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Abstract— Force-closure independent regions are parts of the
object edges such that a grasp with a finger in each region ensures
a force-closure grasp. These regions are useful to provide some
robustness to the grasp in the presence of uncertainty as well as
in grasp planning. Most of the approaches to the computation of
these regions forN fingers work on the contact space, implying a
N -dimensional problem. This paper presents a new approach to
determine independent regions on polygonal objects considering
N friction or frictionless contacts. The approach works on
the object space, implying that it is always a two-dimensional
problem and, since it is not necessary to compute all the force-
closure space, it becomes a very fast approach. Besides, the
approach is also flexible since constraints on the fingers placement
can be easily introduced. Some graphical examples are included
in the paper showing the simplicity of the methodology.

Index Terms— Grasp synthesis, force/form-closure, force-
closure independent regions.

I. I NTRODUCTION

The obtention of grasps capable of ensuring the immobility
of the object despite external disturbances has been a topic of
great interest in grasping and manipulation of objects. These
grasps are characterized by the properties of form-closure or
force-closure [1]. In order to select a grasp among all the possi-
ble force-closure grasps (hereafter FC grasps), algorithms that
optimize a quality criterion (for instance [2] [3] [4]) or algo-
rithms based on heuristics criterions (for instance [5] [6]) were
developed. These algorithms determine “precision” grasps, i.e.
grasps formed by a set of contacts points on the object where
the fingertips will be placed, and they require a good precision
in the fingertip placements (in [2] and [3] the robustness in
front of the finger positioning errors is partially treated). In
a real execution, the final grasp and the theoretical grasp
may differ due to fingers positioning errors. A metric for
measuring the sensitivity of a grasp to positioning errors can
be found in [7]. In order to provide robustness to the grasp
in front of these errors, Nguyen [8] introduced the concept of
independent regions, i.e. regions on the object boundary such
that a finger in each region ensures a FC grasp independently
of the exact contact point, and he developed a geometrical
approach to determine the maximum independent regions on
polygonal objects using four frictionless contacts and two
friction contacts. The problem of determining independent
regions using four frictionless contacts was also treated in [9].
Ponce and Faverjon [10] and Ponce et al. [11] extended
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Nguyen’s approach to three finger grasps on polygonal objects
and to four finger grasps on polyhedral objects, respectively.
Liu [12] and Li, Yu and Tsujio [13] proposed algorithms to
determine all theN -finger FC grasps on polygonal objects.
These algorithms have not been used to compute independent
regions, although in [13] the most stable grasp considering
fingers positioning errors is determined. Recently, Pollard [14]
presented an approach to determine independent regions on 3D
objects based on initial examples, but the selection of a good
initial example for a given object is a critical step.

This paper deals with the problem of determining inde-
pendent regions on polygonal objects consideringN friction
or frictionless contacts. Since the space defined by all the
FC grasps may be concave (this result can be obtained
from [12] and [13] and it will be also shown here) it is
decomposed into a set of convex subspaces, establishing each
one a necessary and sufficient condition for the existence of
a FC grasp and, in order to obtain it, at least one of these
conditions must be satisfied. The computational cost of the
decomposing algorithm forN fingers isO(N3). A condition
to determine independent regions on each subspace is also
presented and, using its geometrical interpretation, the problem
of determining independent regions is reduced to find two
particular points on the object space. The approach is very fast
since it is applied on the object space and it is not necessary to
compute theN -dimensional space of all the FC grasps, whose
computational cost is at leastO(N3 log N). Besides, other
constraints on the fingers placement can be easily introduced,
providing flexibility to the algorithm. The approach developed
here follows a previous work of the authors [15] where linear
programming was used to obtain maximum independent region
on the contact space, while in this paper a faster approach is
presented. In this work it is assumed that: the edges of the
polygon where the fingers will contact are given; the forces
applied by the fingers act only against the object boundary;
and the fingertip is a point. Note that in this approach there
is no constraint regarding the number of fingers neither the
number of fingers per edge.

