
Comparison of motion planners in an environment
with removable obstacles

Carlos Rodrı́guez and Raúl Suárez
Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.

Abstract—This work deals with the problem of motion
planning for a robotic system with two arms, considering the
possibility of using one arm to remove potential obstacles in order
to get a collision-free path to reach a desired object with the other
arm. The paper compares different motion planning algorithms
based on random sampling methods. In the used framework the
planners do not discard the samples that imply collision with
removable objects, instead these samples are classified according
to the obstacles that produce a collision and then processed to
decided whether it is necessary to remove these obstacles to
get a proper free path. The efficiency of the motion planners
are compared by solving planning problems in three different
scenarios.

I. INTRODUCTION

The manipulation of objects in robotics implies a number of
associated problems among which it is included the determina-
tion of collision free paths to achieve the grasp configuration of
a desired object. In this work we have focused on the problem
of motion planning, by using motion planning algorithms
based on sampling methods in the following context: two arms
and two hands work in a shared workspace, a particular object
is the object of interest but there are also other objects (both
fixed and removable) that may act as obstacles that block the
direct access to the object of interest. One robot is in charge
of grasping the desired object while the other must remove, if
necessary, the removable obstacles that interfere with the path
to the object of interest in order to obtain a collision free path.
Note that this is a daily problem for humans and so will be
for robots.

This work presents a comparison between five different
motion planners, all of them based on sampling methods. The
planners that are compared below search a geometric path in
the configuration space of the robots, taking into account that
exist fixed and removable obstacles. The following aspects
are considered: the environment is known (this include the
positions, rotations, and the 3D models of the robots and
objects), the grasp configurations of the removable objects
have been computed in advance, and they are used as target
configuration for the planners. With these considerations the
planners try to find a path to grasp the desired object with
one robot, while the other robot is in charged of removing the
obstacles from the desired object path.

The planning algorithms have been applied in three differ-
ent environments in order to make a comparison of the required

This work was partially supported by the Spanish Government through the
projects DPI2011-22471, DPI2013-40882-P and DPI2014-57757-R.

time to find a solution, the number of generated samples, and
the rate of failure.

After this introduction the paper is organized as follows.
Section II presents a review of related works and Section III
describes the planning testbed, simulated environment, and
sofware tools. Section IV presents the used motion planners.
Then, Section V presents the experimental results and, finally,
Section VI presents some conclusions of the work and presents
some topics deserving future work.

II. RELATED WORK

There is significant research work concerning robot motion
planning problems [1]. Quite effective general strategies have
been developed using sampling-based techniques, and among
the most relevant approaches are the Rapidly-exploring Ran-
dom Trees planners (RRT) [2] and Probabistic Road Map
planners (PRM) [3]. Several variations based on these ap-
proaches have been developed to solve different kind of prob-
lems in the motion planning field. These original approaches
have some problems when there are narrow passages and in
order to overcome them several variations were developed,
like dynamics domain RRTs [4], retraction base RRTs [5],
adaptive workspace biasing [6], a sampling method based
on Principal Component Analysis [7], and a multi-resolution
PRM planner [8], which increase the density of samples in
narrow passages and/or regions of interest. In order to speed
up query path planning, some variants of PRM planners (e.g.
the Lazy PRM planner [9]) build a roadmap without checking
the collisions, then, if a collision with the obstacles occurs, the
corresponding nodes and edges are removed from the roadmap
to start a new search, and the process is repeated until a
collision-free path is found.

Some extensions of PRMs include the use of object sym-
metries in order to improve the performance of the plan-
ner [10], and the consideration of scenarios where there
exist known obstacles with collision-free paths running around
them which have to be connected to the roadmap generated,
thus yielding a solution path that skirts the obstacles [11].
Another approach improves the post-processing phase of a
planner by combining an efficient PRM with a lazy A* search
algorithm that reduces the validation time of the edges [12].
It is important to highlight that the planners mentioned above
have been designed to avoid collisions with fixed obstacle.
In contrast, other contributions propose motion planners that
take into account the objects from the environment that can be
removed.

