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Abstract - In order to automatically execute assembly tasks with robots following a �ne-motion plan, it

is usually necessary to estimate the current contact situation to select the corresponding robot command.

This contact estimation is generally based on con�guration and force sensory data. Two methods for this

purpose are presented here: a) an analytical method which explicitly takes into account all the uncertainty

sources that may a�ect the task, and which computes the sets of con�guration and forces compatible with

each possible contact situation; and b) an inductive learning approach based on a backpropagation neural

net that uses simulated contact-situation examples for the training phase. The methods are illustrated by

the simple assembly task of positioning a block into a corner considering three degrees of freedom. The

advantages and disadvantages of each approach are also discussed.
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1. INTRODUCTION

One promising approach to the automatic program-

ming of assembly tasks with robots is the automatic

generation of assembly plans, which usually contain

the actions to be executed from each task state in

order to achieve the assembly goal. These states can

be de�ned in di�erent ways (although sometimes it is

not explicitly done), such as: using fuzzy set theory

[14] [1], performing partitions of the con�guration

space [13] [5], or classifying the possible contact sit-

uation between the objects to be assembled [6] [18].

In any case, two main problems arise when uncer-

tainty is considered: a) the identi�cation of the

current task state, and b) the automatic determi-

nation of the proper movement (i.e. the robot

command for the controller) for each task state.

Di�erent solutions have been proposed in order to

solve these problems, giving rise to planners that

explicitly identify the task state to decide which

command must be applied [13] [5] [6] [8] [12] [18]

on one hand and, on the other, to reactive systems

that directly map sensor information into a robot

command [16] [10] [9] [14]. This paper follows the

�rst approach dealing with the problem of current

task state estimation in order to follow the assembly

strategy determined by a �ne-motion planner.
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It is assumed here that task states are de�ned by the

basic contacts between the objects to be assembled,

i.e. each task state represents a di�erent contact

situation between the objects [18]. Information from

two types of sensors is used for on-line estimation:

con�guration (the relative position and orientation

between objects) obtained from knowledge of the

environment and the robot con�guration, and

generalized reaction force (reaction force and torque)

obtained from a force/torque sensor in the robot

wrist.

The three degrees of freedom task of positioning a

block into a corner (�gure 1) is used to illustrate

the method. It is assumed that the block can be

positioned closely enough to the corner by gross

motion; then, nine di�erent contact situations are

possible according to the nominal model of the

objects (�gure 2). Actual con�gurations in which

each contact situation can be reached depend on

the deviations of geometric variables such as object

shape and size, robot positioning, and undesired

slippings of the object in the robot gripper. The

e�ect of these sources of geometric uncertainty on

the contact con�gurations has been modeled in [2],

and their e�ect on the possible reaction forces in [17].

Making use of these uncertainty models, a simulator

capable of dealing with random deviations of the

parameters has been implemented.

Two di�erent estimation approaches are presented

and discussed in this paper: an analytical one,

based on geometric reasoning over the models of

the objects and the di�erent sources of uncertainty,

and a learning approach, based on data obtained



Fig. 1. Positioning of a block into a corner.

state 1 state 2 state 3

state 8

state 7 state 6 state 5

state 4state 9

Fig. 2. Nine possible nominal states.

from real task executions performed by a teacher,

or from simulations. The paper is organized as

follows: section 2 and 3 respectively describe the

analytical and learning approaches, in section 4 a

discussion about the advantages and disadvantages

of each approach is presented and, �nally, section 5

summarizes the conclusions of the work.

2. ANALYTICAL APPROACH

2.1. Methodology

The models of the geometric uncertainty sources

allow to analytically determine, for each task state,

the set of con�gurations in which the state may

occur, called con�guration realization domain, DCr,

and the set of possible generalized reaction forces

that can appear in these con�gurations, called

force realization domain, DGr. Then, by adding

the uncertainty of the corresponding sensors, it

is possible to obtain the sets of con�gurations

and reaction forces that can be sensed when the

state takes place; these are called con�guration

observation domain, DC, and force observation

domain, DG, respectively.

The analytical method of contact estimation is based

on the domainsDC andDG, and can be divided into

the following two phases:

� O�-line determination of the domains DC and

DG for each possible contact situation between

the objects to be assembled. In this phase,

geometric uncertainties, sensor uncertainties,

and friction are considered.