II. W RENCH SPACE

A. Representation of forces and torques

Let f i = αif̂ i be the force exerted by each fingeri on
the object boundary at each contact point withαi ≥ 0 and
‖f̂ i‖ = 1. In the absence of friction,̂f i is normal to the
object boundary, i.e.f̂ i = [cos θi sin θi] where θi indicates
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Fig. 1. a) Frictionless contact; b) Friction contact, where fi,l and fi,r are
the primitive forces, fi,n is the normal force and fi,t is the tangential force.

the inward direction normal to the contact edge. The force
exerted by each finger produces a torqueτi with respect to
the object’s center of mass (CM), and the components off i

andτi form the wrench vectorωi = [f i τi]T (see Fig. 1.a).
When friction is taken into account,f i can be decomposed

in two componentsf i,n andf i,t which are respectively normal
and tangent to the contact edge (see Fig. 1.b). In order to
avoid that the finger slips on the edge, the Coulomb’s law
must be accomplished:‖f i,n‖ ≥ µ‖f i,t‖, where µ is the
friction coefficient. This implies thatf i can be applied in a
range of directions around the normal of the contact edge,
determining the friction cone. Then,f i can be expressed
as the summation of two forces, usually called primitive
forces, asf i = f i,l+f i,r. The primitive forces produce the
primitive torquesτi,l andτi,r, forming the primitive wrenches
ωi,l = [f i,l τi,l]T andωi,r = [f i,r τi,r]T , and the wrench pro-
duced byf i is the summation of them, i.e.ωi = ωi,l+ωi,r.

Besides, the primitive torques can be expressed as the
summation of the torques produced by the components of
the primitive forces normal and tangential to the edge as
τi,r =τi,n+τi,t and τi,l =τi,n−τi,t, where τi,n and τi,t are
the torques produced byf i,n andf i,t, respectively. Thus, the
relation between two primitive torques is

τi,r = τi,l + 2τi,t (1)

B. Constraint on the finger forces

The forces applied by the fingers can be subject to different
constraints [16]. The constraint considered in this work is
that the total force exerted by theN fingers is limited, i.e.∑N

i=1 αi ≤ αmax, for instance, due to a maximum available
power for all the finger actuators. Then, the applied forces can
generate a resultant force

f =
N∑

i=1

f i = αf̂ (2)

Geometrically, this constraint implies that the fingers can apply
forces on the object that produce a resultant inside the polygon:

Pf = ConvexHull(
N⋃

i=1

{f i}) with f i = αmaxf̂ i (3)

and the resultant possible applied wrenches are those inside
the polyhedronP1 defined in the wrench space as:

P1 = ConvexHull(
N⋃

i=1

{ωi}) for f i = αmaxf̂ i (4)

In the rest of the paper, for simplicity and without loss of
generality, we considerαmax = 1 andf i will refer always to
the maximum (unitary) possible applied force.

A FC grasp must satisfy0 ∈ P1 [17]. Note Pf is the
projection ofP1 on the force space (i.e. the 2D subspace of the
wrench space defined by pure forces) and it can be determined
knowing the contact edges. Then, in the rest of the paper it is
considered that0 ∈ Pf is satisfied.

III. F ORCE-CLOSURE SPACE

Definition 1: The contact space is the space defined byN
paramaters that represent the grasping contact points on some
given edges of an object. �

Given the contact edges there is a univocal relation be-
tween the torques produced by the unitary normal forces
and primitive forces and the exact contact point. Thus, the
parameters used in this paper to define the contact space are the
torques produced by unitary normal forces when frictionless
contacts are considered and the torques produced by the
unitary primitive forces (related to each other by eq. (1)) when
friction contacts are considered.

Definition 2: Theforce-closure space, FC-space, is the subset
of the contact space where FC grasps can be obtained.�

A methodology to obtain the FC-space as the union of a set
of convex subspaces is presented in this section. The obtained
result is similar to the result in [13], although the initial
considerations are different (in [13] there is not any constraint
on the finger forces). Besides, the approach developed here
determine additional information on the finger forces that is
quite useful in the determination of the independent regions.

