Manipulation tasks with a dual arm system
including obstacles removing

Carlos Rodriguez

Abstract

The paper deals with the problem of planning move-
ments of a two-hand system, considering the possibility
of using one hand to remove potential obstacles in order
to grasp a desired object with the other hand. The ap-
proach is based on a Probabilistic Road Map that does
not rule out samples implying collisions with removable
objects but instead classify them according to the collided
obstacle(s), and allows the search of free paths with the in-
dication of which objects must be removed from the work-
space to make the path be actually valid. The approach
has been implemented and different tests were performed
with considering a real two-hand robotic system with one
hand in charge of grasping a desired object and the other
in charge of removing the potential obstacles. Some run-
ning examples both in simulation and a real workcell are
presented in the paper using simulations and real experi-
mentations.

1 Introduction

Moving objects around is a problem of significant rel-
evance in the application of robots, both in industrial and
service robotics. It involves several other associated prob-
lems, among which there are two main ones: the deter-
mination of a proper grasp configuration for the available
arm and gripper (considering aspects like the shape of the
object and the task to be performed), and the determina-
tion of collision free paths to arrive to a grasp configura-
tion and to move the object from its initial configuration
to a desired one; grasping and path planning are already
classic problems in robotics.

In this work we deal with the second problem under the
following context: two robots are available (see Fig. 1),
we want to grasp a particular object with one of the robots,
there may be other removable objects in the environment
acting as obstacles, and we can use the second robot to
remove the obstacles if it is necessary. Note that this is a

*The authors are with the Institute of Industrial and Control
Engineering (IOC) - Polytechnic University of Catalonia (UPC),
Barcelona, Spain (carlos.rodriguez.pacheco,

andres.felipe.montano, raul.suarez@upc.edu).

This work was partially supported by the Spanish Government through
the projects DPI2010-15446 and DPI12011-22471.

Andrés Montafio

Raul Suarez *

Figure 1. Dual arm system.

frequent problem in everyday life for the human beings,
and so will be for humanoids robots.

The proposed approach simultaneously solve the prob-
lem of finding the robot movements to grasp and move the
desired object, determining which are the objects acting as
obstacles that must be removed, and the problem of find-
ing the robot movements to remove them. The approach
allows the consideration of different grasping configura-
tions for each object and selects the ones that allow a real
solution to the stated problems.

The paper is organized as follows. After this intro-
duction, Setion 2 presents a review of related works and
Section 3 presents the proposed approach, giving first
an overview and then a formal description including the
proper algorithms. Then, Section 4 deals with the imple-
mentation and presents some application examples in sim-
ulations and real experimentations and, finally, Section 5
summarizes the work and presents some topics deserving
future work.

2 Related Work

During the last two decades there has been significant
research work concerning robot motion planning prob-
lems. Quite effective general strategies have been de-
veloped using sampling-based techniques, and among the
most relevant approaches are the Probabistic Road Map
planners (PRM) [6] and Rapidly-exploring Random Trees
planners (RRT) [9]. In order to speed up query path

planning, some variants of PRM planners were proposed.
One example is the Lazy PRM [2], that builds a roadmap
but without checking for collisions in the first phase; if
a collision with the obstacles occurs, the corresponding
nodes and edges are then removed from the roadmap and
the search starts again, the procces is repeated until a
collision-free path is found. On the other hand, the RU-
PRM planner [10] considers scenarios where there exist
similar known obstacles and, from this premise, it gener-
ates collision-free paths running along the border of the
obstacles and then tries to connect these free paths to their
nearest neighbors, thus yielding a solution path that skirts
the obstacles.

It is important to highlight that the planners mentioned
above have been designed to avoid collisions with any ob-
stacle, either fixed or removable. In contrast, one contribu-
tion of the approach proposed in this work is the planifica-
tion of paths considering that the removable object acting
as obstacles can be ignored if they are properly removed
on time.

Using a dual arm robot to do manipulation tasks mov-
ing removable objects [16] implies avoiding collisions be-
tween the robot and any other object in the environment,
as well as self collisions between the arms or hands, and
collisions between the manipulated objects and the robots
or any other object in the environment. Relevant works
dealing with robot motion planning considering remov-
able obstacles includes [19], that was precursor and has
shown that motion planning among removable obstacles
is a non deterministic polynomial time hard problem (NP-
hard problem), and [3], that created a grid based planner
that heuristically tries to minimize the cost of moving ob-
stacles out of the way.