� On-line matching of the sensed con�guration

and force with the o�-line computed domains.

The sensed con�guration is initially considered,

and if it matches with more than one domain

DC, then the sensed force is used; nevertheless,

due to uncertainty it is possible that more than

one contact situation be compatible with the

sensed data.

2.2. O�-line computation

Con�guration Observation Domains

Con�guration domains are built by merging the

di�erent geometric uncertainties in the con�guration

space [2]. First, the uncertainty regions in the

physical space where the vertices and edges of the

objects can lie are determined. Figure 3a shows

these regions for the block and the corner vertices

and edges.

Once the condition for the existence of a basic

contact has been established, i.e. a vertex of

one object against an edge of the other, the

corresponding regions of uncertainty in the physical

space are mapped into the con�guration space; this

gives rise to the uncertainty domain DCr of a state

with only one basic contact. So, the domain DCr

includes the C-face containing the corresponding

real contact con�gurations. The domain DC is

obtained by adding to DCr the uncertainty of the

con�guration sensor (the robot itself). Figure 3b

shows the domains DC of the task states with only

one basic contact, and �gure 3c is a section of these

domains for the orientation of the block shown in

�gure 3a, the center of the small circle indicating the

con�guration (i.e. position) of the block.

The domains DCr and DC of the states with

more than one basic contact are obtained as the

intersection of the corresponding domains of the

involved basic contacts. Nevertheless, it is not

necessary to compute this intersection; instead,

the estimation procedure can test if the sensed

con�guration belongs to all the domains DC of the

basic contacts involved in the multi-contact state.
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Fig. 3. Physical space and con�guration and force

observation domains for the block-in-the-corner

assembly task.

Force Observation Domains

The algorithm to determine the generalized force

realization domains DGr and the classi�cation

procedure make use of the dual representation of

forces [4]. This representation maps a generalized

force [f

x

; f

y

; � ] into a point [

f

y

�

, �

f

x

�

] representing

the force direction and a sign representing the force

sense. In this way, a generalized force is represented

by a sign and a point in a dual plane. Since the

module of the reaction force is not relevant for the

state estimation, it does not matter if it is not

considered in the dual representation.

The domain of possible reaction forces DGr for a

state with one basic contact is computed as the

intersection, in the dual plane, of the two sets

of points representing the forces that satisfy the

following two conditions in the physical space:

� Contact-point condition: the line of force must

intersect the region where the contact vertex can

lie due to uncertainty.

� Direction condition: the reaction force direction

must lie inside the friction cone enlarged

with the uncertainties that a�ect the direction

normal to the contact edge in the force reference

frame attached to the gripper.

Figure 3d shows the dual representation of the

domain DGr (dark shaded) for a state with only

one basic contact (state 1 in �gure 2) for a block

orientation; it is obtained as the intersection of the

two light shaded regions of dual points representing

the forces that satisfy the contact-point condition

(cc) and the direction condition (dc).

For states with more than one basic contact, the

domain DGr is computed as a linear combination

of the corresponding reaction forces at each basic

contact involved. This can be performed by using

geometric operations in the dual plane. A detailed

description of the generation of the domainsDGr can

be found in [17]. As an example, �gure 3e shows the

domains DGr for two states for a block orientation,

both with only one basic contact (states 3 and 5 in

�gure 2), and �gure 3f shows the domain DGr for

a state involving both basic contacts simultaneously

(state 4 in �gure 2).

The domains DG did not need to be explicitly com-

puted o�-line, the uncertainty of the force/torque

sensor being directly included in the on-line estima-

tion procedure.

2.3. On-line estimation

Con�guration Observation Domains

As the boundaries of the domains DC are

parametrized in the orientation of the moving object,

testing if the current sensed con�guration (x

o

; y

o

; �

o

)

belongs to a given domainDC is equivalent to verify-

ing if the point (x

o

; y

o

) lies inside the section � = �

o

of DC (for example, the current con�guration of the

block in �gure 3c does not belong to any domain

DC). This test only requires simple geometric oper-

ations in the plane, thus allowing to satisfy the time

requirements for on-line computation.

