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Abstract— Force-closure independent regions are parts of the Nguyen’s approach to three finger grasps on polygonal objects
object edges such that a grasp with a finger in each region ensuresand to four finger grasps on polyhedral objects, respectively.
a force-closure grasp. leese regions are useful to provide some j, [12] and Li, Yu and Tsujio [13] proposed algorithms to
robustness to f[he grasp in the presence of uncertainty as yvell asdetermine all theN-finger EC arasps on polvaonal obiects
in grasp planning. Most of the approaches to the computation of . g grasp polyg . | :
these regions forlV fingers work on the contact space, implying a 1hese algorithms have not been used to compute independent
N-dimensional problem. This paper presents a new approach to regions, although in [13] the most stable grasp considering
determine independent regions on polygonal objects considering fingers positioning errors is determined. Recently, Pollard [14]
N friction or frictionless contacts. The approach works on - yresented an approach to determine independent regions on 3D

the object space, implying that it is always a two-dimensional . - .
problem and, since it is not necessary to compute all the force- objects based on initial examples, but the selection of a good

closure space, it becomes a very fast approach. Besides, thdnitial example for a given object is a critical step.
approach is also flexible since constraints on the fingers placement  This paper deals with the problem of determining inde-

can be easily introduced. Some graphical examples are included pendent regions on polygonal objects considemadriction
in the paper showing the simplicity of the methodology. or frictionless contacts. Since the space defined by all the
Index_ Terms— Grasp synthesis, force/form-closure, force- FC grasps may be concave (this result can be obtained
closure independent regions. grasp y o -
from [12] and [13] and it will be also shown here) it is
I. INTRODUCTION decomposed into a set of convex subspaces, establishing each

The obtenti f ble of ing the i b.l.one a necessary and sufficient condition for the existence of
€ obtention ot grasps capable of énsuring th€ IMMODBIY £ o455 and, in order to obtain it, at least one of these

of the object despite external disturbances has been a tOpi%8?‘1ditions must be satisfied. The computational cost of the

great interest in grasping and manipulation of objects. Theégcomposing algorithm foN fingers isO(N?3). A condition
grasps are characterized by the properties of form-closure

tQ" determine independent regions on each subspace is also

force-closure [1]. In order to select a grasp among all t.he POSSlesented and, using its geometrical interpretation, the problem
ble force-closure grasps (hereafter FC grasps), algorithms t fatdetermining independent regions is reduced to find two

optimize a quality criterion (for instance [2] [3] [4]) or algo- articular points on the object space. The approach is very fast

rithms based on heuristics criterions (for instance [5] [6]) We'%nce it is applied on the object space and it is not necessary to

developed. These algorithms determing “precision” grasps, iC‘(a)mpute theV-dimensional space of all the FC grasps, whose
grasps formed by a set of contacts points on the object wh

he f X il be placed. and th . q ) ,%Eﬁ'nputational cost is at leas?(IN3log V). Besides, other
the fingertips will be placed, and they require a goo PreciSi®nstraints on the fingers placement can be easily introduced,

in the fingertip placements (in [2] and [3] the robustness rkhg\'oviding flexibility to the algorithm. The approach developed

front of the f|r_19er posm_onlng errors is partially tregted). I ere follows a previous work of the authors [15] where linear
a real execution, the final grasp and the theoretical grzﬁ

may differ due to fingers positioning errors. A metric fo
measuring the sensitivity of a grasp to positioning errors c
be found in [7]. In order to provide robustness to the gra
in front of these errors, Nguyen [8] introduced the concept
independent regions, i.e. regions on the object boundary s
that a finger in each region ensures a FC grasp mdepende_[gl o constraint regarding the number of fingers neither the
of the exact contact point, and he developed a geomet”?\?llmber of fingers per edge.

approach to determine the maximum independent regions on
polygonal objects using four frictionless contacts and two Il. WRENCH SPACE
friction contacts. The problem of determining independem Representation of forces and torques
regions using four frictionless contacts was also treated in [9].|_
Ponce and Faverjon [10] and Ponce et al. [11] extendﬁge

R)gramming was used to obtain maximum independent region
on the contact space, while in this paper a faster approach is
Pesented. In this work it is assumed that: the edges of the
lygon where the fingers will contact are given; the forces
lied by the fingers act only against the object boundary;
the fingertip is a point. Note that in this approach there

et f, = aifi be the force exerted by each fingeron
object boundary at each contact point with> 0 and

*This work was partially supported by the CICYT projects DPI2004—0310uff.i|| =1. In the ‘?leAence of f”Ctlon’fi IS normf'il FO the
and DPI2002-03540 object boundary, i.ef, = [cos; sinf;] where §; indicates



In the rest of the paper, for simplicity and without loss of
generality, we considet,,.,. = 1 and f, will refer always to
the maximum (unitary) possible applied force.

