
Efficient and robust trajectory generation for
robotic manipulators

Oriol Ruiz Leopold Palomo-Avellaneda Raúl Suárez Jan Rosell

Institute of Industrial and Control Engineering
Universitat Politècnica de Catalunya

Barcelona, Catalonia, Spain
oriol.ruiz.celada@estudiantat.upc.edu, leopold.palomo@upc.edu, raul.suarez@upc.edu, jan.rosell@upc.edu

Abstract—This paper describes a procedure to generate
valid robot trajectories for a given sequence of points
defining a geometric path, which is a quite frequent output
of many robot motion planners. The proposed approach
takes into account physical constraints of the robot, as the
maximum velocity and the maximum acceleration that each
joint can reach, and has been implemented in C++ as a
general tool that can be used with different robots.

Index Terms—robotics, robot trajectories, motion planning.

I. Introduction

Current robotic applications frequently use motion
planners to generate the robot paths as a sequence of
joint configurations (waypoints) that solves the task and
avoid potential collisions [1] [2]. This is a practical
solution that still requires, in a second step, the gener-
ation of the robot trajectories, i.e., adding the velocities
and accelerations to the geometric path defined by the
waypoints. Usually, this is done by simple "moving" the
robot from one waypoint to the next one in the sequence,
but, depending on the robot controller, this generates
non-smooth movements because the robot unnecessarily
breaks and accelerates between the waypoints in a non-
optimal way, and even more, the closer the points are
(in order to better define the geometric path) the worse
the quality of the robot movements could be.

To deal with this problem, this work introduces a
procedure to obtain valid robot trajectories for a given
sequence of waypoints defining a geometric path. The
proposed approach takes into account physical con-
straints of the robot, as the maximum velocity and the
maximum acceleration that each joint can reach.

After this introduction the paper is organized as
follows. Section II briefly describes and formalize the
addressed problem. Section III introduces and discusses
relevant related previous works. Section IV describes the
proposed approach, and Section V provides an illustra-
tive application example. Finally, Section VI summarized
the work contributions and the future work.

This work was partially supported by the Spanish Government
through the project PID2020-114819GB-I00.

II. Problem definition
For a K-degrees-of-freedom robot manipulator, con-

sider a piecewise rectilinear collision-free path defined
by a sequence of N joint configurations that satisfy the
joint limits. The path can be represented by a matrix WP:

WP =


q11 . . . qK1
...

...
q1N . . . qKN

,
where WP(i, k) = qki represents the k-th joint value of the
i-th waypoint of the path. We will refer to the interval
between two consecutive waypoints as a segment.
The goal is to find a trajectory q(t) = (q1(t), . . . , qK(t))

through the N waypoints, i.e., to specify the time ti
i = 1, . . . , N to pass through each waypoint, as well as
the velocity and acceleration profiles, while satisfying the
following constraints:

• Total trajectory time tN = T as short as possible,
• q(ti) = (q1i , . . . , q

K
i ), i = 1, . . . , N ,

• Joint velocities limited to q̇kmax, k = 1, . . . ,K,
• Joint accelerations limited to q̈kmax, k = 1, . . . ,K,
• Null initial and final velocities and accelerations,
• No sign change in the velocity between waypoints.

III. Previous approaches
Among the classic trajectory generation methods, the

simplest one consists in assigning a total time for the
whole trajectory and divide it among the waypoints as-
suming linear interpolation, which is used, for instance,
to animate a path in a simulation. This procedure is
usually adjusted to satisfy velocity constraints by setting
the time between any two consecutive waypoints large
enough in order not to require (for any of the K joints)
a velocity greater than the maximum to cover the corre-
sponding joint interval. However, this leads to unwanted
discontinuities in the velocity, which can be avoided
with a polynomial interpolation that requires the defini-
tion of velocities (or velocities and accelerations) at the
waypoints. The method guarantees that the constraints
at the waypoints are met, although they may not in
between waypoints. Another usual solution uses linear



Fig. 1: Time synchronization step. All the intervals in
which each DoF does not have a solution are shown in
grey, and the black vertical line indicates the minimal
possible time in which all DoFs can be unblocked [10].

polynomials with parabolic blends, which connects the
waypoints lineally but introduces a parabolic blends to
smooth the trajectories [3], but this solution does not
ensure that the path passes through the waypoints. This
method is used by default in MoveIt [4].

Other approaches deal with the problem of finding
time-optimal trajectories under joint position, velocity,
acceleration, and jerk limits by using nonlinear con-
straints optimization methods [5], or linear program-
ming [6], or for the case of trajectories with blends, by
combining a trapezoidal acceleration model with a 7-
degree polynomial to form a path with blends [7].