Relevant works that allow robot motion planning consid-



ering obstacles include [13], that was a precursor and has
shown that motion planning among obstacles is a NP-hard
problem, and [14] that proposed a grid based planner that
heuristically tries to minimize the cost of moving obstacles
out of the way. When the environment is not known, the
use of sensors becomes relevant to recognize and identify
obstacles in the environment [15], recent approaches use
cameras to obtain partial online recognition. One example of
these approaches is focused on the identification of visible
objects, then calculates the occluded volume and searches the
desired object by removing the visible obstacles that more
likely occlude it [16]. Following another approach, some works
include the possibility of pushing the obstacles out of the way
rather than avoiding them (it is a common strategy used for
humanoid robots), in order to reach the goal when it is blocked
by removable obstacles [17], [18]. Exists an increasing trend
in developing robots for environments designed for humans,
and exists a wide variety of multi-arm robotic systems (which
in general are dual arm systems with anthropomorphic hands
or grippers) that may be installed on a mobile platform or be
fixed in the environment [19].

In motion planning for multi-arm systems different ap-
proaches have been developed, which can be classified into
centralized and decoupled approaches. In the centralized ap-
proaches multiple arms are considered as a single multi-bodied
robot with a number of degrees of freedom (DOF) of the
whole system, and the planning algorithms find a collisions
free path for each arm properly coordinated with the others.
In the decoupled approaches each arm is treated as a single
independent system and the motion planning process returns
first a path for each arm and then requires a coordination
phase to avoid potential collisions between the arms when
they execute their movements simultaneously. Even when
centralized approaches are complete, they have to deal with
a planning space with higher number of DOF and therefore
they are computationally more expensive than the decoupled
approaches, which decompose the general problem into smaller
problems (i.e. one for each arm) but that, as a drawback,
need an additional synchronization phase [2]. Beside, there
are works that simultaneously deal with the problems of grasp
and motion planning [20].

In general, dual arm systems are used to perform coor-
dinated manipulation tasks including regrasping [21], either
arriving to a close kinematic chain (e.g. assembling a nut and
a bolt [22] or a peg-in-hole tasks [23], in both cases with each
part being manipulated by a different arm and using compliant
robot control), or cooperating with open chain coordinated
movements (e.g. the problem considered in this paper, the
robots must work coordinately in order to properly remove
obstacles and make a desired target object be reachable).

III. PLANNING TESTBED

A. Description of the testbed

Consider two robots Ri, i = 1, 2, in a shared workspace
where there is an object of interest O0 to be grasped and some
other removable objects Oj , j = 1, ..., n, which can be grasped
and removed from the scene by the robots themselves and that
may act as obstacles that do not allow access to O0. In this
context, the problem to be solved is: find a geometric path

πi,0 for a robot Ri in order to grasp the desired object O0

and, if necessary, a set of geometric paths πl,j , l = 1, 2 l ̸= i
to remove all the obstacles Oj in πi,0.

In order to find a path the algorithm receives the model
of the scene W , that includes the models of each object, the
positions and a set of grasping configurations of the removable
objects, and the models and the initial configurations of the
robots. The algorithm returns an assignment of actions to each
robot (that includes the corresponding geometric paths πi,j and
the set of obstacles SOi,j to be removed) to grasp the desired
object and to remove, if necessary, some obstacles.

A motion planner is used to find a path πi,0 for each robot
Ri to grasp the object of interest O0, but, as a difference with
the typical use of planners, a sample of the robot configuration
that implies a collision of the robot with any removable object
Oj in the environment is not neglected, instead it is considered
to build the trajectory in an usual way but associating to it a
list with the set of collided obstacles SOi,j . The same is done
when a local planner checks the validity of a local segment
connecting two samples for the trajectory construction, if there
are collisions with any removable object Oj it is just added
to SOi,j . Note that the collision check performed for the
configurations of a robot path must be done considering the
arm and the hand when the robot is going toward the object
to be grasped, and considering the arm, the hand and also
the grasped object when this is removed from the scene. The
algorithm for finding a path is recursively executed until there
is a solution path to remove all Oj in πi,0 or until an exception
occurs for both robots, i.e if the goal object is an obstacle for
a given object that has to be removed and vice versa (in this
case there is not solution for the problem).