A FC grasp must satisi@ € P; [17]. Note P is the
projection of P; on the force space (i.e. the 2D subspace of the
wrench space defined by pure forces) and it can be determined
knowing the contact edges. Then, in the rest of the paper it is
considered thad < P; is satisfied.

Fig. 1. a) Frictionless contact; b) Friction contact, where £, ; and f; . are Ill. FORCECLOSURE SPACE
the primitive forces, f, ,, isthe normal force and f; ; isthe tangential force.

the inward direction normal to the contact edge. The forcDemclnltlon 1: The contact space is the space defined by

exerted by each finger produces a torquenith respect to paramaters that represent the grasping contact points on some

the object’s center of mass (CM), and the componentg,of g|ve.n edges of an object. . ] ) ©
and; form the wrench vectow; = [f, 7:]” (see Fig. 1.a). Given the contact edges there is a univocal relation be-

When friction is taken into accounf;; can be decomposedtween the torques produced by the unitary normal forces
in two componentg;, ,, and f, , which are respectively normal @nd primitive forces and the exact contact point. Thus, the
and tangent to the contact edge (see Fig. 1.b). In orderR@rameters used in this paper to define the contact space are the
avoid that the finger slips on the edge, the Coulomb's lal@raues produced by unitary normal forces when frictionless
must be accomplished} f; .|| > ul|f, .|, where u is the contacts are considered and the torques produced by the
friction coefficient. This implies thaif, can be applied in a unitary primitive forces (related to each other by eq. (1)) when
range of directions around the normal of the contact edd#ction contacts are considered.
determining the friction cone. Thenf, can be expressedDefinition 2: Theforce-closure space, FC-space, is the subset
as the summation of two forces, usually called primitivef the contact space where FC grasps can be obtained>

forces, asf; = f;,+f;,. The primitive forces produce the A methodology to obtain the FC-space as the union of a set
primitive torquesr;,; andr; ., forming the primitive wrenches of convex subspaces is presented in this section. The obtained
wi = [f;; mial" andw; . = [f; , 7,7, and the wrench pro- regyit is similar to the result in [13], although the initial
duced byf; is the summation of them, i.e; = wi;+wir.  considerations are different (in [13] there is not any constraint
Besides, the primitive torques can be expressed as §)¢ ihe finger forces). Besides, the approach developed here
summation of the torques produced by the components Qfiermine additional information on the finger forces that is

the primitive forces normal and tangential to the edge @gjite useful in the determination of the independent regions.
Tir =Tin+Ti¢ and 7, ;=7 , —7;;, wherer; , and 7;; are

the torques produced bf; ,, and f, ,, respectively. Thus, the A. Convex FC-subspace using four frictionless contacts

relation between two primitive torques is Definition 3: The Real Range of 7;, R;, is the set of values

Tig = Ti,l + 2Tt (1) of 7; produced by the contact forcg, that are physically

B. Constraint on the finger forces possible due to the length of the contact edge. o

The forces applied by the fingers can be subject to differdpgfinition 4: The Directional Range of 7;, Ry.,, is the set of
constraints [16]. The constraint considered in this work galues ofr; produced by the contact forgg, that allow a FC
that the total force exerted by th¥ fingers is limited, i.e. grasp considering that the contact edge has infinite length (i.e.
Zilil a; < amax, for instance, due to a maximum availabl@nly the “direction” of the edge is considered) for any other

power for all the finger actuators. Then, the applied forces céliven threer;. o
generate a resultant force From these two definitions, the existence of a FC grasp im-
N plies thatR;NRy., # . SinceR; is known, the valid torques
f= Z fi= of (2) that produce a FC grasp can be determined by finding.
i=1 Four frictionless contacts generate the minimum number