A. Convex FC-subspace using four frictionless contacts

Definition 3: The Real Range of τi, Ri, is the set of values
of τi produced by the contact forcef i that are physically
possible due to the length of the contact edge. �
Definition 4: The Directional Range of τi, Rfci

, is the set of
values ofτi produced by the contact forcef i that allow a FC
grasp considering that the contact edge has infinite length (i.e.
only the “direction” of the edge is considered) for any other
given threeτj . �

From these two definitions, the existence of a FC grasp im-
plies thatRi∩Rfci

�=Ø. SinceRi is known, the valid torques
that produce a FC grasp can be determined by findingRfci

.
Four frictionless contacts generate the minimum number

of wrenches necessary to obtain a FC grasp [18], generating
a convex hullP1 with minimum number of faces. Since a
FC grasp must satisfy0 ∈ P1 [17] and P1 is convex, the
Directional RangeRfci

, i = 1, ..., 4, is a continuous set that
has one or two finite extremes. Then, the type of Directional
Range can be:

Infinite: Rfci
has only one finite extremeτim

. Then,
Rfci

= [τim
,∞) or Rfci

= (−∞, τim
].

Limited: Rfci
have two finite extremesτim

and τim′ . Then,
Rfci

=
[
τim

, τim′
]

or Rfci
=

[
τim′ , τim

]
.



Proposition 1: Consider four applied contact forcesf i,
i = 1, ..., 4. The number of finite extremes and, therefore, the
type of the Directional RangeRfci

can be determined knowing
how many pairsβi,jk andβi,kj are non-positive, being:

βi,jk =
sin(θi − θk)
sin(θj − θk)

(5)

βi,kj =
sin(θj − θi)
sin(θj − θk)

(6)

whereθi, θj andθk are the directions off i, f j andfk. �
Proof: Let τim

be an extreme ofRfci
. SinceP1 is convex,

if τim
defines a vertex ofP1, then 0 ∈∂P1, ∂P1 being the

boundary ofP1. Thus,0 can be expressed as a positive linear
combination of the three vertices that define the face of∂P1

containing0, i.e. 0=γiωim
+γjωj +γkωk with γi, γj , γk≥0

andγi+γj +γk =1. Solving this expression forωim
results

cos θi = βi,jk cos θj + βi,kj cos θk (7)

sin θi = βi,jk sin θj + βi,kj sin θk (8)

τim
= βi,jkτj + βi,kjτk (9)

with βi,jk = −γj

γi
≤0, βi,kj =−γk

γi
≤0 and non simultaneously

null. Then, there are three equalities with only two unknowns,
βi,jk andβi,kj .

If the forcesf j andfk are not parallel, equalities (7) and (8)
are independent, and the two unknownsβi,jk andβi,kj can be
obtained from them as eq. (5) and (6). Iff j andfk are parallel
(i.e. θj = θk + tπ, t ∈ {0, 1}, meaning that there are two
fingers on the same edge or on parallel edges) equalities (7)
and (8) have no solution forβi,jk and βi,kj , and therefore,
from eq. (9), τim

does not exist. Since no more than two
forces can have the same direction in a four frictionless FC
grasp, a minimum of one extreme always exist.

As a result, the number of extremes ofRfci
are determined

from the solutions of eq. (5) and (6) and therefore using
information related only with the applied forces without taking
into account the values of the torques. �
Proposition 2: Given four applied forces, the number of
Infinite and Limited Directional Ranges are:

General case: If all the angles between the applied forces are
different from π, there are two Infinite and two Limited
Directional Ranges (Fig. 2a).