The procedure to find a path πi,j for a robot Ri to grasp
an object Oj is shown in Algorithm 1. First, it is loadScene
using W , then, the subset of grasping configurations SCi,j

that are kinematically reachable by Ri are selected from a
given set SCj . This is done by the function selectGrasps,
that simply solves the inverse kinematics of Ri for each
configuration in SCj . Then, a path πi,j (with the associate set
of obstacles SOi,j) is searched for each reachable configuration
ck ∈ SCi,j and the one with smaller number of obstacles
(computed by the function range) in SOi,j is selected. πi,j

and SOi,j are generated with the function MotionPlanner. The
MotionPlanner function varies depending on the planner used
to solve the problem. The five motion planners evaluated in
this work are presented in Section IV.

B. Simulated environment and software tools

The simulated environment used in this work to test the
different motion planners correspond to the real work cell of
our robotic lab, where there are two 6 DOF robots Stäubli
TX-90. The robots are located facing each other, one of them
is in a fixed location while the other is on a linear mobile
platform that adds an additional linear DOF but that is not
used in this work. The robot R1 is equipped with a Schunk
Anthropomorphic Hand (SAH) with 13 DOF, and the robot
R2 is equipped with a Schunk Dextrous Hand (SDH2) with
7 DOF. The simulated environment has the corresponding 3D
models of the two robots and hands, and a data base with
different types of objects in order to perform manipulation
tasks.



Algorithm 1: findPath
input : W , that includes Ri,co, SCj

output: πi,j , SOi,j

1 πi,j = ∅
2 SOi,j = ∅
3 loadScene(W )
4 SCi,j ← selectGrasps(Ri, SCj)
5 max = number of removable objects in the workspace
6 for each ck ∈ SCi,j do
7 πauxi,j , SOauxi,j ← MotionPlanner(Ri, co, ck)
8 if range(SOauxi,j ) < max then
9 πi,j ← πauxi,j

10 SOi,j ← SOauxi,j

11 max← range(SOauxi,j )

12 return πi,j , SOi,j

Fig. 1: Example of grasping configurations for a given object.

In order to increase the probability of finding feasible paths,
it is considered that the objects can be grasped in different
ways with a set of different hand configurations, which are
taken as different goal points when the grasp trajectory is built.

The grasping configurations for each object can be obtained
using different procedures (see for instance [24], [25]). In this
work we assume that the set of possible grasping configura-
tions of an object has been computed in advance and it is
provided with the model of the object (the set SCj). The given
grasping configurations of the hand are related to the object
reference frame, but since the position of the object in the
work environment is known, the grasping configurations can
easily be converted to the robot configuration space. Figure 1
shows four different grasp configurations of the SAH grasping
a soda can.

The motion planning and simulations have been performed
using The Kautham Project [26] software tool, it is a home-
developed open source environment. The Kautham Project
provides the developer with several useful tools for the devel-
opment of planners, like, for instance, random and determin-
istic sampling methods, metrics to evaluate the performance
of planners (number of generated samples, collision check
callings, number of nodes in the graph solution, connected
components) and simulation tools (including direct and inverse
kinematic models of the robots). The Kautham Project uses
several libraries as Coin3D for the graphical rendering, PQP
for the collision detection, ROS for the communication layer,
and more recently OMPL has been integrated providing the

motion planning tool with more options.

IV. COMPARED MOTION PLANNERS

This section presents the motion planners to be compared,
which work in the configuration space and are based on
random sampling methods to generate configuration samples
used to search a round trip path from the initial to the
goal configuration. The samples or segments that collide with
removable objects are not rejected, instead they are added to
SOci

or SOsi respectively, only the samples or segments that
collide with fixed objects are discarded. When a path is found
the corresponding sets SOci

and SOsi are added to SOi,j .

A. Probabilistic Roadmap

The probabilistic roadmap [27] is a motion planner based
on the classic PRM [3], but in this case the random samples
are generated around a straight line in the configuration space
from the initial to the goal robot configuration.