Geometrically, this constraint implies that the fingers can appdf wrenches necessary to obtain a FC grasp [18], generating
forces on the object that produce a resultant inside the polyg@nconvex hullP; with minimum number of faces. Since a
N FC grasp must satisf® € P; [17] and P; is convex, the
Pr= ConvexHuII(U{f,;}) With f, = amesf; (3) Directional Rangefs.,, i =1,...,4, is a continuous set that
=1 has one or two finite extremes. Then, the type of Directional
and the resultant possible applied wrenches are those indff"9€ can be:
the polyhedrorP; defined in the wrench space as: Infinite: Ry, has only one finite extremer; . Then,
N Rfc1 = [TZ‘"”OO) or .Rfc1 = (—OO/Tim].
P, = ConvexHuII(U{wi}) for f, = cmacf;  (4) Limited: Ry, have two finite extremes;, andr; . Then,
i—1 Rfci = [Tim,Tim/} or Rfci = [Tim/aTim]-



Proposition 1: Consider four applied contact forceg,,
i =1,...,4. The number of finite extremes and, therefore, the
type of the Directional Rangg;., can be determined knowing 7f’,’f‘\

how many pairs3; ;i andg; x; are non-positive, being: - -
. L ks
ﬁi,jk = % (5) a) c)
J k Fig. 2. Examples of the determination of the types of Directional Ranges
Bipi = sin(ﬁj - i) (6) from the applied forces. a) General case: Ry., and Ry, are Infinite and
ikj  — sin(Gj — ak) Ry., and Ry, areLimited; b) Particular case: Ry, isLimitedand Ry, ,

Ry, and Ry, are Infinite; c) Particular case: the four Directional Ranges
are Infinite.
whered;, ¢; and ;. are the directions of;, f; and f,. <
) ) the following relations between them
Proof: Let 7;,, be an extreme of?y.,. SinceP; is convex,

if 7, defines a vertex ofP;, then0 €9P,, IP; being the Bk = 1 _ _ﬁk,ji (10)
boundary ofP;. Thus,0 can be expressed as a positive linear ! Bj,ik Bhr,ij
combination of the three vertices that define the fac&Bf Bj ki 1

. . - T . e Bikj = — = (12)
containing0, i.e. 0=";w;,, +7vjw;+yewr With v;, v;, v, >0 Bjik  Br.ij

and~; +-; =1. Solving this expression fap,; results . . . . - .
WitV 9 P tm These relations imply that if one pair of coefficients is non-

positive so are the other two pairs, determining one extreme

cos; = [ jkcos;+ [BijcosO @) for Rye,, Ry, and Ry.,. Then, a valid subset of three forces
sinf; = [ jrsin; + B; x;sin by (8) generates three extremes. Since each force appears in three
Tive = BijkT + BikjTe (9) from the four possible subsets of forces, two subsets of forces

are enough to determine all the extremes, otherwise there
with 8; jx = —2£ <0, ;. 1; = —2= <0 and non simultaneously would be a Directional Range with more than two extremes

i Yi . | . . . .
null. Then, there are three equalities with only two unknown8! Without any extreme, which is not possible.
Bijr and Bi ;. In the general case, the two subsets of forces generate

)six different finite extremes for the four Directional Ranges.
Therefore, there are two Directional Ranges with two extremes
(so they are Limited), and two Directional Ranges with one

(.. 0; = 0 + tr, t € {0,1}, meaning that there are two€Xtreme (so they are Infinite). In the particular case that the

fingers on the same edge or on parallel edges) equalities {ple between two forces is, the two subsets of forces
and (8) have no solution fof; ;x and G: »;, and therefore generate five different finite extremes. Therefore, there are one
(2¥] 1,K] y

from eq. (9),7; does not exist. Since no more than twdirectional Range with two finite extremes (so it is Limited),
. VT, .

forces can have the same direction in a four frictionless Fd three Directional Ranges with one extreme (so they are
grasp, a minimum of one extreme always exist. Infinite). In the particular case that the angle between two pairs

As a result, the number of extremesf., are determined of forces ism, the two subsets of forces generate four different

from the solutions of eq. (5) and (6) and therefore usinflnlte extremes. Therefore, the four Directional Ranges have

information related only with the applied forces without taking(ggln € f|n|t.e extrem? (Scf they are Inf|n|te).. . ©
into account the values of the torques. o Knowing the directions of four applied forces, it can be

easily identified which torques have Limited and which ones
Proposition 2: Given four applied forces, the number ohave Infinite Directional Ranges (it can be checked from
Infinite and Limited Directional Ranges are: eq. (5) and (6)): in the general case, the two Infinite Directional
General case: If all the angles between the applied forces Banges correspond to the torques generated by the two forces
different from 7, there are two Infinite and two Limited that lie between the negated of the other two (as in Fig. 2a),
Directional Ranges (Fig. 2a). and in the particular case that the angle between two forces
Particular cases: If the angle between two forces,ishere is =, the three Infinite Directional Ranges correspond to the
are three Infinite and one Limited Directional Range®rques generated by the other two forces and the force that
(Fig. 2b), and if the angles between two pairs of forcdiges between them (as in Fig. 2b).