Particular cases: If the angle between two forces isπ, there
are three Infinite and one Limited Directional Ranges
(Fig. 2b), and if the angles between two pairs of forces
areπ, the four Directional Ranges are Infinite (Fig. 2c).�

Proof: From Proposition 1 the type of Directional Range of
τi is determined by the number of pairs of coefficientsβi,jk

and βi,kj that are non-positive, for{i, j, k}∈{1, 2, 3, 4} and
i �=j �=k. From eq. (5) and (6), the coefficientsβi,jk andβi,kj

depend on the directions of three applied forces, which also
define the coefficientsβj,ik andβj,ki, andβk,ji andβk,ij , with
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Fig. 2. Examples of the determination of the types of Directional Ranges
from the applied forces: a) General case: Rfci

and Rfcj
are Infinite and

Rfch
and Rfck

are Limited; b) Particular case: Rfck
is Limited and Rfch

,
Rfci

and Rfcj
are Infinite; c) Particular case: the four Directional Ranges

are Infinite.

the following relations between them

βi,jk =
1

βj,ik
= −βk,ji

βk,ij
(10)

βi,kj = −βj,ki

βj,ik
=

1
βk,ij

(11)

These relations imply that if one pair of coefficients is non-
positive so are the other two pairs, determining one extreme
for Rfci

, Rfcj
andRfck

. Then, a valid subset of three forces
generates three extremes. Since each force appears in three
from the four possible subsets of forces, two subsets of forces
are enough to determine all the extremes, otherwise there
would be a Directional Range with more than two extremes
or without any extreme, which is not possible.

In the general case, the two subsets of forces generate
six different finite extremes for the four Directional Ranges.
Therefore, there are two Directional Ranges with two extremes
(so they are Limited), and two Directional Ranges with one
extreme (so they are Infinite). In the particular case that the
angle between two forces isπ, the two subsets of forces
generate five different finite extremes. Therefore, there are one
Directional Range with two finite extremes (so it is Limited),
and three Directional Ranges with one extreme (so they are
Infinite). In the particular case that the angle between two pairs
of forces isπ, the two subsets of forces generate four different
finite extremes. Therefore, the four Directional Ranges have
one finite extreme (so they are Infinite). �

Knowing the directions of four applied forces, it can be
easily identified which torques have Limited and which ones
have Infinite Directional Ranges (it can be checked from
eq. (5) and (6)): in the general case, the two Infinite Directional
Ranges correspond to the torques generated by the two forces
that lie between the negated of the other two (as in Fig. 2a),
and in the particular case that the angle between two forces
is π, the three Infinite Directional Ranges correspond to the
torques generated by the other two forces and the force that
lies between them (as in Fig. 2b).

Lemma 1: Let Rfci
and Rfcj

be two Infinite Directional
Ranges withf i and f j defining two consecutive vertices of
Pf . If Rfci

tends to±∞ thenRfcj
tends to∓∞. �

Proof: Consider first the general case with two Infinite and
two Limited Directional Ranges. LetRfck

be one of the
two Limited Directional Ranges. It is not known a priori
if Rfck

= [τk1 , τk2 ] or Rfck
= [τk2 , τk1 ], then the two cases
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must be considered. IfRfck
=[τk1 , τk2 ] then τk1 ≤τk≤τk2 ,

and substitutingτk1 andτk2 by their expressions derived from
eq. (9), we obtain

βk,hjτh + βk,jhτj ≤ τk ≤ βk,ihτi + βk,hiτh (12)

If τi andτj are solved from eq. (12), then

τi ≤ 1
βk,ih

(τk − βk,hiτh) (13)

τj ≥ 1
βk,jh

(τk − βk,hjτh) (14)

Therefore,τi has an upper bound whileτj has a bottom bound
implying that Rfci

tends to−∞ and Rfcj
tends to+∞.

If Rfck
=[τk2 , τk1 ] then, with the same reasoning, equations

equivalent to (13) and (14) are obtained with swapped inequa-
lities. Then, τi has a bottom bound whileτj has an upper
bound implying thatRfci

tends to+∞ andRfcj
tends to−∞.

The two particular cases can be tackle as limits of the
general case. Addingδθ arbitrarily small to one of the aligned
forces, the particular cases are transformed into the general
case. Then, the above procedure can be applied obtaining the
same results whenδθ → 0. �

From Lemma 1, the following necessary and sufficient
condition for the existence of a FC grasp can be enunciated.