Force Observation Domains

The domainsDG are not explicitly built; instead, the

classi�cation procedure takes into account the force

measurement uncertainty domain U

g

, by testing in

the dual plane which domains DGr overlap with

U

g

. Assuming that the force/torque sensor supplies

independently the components of the generalized

reaction force, U

g

will be a parallelepiped, and the

algorithm to verify if the direction of the measured

force lies inside a domainDG will sequentially test if



the dual representations of U

g

and the corresponding

domain DGr satisfy one of the following ordered

conditions: a) a vertex of U

g

is inside DGr, b) an

edge of U

g

crosses DGr, c) a face of U

g

containsDGr.

The classi�cation procedure (detailed in [3]) requires,

as in the con�guration case, only simple geometric

operations in the plane, thus being compatible with

on-line time requirements.

3. LEARNING APPROACH

3.1. Methodology

This section presents an inductive learning approach

to contact estimation. The main requirement of

such an approach is the availability of examples to

learn from. Examples of correct estimations can

be obtained either by task executions or from a

simulator (section 3.2). Then, the estimator can

be trained to predict the contact state. In this

work a backpropagation neural net is used as an

estimator. One of the relevant properties of this

type of networks is the universal approximation

[11], which states that with enough but �nite

number of hidden neurons, there exists always

a set of weights such that the network can

approximate any nonlinear function to the desired

accuracy. Since any estimation problem can be

considered as a multi-input multi-output function

approximation problem, this property virtually

provides a theoretical foundation for using a

backpropagation net to solve the problem of contact

estimation. A backpropagation net features a layered

structure and has weighted feedforward connections

only between neurons in the adjacent layers. It is

composed of a layer of input nodes, one or several

hidden layers of neurons and an output layer of

neurons. Each neuron in the network takes, as the

input, the sum of the weighted outputs from other

neurons connected to it, and then passes the value

through a nonlinear function. Typical examples

for such functions are a sigmoid and a tangent

hyperbolic function.

3.2. O�-line computation

Sample generation

The state-samples are composed of three con�gura-

tion data (x, y, �), three force data (f

x

, f

y

, � ) and

the corresponding task state label number.

In order to generate the con�guration data, random

values of the deviations of all the parameters

subject to uncertainty are �rst chosen with uniform

probability density function, and the corresponding

actual C-surfaces for all the basic contacts are

determined. Then, depending on the number of basic

contacts considered, a con�guration over a C-face,

a C-edge, or directly a C-vertex, is equi-probably

chosen.

Once a contact con�guration has been determined, a

random reaction force is also equi-probably selected

within all the possible reaction forces compatible

with the contact con�guration. First, the direction

and the sense of the generalized reaction force are

determined; then, the module is chosen within a

prede�ned range.

Since a priori the probability distribution of the state

occurrence is not known, the same number of samples

are generated for each state.

It is important in this phase to generate a large

and complete set of examples, as typically the

extrapolation capability of neural networks is very

poor. For the selected problem, a training set of

1000 examples was appropriate. Using fewer than

300 examples produced poor results.

Network selection and training procedure

The neural network has 6 inputs (con�guration and

force components) and 9 outputs (one for each state).

The classical backpropagation algorithm, modi�ed

with momentum and a variable learning rate [20],

was used. The networks were initialized with the

Nguyen-Widrow initialization method [15]. Various

network topologies were trained in order to �nd

a network with the best generalization capability.

An appropriate number of hidden neurons is very

important, since too small networks cannot make

complex classi�cations, and too large ones will

over�t the training data, which results in poor

performance on independent test data. MATLAB's

neural toolbox [7] has been used for this part of the

experiment. The best results were obtained by using

15 hidden neurons, hyperbolic tangent activation

functions in the hidden layer, and linear output

neurons. In this case, the misclassi�cation rate on

an independent test set accounts for 8%. Figure 4

shows the misclassi�cation rate on training and test

sets during the learning process.

3.3. On-line estimation

Following the learning approach, on-line state

estimation consists of a single evaluation of the

network and the competitive layer, as shown in

�gure 5. The competitive layer selects the state

corresponding to the output closest to one. Following

the learning approach misclassi�cations can occur,

the confusions between non-contiguous states being



1 2 3 4 5 6 7 8 9

1 . c n n n n n c c

2 c . c n n n n n c

3 n c . c n n n n c

4 n n c . c n n n c

5 n n n c . c n n c

6 n n n n c . c n c

7 n n n n n c . c c

8 c n n n n n c . c

9 c c c c c c c c .