On the other hand, motion planning developments
made for humanoid robots address the problem of remov-
able obstacles by building a manipulation space based
on a graph that includes all possible geometric paths to
move from an initial position to a final one and the re-
spective obstacles encountered in each path [12]. Other
approaches solve the planification problem using an RRT-
Connect planner and the geometric model of the objects
in the environment to plan robot movements to reach the
goal by pushing out of the way removable obstacles [17].

There are also proposals that use sensors in order to
do an online navigation planning when the robot is in
unknown environments; it includes the recognition of re-
movable obstacles and the calculation of how to push them
out off the road [5]. Another approach [18] developed a
planner considering restrictions on the robot joints, it is
applied to the case of a robotic arm on a mobile base that
performs manipulation tasks to organize some workshop
tools by checking if the robot path can reach a free place
to locate a tool or can remove it from a cabinet. This plan-
ning algorithm is not able to compute the path of a partic-
ular removable object if it is directly blocked by another
object.

Our approach is based on a modified PRM, as will

be described in next section, to deal with the problem
of finding collision free paths for two robots sharing the
workspace when one of them must perform a given ma-
nipulation task and, if necessary, the other is in charge of
removing obstacles. The approach looks for collision free
paths and at the same time determines which are the ob-
jects to be removed from the workplace in order to allow a
valid solution. The robots paths are computed in a decen-
tralized way for each arm-hand system and a precedence
tree is constructed indicating which objects and in which
order have to be removed in order to allow the goal to be
satisfactorily reached without collisions.

3 Proposed Approach

This section describes the proposed approach, first an
overview is given and then the approach is formally de-
scribed by detailing the corresponding algorithms.

3.1 Overview

Consider two robot arms in a workspace where there
is an object of interest to be grasped and some other re-
movable objects, i.e. objects that can be removed from
the scene by the robots themselves. The removable ob-
jects may act as obstacles that do not allow access to the
object of interest. In this context the problem to be solved
is: find a path for one robot to grasp the desired object and
a set of paths for the other robot to remove (if necessary)
all the obstacles.

Basically, the proposed approach is as follows. First,
a basic vision system is used to identify the removable
objects and compute their positions in the real workcell.
Using this information the removable objects are added to
the 3D model of the workcell. Then, a PRM is used to
find a path for the robot in charge of grasping the object
of interest (from now on referred to as the main robot),
but, as a difference with the typical use of PRM a sam-
ple of the robot configuration that implies a collision of
the robot with any removable object in the environment
is not neglected, instead it is considered for the PRM in
an usual way but associating to it a list with the collided
obstacles. The same is done when a local planner checks
the validity of a local segment connecting two samples for
the PRM construction, if there are collisions with the re-
movable objects these are just added to a list associated
with the segment. We refer to this as Probabilistic Road
Map with Obstacles (PRMwO). Using the PRMwO as a
regular PRM it is possible to obtain a path for the main
robot to grasp the object of interest and at the same time
an associate list of obstacles that must be removed from
the environment in order to make the path being collision
free and therefore really valid.

Next step is the search of a path for the other robot
(from now on referred to as the assistant robot) to remove
each of the obstacles for the main robot. This is done us-
ing also a PRMwO for the assistant robot to grasp and re-
move each obstacle. Since some other objects may act as

new removable obstacles, the procedure is iteratively re-
peated until a path without obstacles is found for each of
the objects to be removed or a loop is found (i.e one object
is an obstacle to grasp another one and viceversa). In order
to increase the probability of finding feasible valid paths,
it is considered that the objects can be grasped with a set
of different hand configurations, which are taken as differ-
ent goal points when the PRMwO is built. The grasping
configurations can be obtained using different procedures
(see for instance [15, 4]). In this work it is considered
that the set of possible grasping configurations of an ob-
ject has been computed in advance and it is provided with
the model of the object.