The PRM follows the single query approach, this is, a
geometric path is found when the initial and the goal con-
figurations are connected on the same roadmap. Algorithm 2
describes the PRM planner. The algorithm executes a searching
loop until the initial and goal configurations, co and cg respec-
tively, are connected in the PRM or a predefined maximum
number of configuration samples has been generated. Within
this loop, each iteration starts with the generation of a new
configuration sample ci by using genConfig function, and the
function collisionCheck is used to check whether the sampled
configuration implies collisions, and, if this is the case, the
collided objects are added to a set of obstacles SO(ci). If
SO(ci) contains fixed non-removable obstacles, then ci is
directly rejected; otherwise if SO(ci) contains only removable
obstacles, then SO(ci) is associated with ci and it is added to
the set of vertices SV . The nearest neighbor to ci in SV , called
cnn, is determined and used to generate the segment s between
ci and cnn, and the function localPlanner is used to check for
the existence of collisions when Ri is moved along s, and, as
in the case of the sample ci, if there are collisions the collided
obstacles are added to a set of obstacles SO(s). If the obstacles
in SO(s) are all removable objects then SO(s) is associate to
s and s is added to the PRM, otherwise s is rejected. Then,
when co and cg are connected in the PRM, the path πi,j with
minimum number of vertices between them is searched and
the set SOi,j that contains the obstacles associated with the
configurations ci and edges s included in πi,j is computed.
Finally the algorithm returns πi,j and SOi,j .

B. Single-Query Bi-directional Probabilistic Roadmap with
Lazy Collision Checking

The single-query bi-directional probabilistic roadmap plan-
ner with lazy collision checking (SBL) [28] is based on
classic PRMs. It builds two roadmaps from the initial and goal
configuration respectively, and it is an adaptive planner able to
make great strides in the open areas of the configuration space
and small steps in areas where the probability of collisions due
to the lazy collision check is larger. Algorithm 3 describes the
SBL planner. The algorithm execute a searching loop for a pre-
set number of iterations. The function expandTrees expands the
two roadmaps generating new samples on each one, evaluates



Algorithm 2: PRM
input : Ri, co, cg
output: πi,j , SOi,j

1 SV = {co ,cg}
2 k = 0
3 while (k < km) ∨ (co and cg are not connected) do
4 ci ← genConfig()
5 SO(ci) ← collisionCheck(ci, Ri)
6 if there are not fixed obstacles in SO(ci) then
7 associate SO(ci) to ci
8 add ci to SV
9 find the nearest neighbor cnn ∈ SV to ci

10 generate the segment s = ccnn
11 SO(s) ← localPlanner(s)
12 if there are not fixed obstacles in SO(s) then
13 associate SO(s) to s
14 add s to PRM
15 else
16 reject s

17 else
18 reject ci
19 k = k + 1

20 πi,j ← find the path with minimum number of vertices
in the PRM

21 SOi,j ← collect the obstacles SO(ci) and SO(si)

associate with each vertice ci and segment si contained
in πi,j

22 return πi,j , SOi,j

Algorithm 3: SBL
input : Ri, co, cg
output: πi,j , SOi,j

1 set co and cg as the roots of the trees τo and τg
2 repeat
3 if expandTrees(τo, τg, Ri) then
4 τ ← connectTrees(τo, τg)
5 if τ ̸= ∅ then
6 πi,j ← τ
7 SOi,j ← collect the obstacles SO(ci) and

SO(si) associate with each vertice ci and
segment si contained in πi,j

8 return πi,j , SOi,j

9 until a predefined number of iterations
10 return failure

with a lazy collision check whether these samples are valid and
tries to connect them to the respective roadmap and returns true
if the expansion can be done. Then, the function connectTrees
is in charge of connecting both roadmaps in order to obtain a
geometric path τ from the initial to goal configuration, if there
is a path copy τ to πi,j . Finally the obstacles associated to the
path πi,j are collected in SOi,j .