Necessary and sufficient condition (frictionless contacts).
Four frictionless contacts allow a FC grasp if and only if

sign(Γi) �= sign(Γj) (15)

with
Γρ = βρ,hkτh + βρ,khτk − τρ (16)

where ρ∈{i, j}, τi and τj have Infinite Directional Ranges
andf i andf j define two consecutive vertices ofPf �

Considering the Real Range of each torque, the geometrical
interpretation of this necessary and sufficient condition is:

(S+
i ∩ S−

j ) ∪ (S−
i ∩ S+

j ) �= Ø (17)

whereS+
ρ andS−

ρ , with ρ∈{i, j} are the following polytopes:

S+
ρ = {{τρ, τh, τk}|τρ ∈ Rρ, τh ∈ Rh, τk ∈ Rk,Γρ ≥ 0}

S−
ρ = {{τρ, τh, τk}|τρ ∈ Rρ, τh ∈ Rh, τk ∈ Rk,Γρ ≤ 0}

These polytopes can be represented as polyhedrons in two
different 3-dimensional subspaces defined by{τh, τi, τk} and
{τh, τj , τk}, as in Fig. 3. By constructionS+

i ∩ S−
j and

S−
i ∩ S+

j are convex sets. Therefore, four applied forces
determine two convex FC-subspaces.

Equation (16) has another useful geometrical property on
the object space: the lines of action offρ, fh andfk intersect
at the same point whenΓρ = 0. Grasps with this property was
called critical grasps in [9] since it separates the FC grasps
from the non-FC grasps. As a difference from [9], where it
was considered that in the general case a critical grasp may
be determined by any intersection of three lines of action of
forces, the result obtained here determines exactly which are
the forces whose lines of action intersect in a critical grasp.

B. Convex FC-subspaces using friction contacts.

Let f i,p∈{f i,l,f i,r} and τi,p∈{τi,p, τi,l} be a primitive
force and a primitive torque, respectively. Definitions 3 and 4
can be applied to friction contacts defining respectivelyRi,p

and Rfci,p
for τip

. The procedure developed to obtain the
necessary and sufficient condition for frictionless contacts
is based on the knowledge of four applied forces. Since
the directions of the primitive forces are also known given
the contact edges, the procedure developed in the previous
subsection can also be applied with four primitive forces
obtaining the following necessary and sufficient condition for
friction contacts. Note that the two primitive torques of the
same contact are not independent of each other and they must
satisfy eq. (1) to obtain a real FC grasp.

Necessary and sufficient condition (friction contacts).
Considering friction contacts, a FC grasp exists if and only
if there are four primitive torques that satisfy the constraint of
eq. (1) when two of them are from the same contact and

sign(Γi) �= sign(Γj) (18)

with
Γρ = βρ,hkτh,p + βρ,khτk,p − τρ,p (19)

whereρ ∈ {i, j}, τi,p andτj,p have Infinite Directional Ranges
andf i,p andf j,p define two consecutive vertices ofPf �

The geometrical interpretation of this necessary and suf-
ficient condition without considering eq. (1) is identical to
the geometrical interpretation of the necessary and sufficient
condition for frictionless contacts but, in this case, considering
the primitive forces. Then,(S+

i,p ∩ S−
j,p) ∪ (S−

i,p ∩ S+
j,p) �= Ø.

Equation (1) is a 2-dimensional subspace of the contact
space, and its intersection with(S+

i,p ∩ S−
j,p) and(S−

i,p ∩ S+
j,p)

determines the convex FC-subspaces.
Considering friction contacts, a critical grasp is obtained

when three primitive forces intersect at the same point [19],
and it happens when eq. (19) givesΓρ =0.

C. Decomposition of the FC-space

When there are more than four normal or primitive forces
(i.e. more than four frictionless contacts or more than two
friction contacts), there may be several convex FC-subspaces
limited by critical grasps. In order to obtain the combinations
of four normal or primitive forces that determine convex FC-
subspaces the following algorithm is used (the algorithm is
described using the nomenclature of friction contacts but it
can also be applied considering frictionless contacts changing
the primitive forces by normal forces).