Note that the collision check performed along the con-
figurations of a robot path in the environment must be
done considering the arm and the hand when the robot
is going toward the object to be grasped, and considering
the arm, the hand and also the grasped object when this is
removed from the scene. In practice, if the arm, the hand
and the grasped object are always considered while build-
ing the PRMwO, the robots can follow the same path to
go toward the object and to remove it from the scene after
being grasped.

Once the planning phase is finished, and therefore the
necessary geometric paths were determined for the two
robots, the trajectories along these paths are determined.
This is done with the aim of optimizing the time needed
to remove the obstacles and execute the desired task.
This coordination, adjusting the temporal evolution of the
robots along the obtained paths, has been already devel-
oped and implemented [11] but it is a complementary
module outside the scope of this work and therefore in
not described here.

3.2 Formal description of the approach

This section formally presents the developed algo-
rithms. The following basic nomenclature is used:

R: A robot in the workcell (it includes the arm and the
hand).

C,: Initial configuration for R.

Cy: Goal (grasping) configuration for R.

path: Path of R from C, to Cy; and return to C,.
SO: Set of obstacles (removable objects) for path.

O: Removable object in the environment; includes the
object model, its configuration C' in the workspace
and an associate set of grasping configurations Go.

Go: Robot configuration to grasp the object O referred
to the object reference system.

C': Robot configuration to grasp the object O referred to
the absolute world reference system.

SC': Set of configurations C.

Gpryt Graph describing the PRM for the search of path.
Vs Vertex of Gpgy.

SV: Set of vertices of Gpry.

SE: Set of edges of Gpgy.

PT': Obstacle precedence tree.

S: Environment model; it includes the model of the envi-
ronment, the models and initial configurations of the
robots, positions and grasping configurations of the
removable objects (including the object that must be
manipulated).

The subscripts M and A will be used to indicate that the
items R, C,, Cy, and path are associated to the “Main”
or to the “Assistant” robot respectively (e.g. Rps and R 4,
pathyr and path 4). The superscript * indicates the se-
lected goal object to be grasped, i.e. O*.

For simplicity, it is assumed that the task of grasping
and manipulating the selected object O* have been al-
ready assigned to one of the robots while the other is in
charge of removing the obstacles (in case it is necessary).
This means that which robot acts as R or R 4 is assigned
beforehand. Besides, the initial configuration C, of each
robot is also given, and, without lost of generality, C,, is
used as final destination to drop the removed objects.

The main procedure is presented in Algorithm 1. First,
PT is created with O* as the root node without descen-
dants, and then a path pathj is sought for R, using the
function findPath(R, O) (describe below). If there are no
obstacles along pathy, then it is already a solution to the
problem, otherwise each obstacle O; is added to PT as de-
scendant of O* and an iterative procedure is started look-
ing for paths path 4, for R4 that allow the grasping and
removing of each obstacle O;. If the path path 4, has no
obstacles it can be added to the plan and the corresponding
obstacle O; is removed from PT', otherwise the obstacles
along path 4, are added to PT as descendants of O; (i.e.
a new level of descendants is generated, see an example
in Fig. 2). Note that the maximum number of path 4, to
be determined is bounded by the maximum number 7,4,
of obstacles in the work environment. The procedure is
iteratively repeated for the nodes of lower level in PT,
adding new levels of descendants or removing the nodes
once their descendants have been removed. The proce-
dure ends with success when it is possible to remove the
root node and therefore the selected object O* can be suc-
cessfully grasped and manipulated, or the procedure ends
with failure when a lower node of PT cannot be removed
because it appears at an upper level in the same branch of
the tree. This type of failure can eventually be solved con-
sidering that the robots can exchange their roles as R or
Ra.

The function findPath(R,O) is described in Algo-
rithm 2, given a robot R and an object O this func-
tion returns: a path for R starting at an initial configu-
ration, going to a grasping configuration C; associated

/\
JoRe

Figure 2. Example of a precedence tree PT.
O; and O, must be removed to allow grasp-
ing O*, O3 and O, must be removed to allow
removing O;, and Os; must be removed to
allow removing O-.