Algorithm 4: EST
input : Ri, co, cg
output: πi,j , SOi,j

1 set co and cg as the roots of the trees τo and τg
2 repeat
3 for τo and τg do
4 choose ci from τk with probability 1/w(x),

where {k = o, g}
5 cnew ← expansion(ci, τk, Ri)
6 if cnew is valid then
7 if distance(ci, cnew, τk) then
8 τk ← cnew
9 τk ← edge(ci, cnew)

10 τ ← connectTrees(τo, τg)
11 if τ ̸= ∅ then
12 πi,j ← τ
13 SOi,j ← collect the obstacles SO(ci) and

SO(si) associate with each vertice ci and
segment si contained in πi,j

14 return πi,j , SOi,j

15 until a predefined number of iterations
16 return failure

C. Expansive Space Trees

The expansive space trees planner (EST) [29] grows two
trees using the initial and goal configurations as roots. The
EST planner performs an exploration in the space by random
sampling it from a configuration belonging to one of the
trees. The sampler generates samples around the configurations
of the trees, if the samples are collision-free then they are
connected to the nearest leaf, whatever tree it belongs to. When
co and cg are in the same tree the algorithm searches a solution
path. Algorithm 4 describes the EST planner. First, it sets co
as a root of the tree τo and cg as a root of τg; then enters into
a loop where a sample ci is chosen from one of the trees. Then
ci is used to find a new configuration cnew using the function
expansion. If cnew is collision-free, and if it complies with a
distance criterion it is added to one of the the trees. After that,
the connectTrees function tries to connect τo with τg, when
they are connected it means that there exists a path from co
to cg. The loop is repeated a predefined number of iteration
or until a path between the trees is found, and returns πi,j and
the corresponding SOi,j .

D. Rapidly-Exploring Random Tree planner

The rapidly-exploring random tree planner (RRT) [2] ex-
plores the configuration space with a random tree. The tree is
rooted at the initial configuration and by using random samples
grows the tree to explores the space until a solution path is
found. Algorithm 5 describes the RRT which performs the
following steps, First co is set as a root of the tree τ and then
a loop starts where a new ci is randomly generated by using the
function genConfig. Then, the collisionCheck function checks
if ci is a valid configuration (i.e. if ci is collision-free with
respect to fixed objects in the environment, and if it is kinemat-
ically reachable by the robot). The nearestNeighbor function
is in charge of computing the distance between ci and all the



Algorithm 5: RRT
input : Ri, co, cg
output: πi,j , SOi,j

1 set co as the root of τ
2 for k = 1 to K do
3 ci ← genConfig()
4 SO(ci) ← collisionCheck(ci, Ri)
5 if there are not fixed obstacles in SO(ci) then
6 associate SO(ci) to ci
7 cnear ← nearestNeighbor(ci, τ )
8 addConfig(ci, cnear, τ )
9 if ci = cg in τ then

10 if solutionPath(τ ) then
11 πi,j ← τ
12 SOi,j ← collect the obstacles SO(ci)

and SO(si) associate with each vertice
ci and segment si contained in πi,j

13 return πi,j , SOi,j

14 else
15 reject ci

16 return failure

configurations in τ and returns the nearest configuration cnear,
and connects ci with cnear using the function addConfig.
Then, when the tree includes cg the algorithm searches for
solution path from co to cg, using the solutionPath function,
which returns true if there is a path or false when co and cg
can not be connected. Finally, Algorithm 5 returns πi,j and
the corresponding SOi,j .

E. Rapidly-Exploring Random Tree Connect

The RRT-Connect planner is an extension of the RRT
planner [30], this planner builds two trees in the configuration
space using the initial and goal configuration as a root of
each tree, the trees rapidly explore the space and cover it
proportionally until one of them intercepts the other, this means
that a trajectory between the initial and goal configuration
has been found. Algorithm 6 describe the RRT-Connect, and
follows the same base of the RRT but in this case two trees are
built, τo and τg , one from co and another from cg, respectively.

After the generation of a sample ci, the extend function
selects the configuration ct from τo nearest to ci and attempt to
connect them. The function returns one of the following states:
Reached, when ci = ct, Added when ci ̸= ct and ci was added
to the tree, and Trapped when ci could not be added to the tree
because it implies a collision. If the extend function returns a
state different from Trapped, then it is applied to the other
tree τg . If in this case the function returns Reached, it means
that the two trees have been connected. In any other case, the
swap function exchange the trees to start a new iteration. This
process is repeated until reaching a given number of iterations
K or until τo and τg are connected, and in the latter case the
Algorithm 6 returns πi,j and SOi,j .