arem, the four Directional Ranges are Infinite (Fig. 2€). L emma 1: Let Ry, and Ry., be two Infinite Directional

Proof: From Proposition 1 the type of Directional Range oRanges withf; and f; defining two consecutive vertices of
7; is determined by the number of pairs of coefficiepts, ¢ If Rsc; tends tofoo then Ry,; tends toFoo. ©
and ; x; that are non-positive, fofs, j, k} €{1,2,3,4} and Proof: Consider first the general case with two Infinite and
i#j#k. From eq. (5) and (6), the coefficients ;. and3; ,; two Limited Directional Ranges. Lek;. be one of the
depend on the directions of three applied forces, which alseo Limited Directional Ranges. It is not known a priori
define the coefficients; ;r, andg; r;, andBy ;; and By, with  if Ry., = [Tk, Tk,] OF Rfc, = [Ty, Tk, ], then the two cases

If the forcesf ; and f, are not parallel, equalities (7) and (8
are independent, and the two unknowhs, andg; .; can be
obtained from them as eq. (5) and (6)fIf and f, are parallel



Equation (16) has another useful geometrical property on

the object space: the lines of action pf, f,, and f,, intersect

at the same point wheli, = 0. Grasps with this property was

called critical grasps in [9] since it separates the FC grasps

from the non-FC grasps. As a difference from [9], where it
Th was considered that in the general case a critical grasp may
be determined by any intersection of three lines of action of
forces, the result obtained here determines exactly which are
the forces whose lines of action intersect in a critical grasp.

Tk Tk

Th .
a) F;=0 b) r;=0

Fig. 3. Polyhedrons resulting from the projection of: a) Sj and S;” on the

subspace {7,,7%,7: }; b) Sj+ and Sj’ on the subspace {7y, 7%, 7;}.

must be considered. IR, =[1x.,7x,] then 7, <7 <7, . -
and substituting, andrkz thy t[helir exzr])ressioné derived fzromB' Convex FC-sulbspaces using friction contacts
eg. (9), we obtain Let f,,€{fis, fi.} and 7, €{7i,,7:,} be a primitive
force and a primitive torque, respectively. Definitions 3 and 4
BrnjTh + BrjnTi < Tk < BranTi + Beni™h - (12)  can be applied to friction contacts defining respectivily,
and Ry, , for 7;,. The procedure developed to obtain the

If 7; and7; are solved from eq. (12), then o - e
necessary and sufficient condition for frictionless contacts

T 1 (T4 — BrniTh) (13) is based on the knowledge of four applied forces. Since
Bk in ’ the directions of the primitive forces are also known given
1 the contact edges, the procedure developed in the previous
7 (T = Br,nj™n) (14)

Br,jn

subsection can also be applied with four primitive forces
Therefore; has an upper bound while has a bottom bound optqlmng the following necessary and _su_ff_|C|ent condition for
friction contacts. Note that the two primitive torques of the

implying that R;., tends to—co and Ry.; tends to+oc. tact tind dent of h oth d th t
If Rse,=I[Tky,7k,] then, with the same reasoning, equation%ame contac’ are nol Incepencernt of each other and ey mus

equivalent to (13) and (14) are obtained with swapped inequsaﬁt'Sfy eq. (1) to obta.m. areal FC_ grasp. o

lities. Then,r; has a bottom bound while; has an upper Necessary and sufficient condition (friction contacts).

bound implying that?;., tends to+-co andR;.., tends to—cc.  Considering friction contacts, a FC grasp exists if and only
The two particular cases can be tackle as limits of tikthere are four primitive torques that satisfy the constraint of

general case. Addingp arbitrarily small to one of the aligned €d- (1) when two of them are from the same contact and

forces, the particular cases are transformed into the general sign(l;) # sign(T;) (18)
case. Then, the above procedure can be applied obtaining the !

with
same results whedd — 0. o Ty = BonkThp + Bossh Thp — Toup (19)