Algorithm 1 solveProblem(.S)
Require: S
Ensure: {patha,...patha,, ,patha},

1: Plan=0

2: Add O™ to PT (i.e. create PT)

3: pathayr, SO ﬁndPath(RM,O*)

4: if SO # () then

5 YO, € SOn add O; to PT as descendent of O*

6 while there are terminal nodes O; # O™ in PT do
7: for each terminal node O; do
8
9

n € {0...nmax }

pathAj, SOAj < findPath(R 4,0;)
if SO4; # () then

10: VOi, € SOa4; add Oy to PT as descendent of
O;

11: else

12: Add path a; to Plan

13: Remove O; from PT

14: end if

15: end for

16: end while

17: end if

18: Add path s to Plan
9: return Plan

—_

to O and coming back (with O grasped in the hand)
to the initial configuration and the set SO of obstacles
that must be removed in order to make the path being
collision-free. The first step in this function is the de-
termination of a set of valid (kinematically reachable by
R) grasp configurations SC' from those already associ-
ated to the model of the object O, this is done using
the function testGrasp(R, O) described in Algorithm 3.
testGrasp(R, O) simply takes each grasping configuration
Go,, transforms it to C; according to the current config-
uration of O in the workspace, checks whether C; can be
reached by the robot R (i.e. verifies that the inverse kine-
matics of R has a valid solution for C;) and returns the
set SC' with the reachable configurations C;. After this,
for each reachable grasping configuration C; a path for
the robot is searched using the probabilistic roadmap with
obstacles PRMwO(C,,C,,R) presented in Algorithm 4,
that, besides the path, returns the list of objects that are

Algorithm 2 findPath(R,0O)

Require: : R, O

Ensure: : path for R and the set of obstacles SO
1: SC <+ testGrasp(O, R)
2: define N > #objects_in_workspace
3: for each C; € SC do

4: path;, SO; < PRMwO(C,,C;,R)
5: ifrange(SO;) < N then

6: path < path;

7: SO «+ SO;

8: N < range(SO;)

9: endif
10: end for

11: return path, SO

Algorithm 3 testGrasp(R, O)

Require: : R, O

Ensure: : A set SC(O) of configurations C reachable by R
1. SC=40

2: for each G, € to SGo do

3 Compute C' by combining C' and Go,

4: if Inverse Kinematics of (R) in C is reachable then

5: Add Cto SC

6

7

8

end if
: end for
: return SC

obstacles for R when moving along path. The function
range(SO;) returns the number of obstacles in path; (i.e.
the number of elements in SO;) and is used to select the
path with minimum number of obstacles as possible can-
didate to solve the task.

The function PRMwO(C,,Cy,R) initializes a PRM
with the initial and goal configurations C, and C, for the
robot R. Then, N, samples Smp are generated. If a
sample Smp is at a distance smaller than a given thresh-
old D,,, from a vertex V of Gpgyy, the segment defined by
Smp and V is checked for collisions of R with the en-
vironment. If there are collisions the sample is rejected,
otherwise the segment is added as an edge to the set of
edges SE of Gpgy. Then, SE is checked for collisions
of R with the removable objects O; and, if there are colli-
sions, the set of collided objects are associated to SE. The
procedure is repeated until C, and C; are connected. At
that point the graph Gpgy, is searched for the shortest path
O; between C, and C'y with minimum number of collision
with removable objects, which is returned as solution path
together with the set SO of objects that generate collisions
along the path.

4 Experimental Results

The proposed approach has been implemented inside
the home-developed path planning framework called the
Kautham Project' [13], which was developed with the

! Website of The Kautham Project where is shows the development,
applications, publications and download link of this simulation tool.
https://sir.upc.edu/projects/kautham/

Algorithm 4 PRMwO(C,,C,,R)
Require: : C,, Cy,R
Ensure: path and SO
1. SE=0,50=10
2: SV «+{C,,C4y}
3: for N =0to N < Ny (N given maximum size of the
sample set) do

4: Smp= getSample()

5: SelectV € SV

6: Add Smpto SV

7. if distance(V,Smp) < D, (Dp: given maximum

neighborhood distance) then
8: E,, + connectSamples(Smp, V')
9: if I, does not imply collision of R with the environ-
ment then

10: if E, implies collision of R with O; € SE then
11: SO; + O;
12: end if
13: end if
14: endif
15: if C, and Cj are connected then
16: Break
17: endif
18: end for