Algorithm 6: RRT-Connect
input : Ri, co, cg
output: πi,j , SOi,j

1 set co and cg as the roots of τo and τg
2 for k = 1 to K do
3 ci ← genConfig()
4 SO(ci) ← collisionCheck(ci, Ri)
5 associate SO(ci) to ci
6 if not extend(τo, ci) = Trapped then
7 if extend(τg, ci) = Reached then
8 πi,j ← path(τo, τg)
9 SOi,j ← collect the obstacles SO(ci) and

SO(si) associate with each vertice ci and
segment si contained in πi,j

10 return πi,j , SOi,j

11 swap(τo, τg)
12 return failure

V. EXPERIMENTAL RESULTS

The experiments presented below show the performance
of each motion planner in three scenarios with different
complexity, the experiments were performed using the testbed
described in Section III.

In order to execute the experiments it was considered
that each arm is a single independent system and the motion
planning process has two phases, first, the paths for each
arm are independently determined and, then, a coordination
method [31] is used in order to avoid potential collisions
between the robots when they execute their movements simul-
taneously. In the three experiments the robot R1 is in charge of
grasping the goal object O0 and R2 is in charge of removing
the obstacles.

100 runs were computed for each experiment. For each
run, the limits have been set to 600 s for the running time and
to 10000 generated samples. The experiments were run using
a computer with processor Intel I7 2.3 GHz, 4Gb RAM, and
Ubuntu OS.

In the first experiment the can of interest lie on a table
with some other removable objects around it (see Figure 2a).
The grasp configurations for robot R1 allows only side grasps
as shown in Figure 1 (i.e. R1 cannot grasp the objects from
the top), while the gripper in R2 can grasp the object only
from the top. After performing the validation of the grasp
reachability, 3 valid grasps configurations were found for the
robot R1 to grasp the goal O0, and a path for R1 was computed
to reach each valid grasp configuration. One of the grasp
configuration collided with the removable object O1 and the
other 2 had more collisions, so the former is selected and a path
for R2 is computed to remove O1, which was found without
any additional collision. All the planners solved always the
problem. Figure 3 shows a bar chart representing graphically
the average time used to solve the experiment 1.

In the second experiment several cans lie on a table being
again the yellow can the desired object (see Figure 2b), in this
case there is a fixed obstacle O5 over the table. This variation
of the scene generates a narrow passage and increases the



R2 R1

O0

O1

O2

(a) Experiment 1

R2R1

O0

O4

O3

O1

O2

O5

(b) Experiment 2

R1 R2

Lid

Box

O1

(c) Experiment 3

Fig. 2: Setup for each experiment.

0
1

2
5

2
5

0
3

7
5

5
0

0

Experiment 1 Experiment 2 Experiment 3

PRMwO SBL EST RRT RRT-Connect

3
1
.7

1
3

6
1
.3

2

8
7

.0
9
3 1
3
1
.1

5

5
2
.1

8
5

4
.4

2
4 4
3
.1

3
3

1
6
5
.5

0
1

3
0

1
.5

4
6

2
6
.9

3
3

2
6
.7

0
6 7
5
.0

9
9

4
2

9
.1

2
8

5
7

.5
1
2

Fig. 3: Bar charts of the average time (s) for the experiments.

difficulty of accessing to Oo. In this experiment only one valid
grasp was found for R1 to grasp Oo, which had a collision with
the red can O2, and O2 can be removed by R2 without any
additional collision. For this experiment only 2 paths were
computed in each task execution, one for R1 to grasp Oo

and one for R2 to grasp O2. This is a harder experiment
due to the narrow passage to the target, which is reflected
in the rates of failures as shown in Table I. The PRM was the
only planner able to complete the 100 task executions without
failures. Figure 3 shows a bar chart representing graphically
the average time used to solve the experiment 2.

