame and, hence, all vectors

below will be described relative to this frame, except those

marked with a hat that will be referred to other local frames.

For each of the three phalanges of finger j, its corresponding

frame is defined by two orthonormal vectors rj,i and pj,i,

and their cross product tj,i = rj,i×pj,i, for i = 2, 3, 4. From
the particular structure of the fingers, we can also assume

that the origin of the reference frame of phalanx i + 1 lies
on the previous pj,i axis. With this, the vector connecting

the phalanx reference frames i and i + 1 is qj,i = pj,i ·pj,i,

where pj,i are the distances shown in Fig. 3. Finally, the

object reference frame is defined by two orthogonal vectors

o1 and o2, and by o3 = o1 × o2.

The following constant vectors are also defined. The finger

anchor point is defined relative to the hand reference frame

by a vector qj,1. The abduction/adduction axis for finger j is

defined by a vector rj,1. The vector rj,0 defines the reference

position for the rotation around rj,1. The contact point at

the fingertip is defined by q̂j,4 relative to the (rj,4,pj,4, tj,4)
frame. This same point is defined relative to the object frame

by a vector x̂j . Note that q̂j,4 and x̂j can be transformed

into absolute coordinates using, respectively,

xj = (o1,o2,o3) · x̂j , (1)

qj,4 = (rj,4,pj,4, tj,4) · q̂j,4. (2)

Note now that the joints between the different solids

forming the hand-object system introduce constraints in the

relative position between the reference frames defined. In

particular, the last three joints of each finger have parallel

axes, which implies that

rj,2 = rj,3 = rj,4, (3)

and the fact that rj,2 is orthogonal to rj,1 requires that

rj,1 · rj,2 = 0. (4)

Moreover, to make the finger-object contact behave as a

revolute joint (Fig. 4), we force the alignment of the fingertip

and object normals as follows

(rj,4,pj,4, tj,4) m̂j = (o1,o2,o3) n̂j , (5)

where m̂j and n̂j represent the contact point normal ex-

pressed in the fingertip and object frames, respectively.

As it is well known [19], when an object is grasped with

n fingers, n − 1 independent kinematic loops arise. The



grasping in Fig. 1, for example, creates one such loop. The

loop equation formed by fingers j and k can be written as

xj −
4∑

i=1

qj,i = xk −
4∑

i=1

qk,i. (6)

Thus, the system of equations characterising the valid

configurations of the hand-object system includes (1) to (5)

gathered for each finger j, the orthonormality constraints

‖rj,i‖ = 1, ‖pj,i‖ = 1 and rj,i · pj,i = 0 (7)

and

‖o1‖ = 1, ‖o2‖ = 1 and o1 · o2 = 0, (8)

relative to the reference frames, and (6) for each independent

kinematic loop. Note that, since the vectors h1, h2, rj,0,

rj,1, qj,1, q̂j,4, and x̂j are constant in this system, the only

variables involved are the vectors rj,2 and pj,i, on each finger

j, for i = 2, 3, 4, and the vectors o1 and o2.

Observe, finally, that a solution to the system directly

provides the joint angles φj,i, via dot- and cross-products

of the involved vectors, and the sought Th,o transformation.

B. Joint limits constraints

So far, the fact that each one of the revolute joints

has a limited range of rotation has not been taken into

consideration. To constrain the rotation angle φj,i to lie

within some range we define the variables

cj,i = cos(φj,i),

sj,i = sin(φj,i),

which can be easily related with the vectors of the previous

formulation noting that

cj,1 = rj,0 · rj,2, (9)

sj,1 rj,1 = rj,0 × rj,2, (10)

cj,2 = rj,1 · pj,2, (11)

sj,2 rj,2 = rj,1 × pj,2, (12)

cj,3 = pj,2 · pj,3, (13)

sj,3 rj,3 = pj,2 × pj,3, (14)

cj,4 = pj,3 · pj,4, (15)

sj,4 rj,4 = pj,3 × pj,4. (16)

Clearly, the bounds for φj,i define corresponding bounds for

cj,i and sj,i. Thus, it is possible to constrain the range of

the φj,i angles by incorporating (9)-(16) into the system of

equations to be solved, together with the mentioned bounds

on the cj,i and sj,i variables.