From Lemma 1, the following necessary and suf'ficienth o dr Infinite Directional R
condition for the existence of a FC grasp can be enunciatelf '¢"¢” € {¢, 7}, 7i,p andr; , have Infinite Directional Ranges

and f, , and f; , define two consecutive vertices Bf; o

The geometrical interpretation of this necessary and suf-
ficient condition without considering eq. (1) is identical to

Necessary and sufficient condition (frictionless contacts).
Four frictionless contacts allow a FC grasp if and only if

sign(T';) # sign(T';) (15) the geometrical interpretation of the necessary and sufficient
with condition for frictionless contacts but, in this case, considering
T, = BpnkTh + BpknTh — T (16) the primitive forces. Then(Sjp N ijp) U (S;p N S;-fp) #+ Q.

o o o Equation (1) is a 2-dimensional subspace of the contact
where pe{i,j}, 7, and 7; have Infinite Directional Ranges gpace, and its intersection Wi(by;rp nS;,) and(S;, N S;'p)
and f; and f; define two consecutive vertices B ©  determines the convex FC-subsbaces: ' ’
Considering the Real Range of each torque, the geometricaConsidering friction contacts, a critical grasp is obtained
interpretation of this necessary and sufficient condition is: when three primitive forces intersect at the same point [19],

and it happens when eq. (19) givEs=0.
(SFNSTU(STNSH £0 (17) it happens when eq. (19) gives
C. Decomposition of the FC-space

When there are more than four normal or primitive forces
ST = {{rp,mh, Tk }7p € Rp, T € Rn, 7k € Ry, T, > 0} (i.e. more than four frictionless contacts or more than two
S = {{7ps T Tk} |7y € Ry, Th € Rn, 7 € Ry, T, < 0} fpcpon contgc;ts), there may be several convex FC—s_ubspaces

limited by critical grasps. In order to obtain the combinations

These polytopes can be represented as polyhedrons in tfdour normal or primitive forces that determine convex FC-

different 3-dimensional subspaces defined{by, 7,, 7.} and subspaces the following algorithm is used (the algorithm is

{h, 7j, T}, as in Fig. 3. By constructionS;" NS, and described using the nomenclature of friction contacts but it

SN Sj+ are convex sets. Therefore, four applied forcesan also be applied considering frictionless contacts changing

determine two convex FC-subspaces. the primitive forces by normal forces).

whereS} andS, , with p€ {4, j} are the following polytopes:



Algorithm 1: Let ny be the number of primitive forces. The
following steps are applied for each combination of any two
primitive forcesf), , and f;

1. Search f,, with  directions ¢;,,  making
Fip €[=Fnp —fipl fori=1,...,ny andi£h#k.
3. Letn; be the number off, , that satisfy step 2:
3.1. If n; <1 then discard this combination of forces.
3.2. If n; > 1 then two convex FC-subspaces are obtained
with each combination of ), ,,, f;. , and any other two
forces from then; obtained in step 2. © Thop E Thp  Thp Tho
As a result, all the convex FC-subspaces and the typg. 4. Two dimensional slice of a contact convex FC-subspace where 7, ,,
of Directional Range of each torque are determined withagd 7, have Limited Directional Range and the other torques are constants.
computational cosD(N?). The FC-space is the union of thes hz gﬁﬁégpaggfslrg}oﬁgd [z satisfy Proposition 3 and they define two
subspaces and it may be concave. '

subspace is convex, these conditions determine the extremes
IV. INDEPENDENT REGIONS of the independent regions. o

The independent regions on the object boundary define aOn the object spacé;, = 0 implies that the lines of action
N-parallelepiped fully contained in the FC-space. Then, tié £, , f,, and f, ,, intersect at the same point. As a
problem of determining the independent regions is equivalerinsequence, Proposition 3 is equivalent to say that the lines
to the problem of finding av-parallelepiped fully contained of action of f, ,, f, , and f, , intersect at the same point
in the FC-space. Since the FC-space may be concave, it iswben they are applied on the extremes of their respective
possible to assure thatMé-parallelepiped is fully contained in independent regions where the maximum (or minimum) torque
it just by testing if its vertices belong to the FC-space, as itis produced, and the lines of action ¢f, ,, f, , and f,
done in [10] (remember that in [10] a sufficient condition isntersect at the same point when they are applied on the
used, therefore the whole FC-space is not considered). Usaxdremes of their respective independent regions where the
the convex FC-subspaces determined in the previous sectigimimum (or maximum) torque is produced. Note that the
and the following proposition (it is enunciated consideringidependent regions determined according to Proposition 3 are
friction contacts) the problem can be solved just checking onfiefined on the Directional Ranges, &g, T,jp) NR,, # O,
two vertices of the parallelepiped. v € {h,i,j,k}, must be satisfied to obtain the independent