In the third experiment the yellow can is located in the
center of a box that has a lid, and the scene has also a fixed
obstacle O1 over the box (see Figure 2c). The yellow can can
be grasped by R1 using two grasp configurations, the paths
to reach both of them collides only with the lid, so the one
that was first obtained was selected, and a path for R2 to
remove the lid was found without any additional collision. The
RRT had always failed, sometimes because it exceeded the
maximum predefined limit of samples that can be generated
and in other cases because it reached the maximum predefined
limit time used to find the paths. Figure 3 shows a bar chart
representing graphically the average time used to solve the
experiment 3. Table I summarizes the average results obtained

for each experiment with each motion planner.

VI. CONCLUSIONS AND FUTURE WORKS

This work has presented a comparison between five motion
planners based on random sampling methods using three
scenarios with different complexities. The performances were
was compared looking to the require times to find a solution,
the numbers of generated samples, and the rates of failures.
The PRM planner solved the tasks with the higher performance
followed by the RRT-Connect and the SBL, while the RRT
had the lower performance, this is because it grows a tree
by generating random samples without any criterion, while in
the other cases some heuristics help in the search. The SBL,
EST, and the RRT-Connect had the advantage over the RRT
of growing and expanding two graphs which helps to solve
the problems faster. As future work, we consider the problem
of dealing with more than one desired object, assuming than
each arm has to grasp one particular desired object (always
in the presence of obstacles), for instance to assembly them,
considering also the possibility of transfering the objects from
one robot to the other. Then, analyzing the performance of
different planners in this type of problem is a relevant future
work.

REFERENCES

[1] J.-C. Latombe, Robot motion planning. Kluwer Academic Publishers,
1991.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] L. E. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilis-
tic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” in Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp.
566–580.

[4] A. Yershova, L. Jaille, T. Simeon, and S. LaValle, “Dynamic-Domain-
RRTs: Efficient Exploration by Controlling the Sampling Domain.” in
Proc. IEEE Int. Conf. Robotics and Automation, 2005, pp. 3856–3861.

[5] L. Zhang and D. Manocha, “An Efficient Retraction-base RRT Planner.”
in Proc. IEEE Int. Conf. Robotics and Automation, 2008, pp. 3743–
3750.

[6] J. Zucker, M. Kuffner and J. Bagnell, “Adaptive workspace biasing
for sampling-based planners.” in Proc. IEEE Int. Conf. Robotics and
Automation, 2008, pp. 3757–3762.

[7] J. Rosell, L. Cruz, R. Suárez, and A. Pérez, “Importance Sampling
based on Adaptive Principal Component Analysis,” in Accepted to the
IEEE Int. Symposium on Assembly and Manufacturing, May 2011.

[8] Y. Yang and O. Brock, “Adapting the sampling distribution in PRM-
Planners based on an Approximated Medial Axis.” in Proc. IEEE Int.
Conf. Robotics and Automation, 2004, pp. 4405–4411.



Experiment 1

Planner Paths Time (sec) Total Time (sec) Samples Generated Total Samples Failures %R1 R2 R1 R2
PRM 31.590 0.122 31.713 587 2 589 0
SBL 53.961 7.359 61.320 438 134 572 0
EST 79.557 7.535 87.093 176 20 196 0
RRT 123.623 7.526 131.150 1366 65 1431 0

RRT-Connect 45.218 6.967 52.185 15 5 20 0
Experiment 2

Planner Paths Time (sec) Total Time (sec) Samples Generated Total Samples Failures %R1 R2 R1 R2
PRM 2.737 1.687 4.424 57 9 65 0
SBL 32.783 10.349 43.133 591 247 838 30
EST 150.535 14.967 165.501 765 136 901 40
RRT 191.755 109.791 301.546 3830 3497 7327 70

RRT-Connect 19.474 7.459 26.933 45 11 56 25
Experiment 3

Planner Paths Time (sec) Total Time (sec) Samples Generated Total Samples Failures %R1 R2 R1 R2
PRM 23.275 3.431 26.706 256 62 318 0
SBL 63.848 11.251 75.099 1286 268 1554 0
EST 392.939 36.188 429.128 1952 475 2427 50
RRT - - * - - * 100

RRT-Connect 48.241 9.271 57.512 107 22 129 0

* One of these parameter reached the maximum allowed in all the runs (i.e. time=600 sec or number of samples=10000).