V. EQUATION SOLVING

The previous formulation has the particularity that all

of its equations contain only linear, quadratic, or bilinear

monomials. In other words, if xi and xj refer to any two

of their variables, the monomials can only be of the form

xi, x
2

i or xixj . This structure fits particularly well with the

relaxation technique presented in [17]–[19], which will be

adopted here to obtain all problem solutions. To make the

paper self-contained, the technique is briefly outlined next.

The reader is referred to [17]–[19] for further details.

To begin with, let us define the changes of vari-

ables qi = x2

i and bk = xixj for each quadratic and bilinear

monomial, respectively. By substituting the qi and bk vari-

ables into (1)-(16), we obtain a new system of the form

L(x) = 0, (17)

Q(x) = 0, (18)

B(x) = 0, (19)

where x includes the original and newly defined variables,

L(x) = 0 is a block of linear equations, and Q(x) = 0 and
B(x) = 0 are blocks of equations of the form qi = x2

i and

bk = xixj , respectively.

Note that since all unknowns in (1)-(16) are unit vectors,

the xi and bi variables can only take values in the range

[−1, 1], and the qi ones in [0, 1]. As a result, the search
space where the solutions are to be sought is a rectangular

box B formed by the Cartesian product of such ranges.
The algorithm isolates the solutions in B by iterating

two operations, box shrinking and box splitting. Using box

shrinking, portions of B containing no solution are eliminated
by narrowing some of its defining intervals. This process

is repeated until either (1) the box is reduced to an empty

set, in which case it contains no solution, or (2) the box is

“sufficiently” small, in which case it is considered a solution

box, or (3) the box cannot be “significantly” reduced, in

which case it is bisected into two sub-boxes via box splitting

(which simply bisects its largest interval). To converge to all

solutions, the whole process is repeated for the newly created

sub-boxes, until one ends up with a collection of solution

boxes whose side lengths are below a given threshold σ.

The crucial operation in this scheme is box shrinking,

which [17]–[19] implement as follows. Note first that the

solutions falling in some box Bc ⊆ B must lie on the linear
variety defined by L(x) = 0. Thus, we may shrink Bc to the

smallest possible box bounding this variety inside Bc. The

limits of this new box along, say, dimension xi can be easily

found by solving the two linear programs

LP1: Minimize xi, subject to: L(x) = 0,x ∈ Bc,

LP2: Maximize xi, subject to: L(x) = 0,x ∈ Bc.

However, note that the solutions also lie on the parabolas

qi = x2

i of Q(x) = 0, and on the hyperbolic paraboloids
bk = xixj of B(x) = 0. The two facts can be taken into
account by noting that the portion of the parabola qi = x2

i

lying inside Bc is bounded by two half planes (Fig. 5(a)),

and that the points of Bc verifying bk = xixj necessarily

lie inside a tetrahedron defined by four points, obtained by

clipping Bc with bk = xixj (Fig. 5(b)). Thus, the inequalities

relative to such bounds can easily be added to LP1 and LP2

above, which usually produces a much larger reduction of

Bc, or even its complete elimination, if some of the linear

programs is found unfeasible.

If (1)-(16) have a finite number of solutions, the previous

algorithm returns a collection of small boxes containing them
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all, with each solution lying in one and only one box. If,

on the contrary, the solution space is an algebraic variety

of dimension one or higher, the returned boxes will form a

discrete envelope of the variety. In any case, the algorithm is

complete, and the accuracy of the output can be arbitrarily

adjusted via the σ parameter, which, as said, limits the width

of the widest interval on all solution boxes.

VI. TEST CASES

The approach has been tested succesfully for the particular

case of the MA-I hand shown in Fig. 1. The Denavit-

Hartenberg parameters of this hand are given in [20]. From

them, it is easy to formulate the system of equations derived

in Section IV, which has been solved in all cases with the

CUIK package described in [17]–[19].