Algorithm 1: Let nf be the number of primitive forces. The
following steps are applied for each combination of any two
primitive forcesfh,p andfk,p:

1. Search f i,p with directions θi,p making
f i,p ∈ [−fh,p,−fk,p] for i=1, ..., nf and i �=h �=k.

3. Let ni be the number off i,p that satisfy step 2:

3.1. If ni ≤ 1 then discard this combination of forces.
3.2. If ni > 1 then two convex FC-subspaces are obtained

with each combination offh,p, fk,p and any other two
forces from theni obtained in step 2. �

As a result, all the convex FC-subspaces and the type
of Directional Range of each torque are determined with a
computational costO(N3). The FC-space is the union of these
subspaces and it may be concave.

IV. I NDEPENDENT REGIONS

The independent regions on the object boundary define a
N -parallelepiped fully contained in the FC-space. Then, the
problem of determining the independent regions is equivalent
to the problem of finding aN -parallelepiped fully contained
in the FC-space. Since the FC-space may be concave, it is not
possible to assure that aN -parallelepiped is fully contained in
it just by testing if its vertices belong to the FC-space, as it is
done in [10] (remember that in [10] a sufficient condition is
used, therefore the whole FC-space is not considered). Using
the convex FC-subspaces determined in the previous section
and the following proposition (it is enunciated considering
friction contacts) the problem can be solved just checking only
two vertices of the parallelepiped.

Proposition 3: Consider a convex FC-subspace limited by the
planes represented in eq. (19) whenΓρ =0 for ρ∈{i, j}. The
set (τ−

ν,p, τ
+
ν,p), with ν∈{h, i, j, k}, is an independent region

in the Directional RangeRfcν
if any two primitive torques

of the same contact satisfy eq. (1),τ−
h,p, τ−

k,p and τ−
ρ,p make

Γρ = 0, andτ+
h,p, τ+

k,p andτ+
ρ,p makeΓρ = 0. �

Proof: The meaning of eq.(1) has been discussed in SectionII,
therefore only the other two conditions need to be proved here.
Proposition 1 determines that the coefficients of eq. (19) are
non-positive, implying that this equation represents two planes
with negative slope whenΓρ =0 for ρ ∈ {i, j} (see Fig. 4).

If τ+
h,p, τ+

k,p andτ+
ρ,p are the maximum torques generated on

their respective independent regions and they makeΓρ =0 in
eq. (19), then it is not possible to obtain other values ofτh,p,
τk,p andτρ,p that belong to the independent region (i.e., values
smaller thanτ+

h,p, τ+
k,p that τ+

ρ,p) that makeΓρ =0, because
the slope of the plane represented in eq. (19) is negative. In
the same way, ifτ−

h,p, τ−
k,p andτ−

ρ,p are the minimum torques
generate on their respective independent regions and they make
Γρ =0 then it is not possible to obtain other values ofτh,p,
τk,p andτρ,p that belong to the independent region (i.e., values
bigger thanτ−

h,p, τ−
k,p andτ−

ρ,p) that makeΓρ =0, again because
the slope of the plane represented in eq. (19) is negative. As
a result, these two conditions assure thatτν,p ∈ (τ−

ν,p, τ
+
ν,p),

with ν ∈ {h, i, j, k}, cannot makeΓρ =0 implying that critical
grasps can not belong to(τ−

ν,p, τ
+
ν,p). Therefore, since the
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Fig. 4. Two dimensional slice of a contact convex FC-subspace where τh,p

and τk,p have Limited Directional Range and the other torques are constants.
The parallelepipeds IR1 and IR2 satisfy Proposition 3 and they define two
sets of independents regions.

subspace is convex, these conditions determine the extremes
of the independent regions. �

On the object space,Γρ = 0 implies that the lines of action
of fh,p, fk,p and fρ,p, intersect at the same point. As a
consequence, Proposition 3 is equivalent to say that the lines
of action of fh,p, fk,p and f i,p intersect at the same point
when they are applied on the extremes of their respective
independent regions where the maximum (or minimum) torque
is produced, and the lines of action offh,p, fk,p and f j,p

intersect at the same point when they are applied on the
extremes of their respective independent regions where the
minimum (or maximum) torque is produced. Note that the
independent regions determined according to Proposition 3 are
defined on the Directional Ranges, so(τ−

ν,p, τ
+
ν,p) ∩ Rν,p �= Ø,

ν ∈ {h, i, j, k}, must be satisfied to obtain the independent
region on the real edge. The following algorithm is used to
obtain the independent regions on the object edges:

Algorithm 2: Consider a convex FC-subspace limited by the
planes represented in eq. (19) whenΓρ =0 for ρ∈{i, j}.