% 1 2 3 4 5 6 7 8 9

1 90.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 6.7 100.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0

3 0.0 0.0 100.0 3.3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 90.0 0.0 0.0 0.0 0.0 13.7

5 0.0 0.0 0.0 0.0 86.7 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 6.7 13.3 100.0 0.0 0.0 6.9

7 0.0 0.0 0.0 0.0 0.0 0.0 96.5 3.3 0.0

8 3.3 0.0 0.0 0.0 0.0 0.0 3.5 90.0 3.5

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.9

Fig. 6. Left: state contiguity matrix ; `c' for contiguous states and `n' for non-contiguous ones. Right: the confusion

matrix of a trained network for an independent test set, with 15 hyperbolic tangent hidden neurons and 9 linear

output neurons. Columns represent the true states and rows the classi�er decision. Classi�cations are reported

in percentages.
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Fig. 4. Evolution of the misclassi�cation rate on the

training set (full line) and on the test set (dotted

line) during the training of a backpropagation

network.

more serious than between contiguous states

1

. The

reason for this is that the transition operators of

contiguous states are likely to make the task evolve

in a similar way, and therefore the confusion has not

so bad consequences. Hence the learning algorithm

should mainly try not to confuse non-contiguous

states. Confusion matrices, as shown in �gure 6, can

be useful in order to visualize the misclassi�cations

between states.

4. APPROACHES COMPARISON

Figure 7 shows a block diagram summarizing the

analytical and the learning approaches and the

parallelism between them. The following is a

summary of the advantages and disadvantages of

each approach.

1

Two states are contiguous when it is possible to pass from

one to the other without the ocurrence of any other state [19].
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Fig. 5. A neural net is used to estimate the contact state.

The competitive layer selects the neuron with the

highest output. Each output neuron represents a

contact state.

4.1. Analytical Approach

Advantages:

� Covers all possible situations provided that

everything is well modeled.

� The estimated state is always correct provided

that the classi�cation is unambiguous.

� The computational cost of changing the assem-

bly task is low because the equations used by

the algorithms are parametrized in the objects'

geometry.

Disadvantages:

� When there is more than one contact situation

compatible with the sensed data, the method

cannot decide which is the correct one. It would

be necessary to apply some heuristics to perform

the decision.

� It is di�cult to apply to 6 d.o.f.

� On-line time constraints may become a problem.
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Fig. 7. Comparison between analytical and learning

approaches.

4.2. Learning Approach

Advantages:

� When the examples are taken from real experi-

ments (non-uniform distributions) they capture

all the real uncertainties (geometric uncertainty

and sensor uncertainty) as well as their proba-

bilistic distribution within the observation do-

mains, giving rise to an e�cient partition of the

con�guration and force spaces.

� Simple and quick on-line estimation.

� More easily extendable to 6 d.o.f.

Disadvantages:

� Necessity of a training set: if the training

examples are taken from real experiments, it is

di�cult to reproduce a representative set of all

the possible situations; if the training examples

are taken from simulation, the proper selection

of the samples distribution is not clear.

� Misclassi�cations are possible; then, there is no

guarantee of the correctness of the estimated

state.

� The estimation rule must be re-learned for each

assembly task.

5. CONCLUSIONS

The estimation of the current contact situation

during an assembly task is necessary for the

determination of the proper robot movement in

order to follow an assembly plan. Two approaches

to contact estimation have been presented: an

analytical approach and an inductive learning

approach. The analytical approach studies all

the uncertainties a�ecting an assembly task and

computes the sets of con�gurations and forces

that are compatible with each contact situation.

The current contact situation is then estimated

by classifying the measured con�guration and force

into one of these sets. The inductive learning

uses examples of contact situations generated by

a simulator to train a backpropagation neural net.

Once trained, the contact estimation is simply an

evaluation of the network.

The analytical approach can determine with cer-

tainty the task states compatible with the measured

data though, when more than one state is compat-

ible, it needs some heuristics to select one of them.

The learning approach is computationally simpler

and has a shorter on-line estimation time, but the

estimation rule must be learned for each assembly

task, whereas changing the task is easier for the es-

timation procedure of the analytical approach. Both

approaches rely on models which are used, in the

analytical case, for geometric reasoning and, in the

learning case, for the generation of simulated exam-

ples to have a proper training set.
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