It is worth mentioning that the mathematical formulation

adopted in Section IV is valid for a hand with any number

of fingers. However, note that the dimension of the solution

space, and hence the problem difficulty, directly depends on

the number of fingers involved in the grasp. For a grasp using

n fingers, the hand-object system has f = 5n degrees of
freedom (relative to the 5n revolute joints) but r = 6(n− 1)

constraints (relative to the n − 1 kinematic loops created).
Thus, by the Grübler-Kutzbach criterion, the dimension of

the solution space will be d = f − r = 6 − n in general. In

our case, the dimension is two, since the MA-I hand is four-

fingered. Two-dimensional solution spaces can certainly be

isolated with the proposed technique, but the time to do so

is excesively large on current desktop computers. In order to

simplify the problem, however, one can introduce additional

constraints to the system to be solved, as long as they are

plausible for the adopted hand. We will do so in the test

cases below, which illustrate, respectively, the behaviour of

the solver on 0- and 1-dimensional solution spaces. Detailed

data on these experiments, including the input/output files

and some performance statistics of the technique can be

found in [24].

A. Zero-dimensional spaces

In this experiment, the goal is to find all possible configu-

rations of the hand holding a bottle, using four contact points

on its surface. To make the solution space 0-dimensional, the

proximal and distal joints of the ring and middle fingers have

been coupled, letting φj,3 = φj,4 for fingers j = 1, 2, which
can be enforced by adding

cj,3 = cj,4,

sj,3 = sj,4,

to the given formulation.

Fig. 6 shows two of the possible configurations found

by the solver for a given precision grasp. Although both

(a) A valid solution.

(b) A non-valid solution due to collision.

Fig. 6. Different solutions for a given precision grasp.



Fig. 7. Robot hand following a 1-dimensional solution subset to manipulate a bottle.

configurations are kinematically valid, note that the one in

Fig. 6(a) is collision-free while that in Fig. 6(b) is not. On

this specific case, a conventional solver would only return

one of the kinematically valid solutions for this problem. If

the returned solution happens to be the one in Fig. 6(b), note

that the grasp would have to be re-planned. This is clearly

avoidable using the proposed approach.

B. One-dimensional spaces

This second experiment is similar to the previous one,

the only difference being that, now, only the proximal and

distal joints of the ring finger are coupled, which yields a

one-dimensional curve of solutions. In this case, the solver

returns a box approximation of such curve, formed by a

discrete continuum of aligned boxes. Note that the curve can

be interpreted as giving a trajectory of the object relative

to the hand, and it can thus be used as a roadmap to

perform dexterous manipulation tasks. Fig. 7 shows several

snapshots of the virtual model of the hand following one of

the returned curves. The video accompanying this paper (also

available in [24]) provides a continuous animation of the

hand performing this motion. Up to our knowledge, none of

the previously existing solvers for grasp planning can handle

problems of this kind, where the assumed constraints allow

for object motions relative to the hand.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a complete method to solve

the inverse kinematics of an anthropomorphic hand. The

approach identifies all possible hand configurations reaching

a given set of grasping points. This is an advantage over

existing approaches, which can only provide a single solu-

tion, and fail to find a solution in some cases, even if one

exits. Moreover, the proposed method can deal with problems

where the assumed kinematic constraints allow for object

motions relative to the hand.

In the future, we plan to enhance the solution techniques

so as to be able to confront higher-dimensional problems in

reasonable computation times, as well as to integrate other

grasp planning stages into our approach. In this sense, we are

currently working in the integration of collision constraints

into the system of equations, to also make the solver return

collision-free configurations. The ultimate solution would be

to also include the force/form closure constraints into such

system, which would eliminate the finger-to-point assign-

ment problem, and the artificial decoupling of the grasp

planning process into several stages. Simultaneously, the

integration of contact models of higher complexity [25],

accounting for rolling motions of the fingers over the object,

is also being investigated.
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