The problem has also been approached using control
techniques [8] [9] but in these cases the dynamic model
of the robot is required.

Recently, another approach, called Ruckig, that allows
the generation of jerk-limited real-time trajectories has
been introduced [10]. The resulting trajectories are con-
tinuous to the second derivative, meaning that position,
velocity and acceleration are continuous, while the jerk
is not. The algorithm considers for each segment and de-
gree of freedom (DoF) different profile types, and selects
the one that guarantees the limits, obtaining an optimal
time and blocked intervals for that profile (blocked
intervals are time intervals in which it is impossible to
reach the next waypoint using a selected profile). Then,
it performs a synchronization step for each segment, in
which all the DoF are stretched to the minimum time
that does not fall under any blocked interval for any DoF
(Figure 1). This approach is really interesting, but the
use of current available implementation of the Ruckig
library for the interpolation of trajectories with multiple
waypoints requires the connection to a server, which in
many cases greatly reduces its practical use. Moreover,
the method is geared towards dynamic tasks, which
is not always necessary, and requires the definition of
the position, the velocity and the acceleration at each
waypoint, which may not be always available.

The proposal presented here aims at solving the draw-
backs of the polynomial interpolation.

a1

a3
v2

vf

vi

4q

t1 t2 t3

v

t

Fig. 2: Generic velocity profile for each joint in each
segment.

IV. Proposed approach
This section describes the proposed approach to obtain

feasible trajectories from a set of waypoints. The first
subsection describes the generic velocity profile used for
each joint in each segment, and the second subsection
describes the developed procedure to compute valid
velocity profiles for each joint using and adapting the
generic velocity profile.

A. Generic velocity profile for each segment
As, in general, infinite trajectories are possible for each

joint, we fix a generic velocity profile composed of three
intervals in each segment (see Fig.2):

• Interval 1: Acceleration (or deceleration), where
acceleration a1 is applied during an interval t1.

• Interval 2: Constant velocity, where a velocity v2 is
applied during an interval t2.

• Interval 3: Deceleration (or acceleration), where ac-
celeration a3 is applied during an interval t3.

This 3-interval profile is determined for each of the
robots joint by,

qf = qi + vit1 + 1
2a1(t1)2 + v2t2 + v2t3 − 1

2a3(t3)2

v2 = vi + a1t1

vf = v2 − a3t3

tsegment = t1 + t2 + t3
(1)

where, the known data are: the initial and final positions
of the joint, qi and qf respectively, the initial velocity of
the joint vi, the (maximum) acceleration and decelera-
tion, a1 and a3 respectively, and the unknowns are: the
final velocity vf and the duration of each interval, t1, t2
and t3 and their summation tsegment. Note that t1, t2 or t3
could be equal 0, making the velocity profile to actually
have only one or two real intervals.
The set of positions of each joint in the waypoints

can be splitted into monotonic increasing or decreasing
subsets, with zero velocity at the initial and ending
points of the sequence; for simplicity and to fit into the
available space for the paper, we will consider here the
incremental case, i.e., in (1) we assume qf > qi. The



v

t

vreachable

vi

amax

4q

Fig. 3: Example of the velocity vreachable in one segment
for one joint.

decreasing case is simply tackled with a sign change in
the velocities and accelerations and if a joint has the
same position in consecutive points the velocity along
the segment is null.

B. Finding the velocity profiles for each joint in each segment
The first step of the approach is to determine the

total time tsegment required for each segment. This can
be done using (1) if the final velocity vf is known, so
we look first for a proper value of vf that allows an
initial estimation of tsegment for each joint. There are four
constraints that bound the maximum value of vf :

• 0: when the next value of the joint is a (may be local)
extreme of the sequence of joint positions;

• vmax: the maximum velocity achievable by the joint;
• vreachable: the maximum velocity the joint can reach

starting with velocity vi and applying maximum
acceleration amax until covering the required dis-
placement ∆q in the segment(see Fig. 3), i.e.,

vreachable =
√

(vi)2 + 2amax∆q (2)

• v∗inext: the maximum starting velocity of the next
segment that guarantees that the joint can decelerate
with −amax until zero velocity without advancing
more than the required displacement ∆qnext in the
segment (see Fig. 4), i.e.,

v∗inext =
√

2amax∆qnext (3)

Since all these are maximum constrains, selecting the
minimum of them assures the validity of the selection,
thus, calling vadequate to the valid value:

• vadequate = 0 if the next joint position is a (local)
extreme, and,

• vadequate = min(vmax, vreachable, v
∗
inext) otherwise.