19: path < {shortest path between C, and Cy € Gpra}
20: SO « {SO; associate with E;, € path}
21: return path and SO

open source and cross-platform directives in mind and
using libraries Qt [1] for the user interface, Coin3D [7]
for the graphical rendering, PQP [8] for the collision
detection and ROS [14] for the communications layer.
This framework provides the developer with several tools
needed for the development of planners, like, for instance,
direct and inverse kinematic models of the robots (arms
and hands), random and deterministic sampling methods,
metrics to evaluate the performance of planners (e.g. num-
ber of generated samples, collision check callings, num-
ber of nodes in the graph solution, connected components)
and simulation tools.

The following three examples illustrate the ability of
the proposed approach to find the paths for a two hand-
arm robotic system composed by two Stiaubli TX-90
robots with 6 DOF, a Schunk Anthropomorphic Hand
(SAH) with 13 DOF, and a Schunk Dexterous Hand
(SDH2) with 7 DOF. The object to be grasped is a yellow
can and there are some objects in the scene that act as po-
tential obstacles that do not allow a direct access to it. The
model of each object has associated eight different grasp
configurations for the hand. The initial configuration for
each robot is given, and it is also used as final position for
the robot paths, i.e. Rj; must finish with the yellow can
in that position and R 4 drops there the removed obstacles.
The examples have been run in a computer with a proces-
sor Intel Core2 2.13GHz and 4Gb RAM, Debian OS 7.0
and ROS Groovy.

In the first example a yellow can and several red cans
are on a table, as shown Fig. 3. The given eight grasping

(b) Collision configurations of the robot Rps
with the removable obstacles

(g2) R4 taking Os

(h) Rps executing path s, tak-
ing O*

Figure 3. Example 1: (a) Precedence tree
PT, (b) Collision configurations, (c) to (h)
Snapshots of a simulated execution.

configurations of the cans correspond to axial grasps, i.e.
grasping the can from the top is not allowed. A paths
was found with a collision with the red cans Oy, Os, Og
that were added to PT as childs of O*. To remove Oy,
a path 4, was found without collisions, then, to remove
Os, a path 4, was found but it has a collision with the red
can Oy, this is added to PT as child of O5 and new path
path 4, was found to remove O7 without collisions. The
path path 4, was found without collisions. Fig. 3 illus-
trates the execution of this example.

In the second example, the can is located inside a box
(see Fig. 4). pathp; was found with a collision with the
box lid (Fig. 4b shows a configuration of R, colliding
with the obstacle). Then, a path path 4 was found for the
assistant robot R 4 to remove the box lid. Fig. 4 illustrates

(b) Collision configura-
tion of the robot Rjs with
the lid box

(g) Rps executing path ps (h) Rp taking O*

Figure 4. Example 2: (a) Precedence tree
PT, (b) Collision configuration, (c) to (h)
Snapshots of a simulated execution.

the execution of pathj; and path 4 with some snapshots.

In the third example, as in the first one, several cans lie
on a table and the target is the yellow one (see Fig. 5). A
path y; was found with a collision with the red can O- that
was added to PT as child of O*. To remove Oa, a path 4,
was found without collisions for R 4. Fig. 5 illustrates the
real execution of pathj; and pathy, with snapshots of
each path at the time of grasping the corresponding can’.

The results of the three examples are summarized in
Table 1 where it is shown: the times in seconds to com-
puted the paths, the number of PRMwO computed, and
the number of vertices generated for each path.

2The following link shows a video of the real execution of example 3:
https://iocnet.upc.edu/usuaris/raul.suarez/
proyectos/muma/MUMA-videos—es.html

(b) Collision configura-
tion of Rjp; with O2

(g) Ry taking O* (h) Final configuration

Figure 5. Example 3: (a) Precedence tree
PT, (b) Collision configuration, (c) to (h)
Snapshots of a real execution.