1. Select two arbitrary points on the corresponding object
edges whereτ+

h,p andτ+
k,p will be produced.

2. Determine the point whereτ+
i,p is produced (the lines

of action of the primitive forces applied on this point
and on the two points selected in step 1 intersect at the
same point). From eq. (19)Rfci,p

is Infinite, then it has
only the finite extremeτ+

i,p.
3. Check ifRfci,p

∩ Ri,p �= Ø. If this condition is not satis-
fied a FC grasp is not possible. Then the independent
regions do not exist for the initial selected points.

4. Determine the region where the intersection of the lines of
action of fh,p, fk,p and f j,p must lie. This region must
satisfy the following conditions:τ+

h,p > τ−
h,p, τ+

k,p > τ−
k,p,

Rfcj,p
∩ Rj,p �= Ø and eq. (1). If these conditions are

incompatible, then the independent regions do not exist
for the initial selected points.

5. Select an arbitrary point in this region and project it on the
edges, obtaining the extremes whereτ−

h,p, τ−
k,p andτ−

j,p are
produced.

6. Intersect the current independent regions with the real
edges to obtain the actual independent regions (by con-
struction these intersections are always not null). �
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Fig. 5. Examples of the determination of independent regions (black
segments) on the edges of an object and the region determined in step 4
of algorithm 2 (shaded region): a) Four frictionless contacts where Rfc1
and Rfc2 are Limited and Rfc3 and Rfc4 are Infinite; b) Four frictionless
contacts where Rfc1 is Limited and Rfc2 , Rfc3 and Rfc4 are Infinite;
c) Three friction contacts where Rfc1,r

and Rfc2,r
are Limited and Rfc3,r

and Rfc3,l
are Infinite (the primitive forces considered in this case are f1,r ,

f2,r , f3,r and f3,l); d) Three friction contacts where Rfc1,l
and Rfc3,l

are
Limited and Rfc2,r

and Rfc3,r
are Infinite (the primitive forces considered

in this case are f1,l, f3,l, f2,r and f3,r and the region is the shaded part
of the contact edge).

In analogous way, the algorithm can be applied selecting
in the first stepτ−

h,p and τ−
k,p. Criteria to select the points

in steps 1 and 5 are not discussed here, but it can be
done considering other constraints on the finger positioning
(for instance, kinematics constraints or task requirements),
providing flexibility to the algorithm.

Proposition 3 and Algorithm 2 are also applicable consi-
dering frictionless contacts, exchanging the primitive forces
for the normal forces and without considering eq. (1). Figure 5
shows examples considering friction and frictionless contacts,
where it can be checked that it is not possible to intersect
the lines of action of three forces when they are applied on
independent regions, so critical grasps are not possible.

V. CONCLUSIONS AND FUTURE WORKS

In this paper a new approach to determine independent
regions on 2D polygonal objects that allow a FC grasp con-
sidering any number of fingers has been presented. Since the
FC-space may be concave, it is decomposed in a set of convex
FC-subspaces establishing each one a necessary and sufficient
condition for the existence of a FC grasp. A condition to obtain
independent regions in each FC-subspace is also presented and
using its geometrical interpretation the problem of determining
independent region is reduced to find two particular points
on the object space. The main advantages of the proposed

algorithm are that it is applied on the object space, therefore
the problem is always two-dimensional, and that it is not
necessary to compute theN -dimensional FC-space. Besides,
the algorithm is flexible and other constraints on the finger
positioning can be introduced. The simplicity of the metho-
dology and the fact that the algorithm is applied on the object
space encourage to extend this work to non-polygonal objects
and to 3D objects as future works. The methodology presented
here is based on the relative positions of the applied forces,
idea that can be furthered exploited in future works.
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