Proposition 3: Consider a convex FC-subspace limited by th&gion on the real edge. The following algorithm is used to
planes represented in eq. (19) when=0 for pe {i,j}. The obtain the independent regions on the object edges:
set(r,,,7,1,), With ve {h,i,j,k}, is an independent regionAlgorithm 2: Consider a convex FC-subspace limited by the
in the Directional Rangei;., if any two primitive torques planes represented in eq. (19) whgn=0 for pe {7, j}.

of the same contact satisfy eq. (%), ,, 7, and7,,, make 1 Select two arbitrary points on the corresponding object
r,=0,and7, , 7, and7}, makel', = 0. o edges where;" andr,” will be produced.

Proof: The meaning of eq. (1) has been discussed in Sectionf, Determine the point where;fp is produced (the lines
therefore only the other two conditions need to be proved here. of action of the primitive forces applied on this point
Proposition 1 determines that the coefficients of eq. (19) are and on the two points selected in step 1 intersect at the
non-positive, implying that this equation represents two planes same point). From eq. (19, , is Infinite, then it has

with negative slope wheli,=0 for p € {7, j} (see Fig.4). only the finite extremer;! .

If 7,7, 7, andr. are the maximum torques generated or8. Check if Ry, , N R;, # O. If this condition is not satis-
their respective independent regions and they nigke 0 in fied a FC grasp is not possible. Then the independent
eq. (19), then it is not possible to obtain other values;of, regions do not exist for the initial selected points.

Tk,p andr, ,, that belong to the independent region (i.e., valued. Determine the region where the intersection of the lines of
smaller thanT;p, r,;fp that T;p) that makel',=0, because action of f, ,, f,, and f; , must lie. This region must
the slope of the plane represented in eq. (19) is negative. In satisfy the following conditions'r,jfp > T r,;fp > Tpoo

the same way, it; , 7, andr, , are the minimum torques  Ry.,, N R;, # () and eq. (1). If these conditions are
generate on their respective independent regions and they makdncompatible, then the independent regions do not exist
I',=0 then it is not possible to obtain other valuesmf,, for the initial selected points.

Tk,p @andr, ,, that belong to the independent region (i.e., valueS. Select an arbitrary point in this region and project it on the
bigger tharr,, 7, andr, ) that mak_el“p =0, again becagse edges, obtaining the extremes whefe,, 7, andr; , are

the slope of the plane represented in eq. (19) is negative. As produced.

a result, these two conditions assure thaf, € (7,,,7,7,), 6. Intersect the current independent regions with the real
with v € {h, 1, j, k}, cannot maké&', =0 implying that critical edges to obtain the actual independent regions (by con-

grasps can not belong t ,;p,T;jp). Therefore, since the  struction these intersections are always not null). ¢



Fig. 5. Examples of the determination of independent regions (black
segments) on the edges of an object and the region determined in step 4
of algorithm 2 (shaded region): a) Four frictionless contacts where Ry,
and Ry, are Limited and Ry., and Ry, are Infinite; b) Four frictionless
contacts where Ry, is Limited and Ry.,, Rf., and Ry, are Infinite;
c) Three friction contacts where Ry, and Ry, , areLimited and Ry,
and Ry, , are Infinite (the primitive forces considered in this case are Fim
fa,r F3,-and f3); d) Threefriction contacts where Ry, , and Ry, , are
Limited and Ry, , and Ry, ,. are Infinite (the primitive forces considered
inthis case are f, ;, f3;, f2,, and f3 . and the region is the shaded part
of the contact edge).

algorithm are that it is applied on the object space, therefore
the problem is always two-dimensional, and that it is not
necessary to compute thg-dimensional FC-space. Besides,
the algorithm is flexible and other constraints on the finger
positioning can be introduced. The simplicity of the metho-
dology and the fact that the algorithm is applied on the object
space encourage to extend this work to non-polygonal objects
and to 3D objects as future works. The methodology presented
here is based on the relative positions of the applied forces,
idea that can be furthered exploited in future works.
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