5 Summary and Future Works

The paper has presented a new approach for the com-
putation of robot paths considering that it may be neces-
sary to remove objects from the environment in order to
find a solution. The approach is based on what we call
Probabilistic Road Map with Obstacles (PRMwO), which
returns the path for a robot to reach a particular goal and
the list of obstacles to be removed to make the path feasi-
ble. The PRMwO has been implemented and successfully
applied to a dual arm system, considering that one arms
must grasp an object from the scene and the other is in
charge of removing the potential obstacles. A natural ex-
tensions of the implemented work is that the removal of
each object could be assigned to each of the robots in a
dynamic way, minimizing a cost function that considers,
for instance, the current positions of the hands and the
complexity of the expected movements.

Example 1

Paths Time (s) | #PRMwO | #Vertices
pathr 4.9 3 56
path a, 4.7 1 113
path a, 20.9 4 409
path 4, 64.5 1 411
patha., 13.8 1 108

Total 108.8 10 1097

Example 2

Paths Time (s) | #PRMwO | #Vertices
pathr 2.1 3 56
patha, 1.3 1 52

Total 3.4 4 108

Example 3

Paths | Time (s) | #PRMwO | #Vertices
pathy 1.7 4 56
patha, 4.5 1 87

Total 7.6 5 143

Table 1. Running information for the three
examples.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

J. Blanchette and M. Summerfield. C++ GUI Program-
ming with Qt 4. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2006.

R. Bohlin and L. Kavraki. Path Planning Using Lazy
PRM. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 521-528, 2000.

P. Chen and Y. K. Hwang. Practical path planning among
movable obstacles. In Proc. IEEE Int. Conf. Robotics and
Automation, volume 1, pages 444-449, 1991.

F. Gilart and R. Surez. Determining Force-Closure Grasps
Reachable by a Given Hand. In /0th IFAC Symposium
on Robot Control, SYROCO, pages 235-240, September
2012.

Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. In-
aba. Working with movable obstacles using on-line en-
vironment perception reconstruction using active sensing
and color range sensor. In Proc. IEEE/RSJ Int. Conf. In-
telligent Robots and Systems, pages 16961701, 2010.

L. Kavraki, P. Svestka, J. Latombe, and M. Over-
mars. Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces. In Proc. IEEE Int.
Conf. Robotics and Automation, pages 566-580, 1996.
Kongsberg Oil & Gas Technologies. Coin3D - 3D Graph-
ics Development Tools. www.coin3d.org, December 2010.
E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Fast
Proximity Queries with Swept Sphere Volumes. In Proc.
of Int. Conf. on Robotics and Automation, pages 3719—
3726, 2000.

S. M. LaValle. Planning Algorithms. Cambridge Univer-
sity Press, 2006.

J.-M. Lien and Y. Lu. Planning Motion in Similar Environ-
ments. In Proc. of Robotics: Science and Systems., Seattle,
USA, June 2009.

A. Montao and R. Surez. An On-Line Coordination Al-
gorithm for Multi-Robot Systems. In /8th Proc. IEEE

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

Int. Conf. Emerging Technologies and Factory Automa-
tion, ETFA, September 2013. Accepted.

K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue.
Environment manipulation planner for humanoid robots
using task graph that generates action sequence. In Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages
1174-1179, 2004.

A. Pérez and J. Rosell. A Roadmap to Robot Motion Plan-
ning Software Development. Computer Applications in
Engineering Education, September 2009.

M. Quigley, B. Gekey, K. Cnley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng. Ros: an open-
source robot operating system. Workshop on Open Source
Robotics in IEEE Intl. Conf. on Robotics and Automation,
20009.

C. Rosales, L. Ros, J. M. Porta, and R. Sudrez. Synthesiz-
ing grasp configurations with specified contact regions. In-
ternational Journal of Robotics Research, 30(4):431-443,
2011.

C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal,
P. Qi, D. V. Dimarogonas, and D. Kragic. Dual arm ma-
nipulation - A survey. Robotics and Autonomous Systems,
60(10):1340-1353, 2012.

M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner.
Planning and executing navigation among movable obsta-
cles. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, October 2006.

M. Stilman, J.-u. Schamburek, J. Kuffner, and T. Asfour.
Manipulation planning among movable obstacles. In Proc.
IEEE Int. Conf. Robotics and Automation, 2007.

G. Wilfong. Motion planning in the presence of movable
obstacles. In Proc. of the 4th Annual ACM Symposium on
Computational Geometry, pages 279-288, 1988.