TABLE I: Average results of 100 runs of each motion planner in the three experiments.

[9] R. Bohlin and L. Kavraki, “Path Planning Using Lazy PRM,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 2000, pp. 521–528.

[10] E. Cheng, P. Frazzoli and S. LaValle, “Improving the performance of
Sampling-Based Planners by using a Symmetry-Exploition Gap Reduc-
tion Algorithm.” in Proc. IEEE Int. Conf. Robotics and Automation,
2004, pp. 4362–4368.

[11] J.-M. Lien and Y. Lu, “Planning Motion in Similar Environments,” in
Proc. of Robotics: Science and Systems., Seattle, USA, June 2009.

[12] R. Guernane and N. Achour, “Generating optimized paths for motion
planning,” Robotics and Autonomous Systems, pp. 789–800, 2011.

[13] G. Wilfong, “Motion planning in the presence of movable obstacles,” in
Proc. of the 4th Annual ACM Symposium on Computational Geometry,
1988, pp. 279–288.

[14] P. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 1,
1991, pp. 444–449.

[15] K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue, “Environment
manipulation planner for humanoid robots using task graph that gener-
ates action sequence,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, 2004, pp. 1174–1179.

[16] M. Dogar, M. Koval, A. Tallavajhula, and S. S., “Object Search by
Manipulation.” in Proc. IEEE Int. Conf. Robotics and Automation, 2013.

[17] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning and
executing navigation among movable obstacles,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, October 2006.

[18] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba,
“Working with movable obstacles using on-line environment perception
reconstruction using active sensing and color range sensor,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2010, pp. 1696–
1701.

[19] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V.
Dimarogonas, and D. Kragic, “Dual arm manipulation - A survey,”
Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1340–1353,
2012.

[20] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simultaneous Grasp and
Motion Planning,” IEEE Robotics and Automation Magazine, vol. 19,
pp. 43–57, 2012.

[21] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann,
“Humanoid motion planning for dual-arm manipulation and re-grasping
tasks,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, oct.
2009, pp. 2464–2470.

[22] R. Shauri and K. Nonami, “Assembly manipulation of small objects

by dual-arm manipulator,” Assembly Automation, vol. 31, pp. 263–274,
2011.

[23] A. Edsinger and C. Kemp, “Two Arms Are Better Than One: A
Behavior Based Control System for Assistive Bimanual Manipulation,”
Lecture Notes in Control and Information Sciences, vol. 370, pp. 345–
355, 2008.

[24] C. Rosales, L. Ros, J. M. Porta, and R. Suárez, “Synthesizing grasp
configurations with specified contact regions,” International Journal of
Robotics Research, vol. 30, no. 4, pp. 431–443, 2011.

[25] F. Gilart and R. Suarez, “Determining Force-Closure Grasps Reach-
able by a Given Hand,” in 10th IFAC Symposium on Robot Control,
SYROCO, September 2012, pp. 235–240.

[26] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcı́a, “The kautham project: A teaching and research tool for
robot motion planning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation, ETFA’14, 2014. [Online].
Available: sir.upc.edu/kautham

[27] C. Rodrı́guez, A. Montaño, and R. Suárez, “Planning manipulation
movements of a dual-arm system considering obstacle removing,”
Robotics and Autonomous Systems, vol. 62, no. 12, pp. 1816 – 1826,
2014.

[28] G. Sanchez and L. J.C., “A Single-Query Bi-Directional Probabilistic
Roadmap Planner with Lazy Collision Checking,” in Int. Symposium
on Robotics Research (ISRR), 2001, pp. 403–417.

[29] D. Hsu, L. J.C., and R. Motwani, “Path Planning in Expansive Con-
figuration Spaces,” in Proc. IEEE Int. Conf. Robotics and Automation,
1997.

[30] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2000, pp. 995–1001.

[31] C. Rodriguez, A. Montano, and R. Suarez, “Optimization of robot
coordination using temporal synchronization,” in Emerging Technology
and Factory Automation (ETFA), 2014 IEEE, Sept 2014, pp. 1–7.