Once vf = vadequate is known, the required tsegment

is obtained by solving (1). In this way, it is possible to
obtain tsegment for each joint and for each segment, but,
in order for all the joints to be synchronized, the values
of tsegment must be equal in the same segment for all the
joints. Thus, in order to assure the existence of a global

v∗inext

v

t

amax

4qnext

Fig. 4: Example of the velocity v∗inext in one segment for
one joint.

Algorithm 1 calculateTrajectory
Input: WP, vmax, amax

for s = 1 to N − 1 do
for k = 1 to K do

Compute vs,kadequate

Compute ts,ksegment

end for
tS = max{ts,ksegment}
for all k such that ts,ksegment 6= tS do

Re-compute ts,ksegment

end for
end for
Result: Joint velocity profiles

solution, it is necessary to choose, for a given segment,
the maximum value of tsegment among those of all the
joints.
After this selection, the velocity profiles in the same

segment of the joints with smaller tsegment must be re-
computed, and this done using again (1) to compute vf ,
considering now as a known input the value of tsegment.
Considering a robot with k = 1, ...,K joints and a set

of N waypoints that therefore determine s = 1, ..., N − 1
segments, this procedure is applied sequentially to all
the segments, as described in Algorithm 1.

V. Simulation example

In order to illustrate the performance of the proposed
approach, we present here an illustrative example simple
enough to allow a clear visualization of the results. The
considered case is a robot with 4 joints and a path
defined by 6 waypoints given by the matrix

WP =


0.5 −2.0 1.5 2.0
0.3 −1.5 1.1 2.0
−0.5 −1.5 0.0 1.0
−0.2 2.0 −2.0 1.0

0.2 −1.0 1.0 0.9
0.1 −0.5 1.5 0.0





Fig. 5: Resulting position, velocity and acceleration profiles for the illustrative example.

The maximum velocity of all the joints was set to
0.6 rad/s and the maximum acceleration to 0.3 rad/s2.
Figure 5 shows the obtained results for each joint, in-

cluding the resulting position, velocity and acceleration
profiles.

VI. Conclusions and future work
This work has proposed a simple yet efficient proce-

dure to obtain a robot trajectory for a given sequence of
waypoints defining a piece-wise rectilinear collision-free
geometric path. The trajectories obtained are the fastest
ones passing through all the waypoints and satisfying
the maximum velocity and acceleration that each joint
can reach. Currently the proposal is being thoroughly
evaluated in a set of simulated and real scenarios in the
laboratory. Future work will extend the proposal to jerk-
limited trajectories.

References
[1] S. M. Lavalle, Planning Algorithms. Cambridge University Press,

2006.
[2] H. Touzani, N. Seguy, H. Hadj-Abdelkader, R. Suárez, J. Rosell,

L. Palomo-Avellaneda, and S. Bouchafa, “Efficient industrial so-
lution for robotic task sequencing problem with mutual collision
avoidance & cycle time optimization,” IEEE Robotics and Automa-
tion Letters, pp. 2597–2604, 2021.

[3] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics:
Modelling, Planning and Control. London: Springer, 2009.

[4] “Time Parameterization (MoveIt),” https://ros-planning.
github.io/moveit_tutorials/doc/time_parameterization/time_
parameterization_tutorial.html, accessed: 2022-07-22.

[5] J. Lin, N. Somani, B. Hu, M. Rickert, and A. Knoll, “An efficient
and time-optimal trajectory generation approach for waypoints
under kinematic constraints and error bounds,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 5869–5876.

[6] A. Nagy and I. Vajk, “Sequential time-optimal path-tracking
algorithm for robots,” IEEE Transactions on Robotics, vol. 35, no. 5,
pp. 1253–1259, 2019.

[7] J. Lin, M. Rickert, and A. Knoll, “Parameterizable and jerk-limited
trajectories with blending for robot motion planning and spheri-
cal cartesian waypoints,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 13 982–13 988.

[8] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control
of robotic manipulators along specified paths,” The International
journal of robotics research, vol. 4, no. 3, pp. 3–17, 1985.

[9] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots : a convex
optimization approach,” IEEE Transactions on Automatic Control,
vol. 54, no. 10, pp. 2318–2327, 2009.

[10] L. Berscheid and T. Kröger, “Jerk-limited real-time trajectory gen-
eration with arbitrary target states,” Robotics: Science and Systems
XVII, 2021.

https://ros-planning.github.io/moveit_tutorials/doc/time_parameterization/time_parameterization_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/time_parameterization/time_parameterization_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/time_parameterization/time_parameterization_tutorial.html

	Introduction
	Problem definition
	Previous approaches
	Proposed approach
	Generic velocity profile for each segment 
	Finding the velocity profiles for each joint in each segment

	Simulation example
	Conclusions and future work
	References

