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Abstract—Myocontrolled robotic hands require accurate and
responsive control to regulate grasp strength effectively. However,
many human-in-the-loop (HITL) control systems still lack robust
closed-loop solutions for fine grip force regulation, limiting their
performance. This paper presents a novel control system for
myocontrolled hands that combines contact force sensing and
vibrotactile feedback to enable more natural and precise grasp
interaction. The system features an advanced force controller
based on fuzzy logic, with parameter optimization guided by
user preferences collected through a graphical user interface
(GUI) using Global Learning of Input-Output Strategies from
Pairwise Preferences (GLISp). It is compared against heuristic
model and neural network based controllers. The system was
validated through real-world experiments using the AR10 robotic
hand with OptoForce fingertip sensors, demonstrating improved
adaptability and fine force regulation capabilities for the user.

Index Terms—Grasp strength regulation, Myocontrolled, Vi-
brotactile, Fuzzy logic, Neural network

I. INTRODUCTION

The human hand can perform complex grasps with great
precision and flexibility by coordinating numerous joints, mus-
cles, and sensory signals. This capability allows us to handle
a wide range of objects with ease. However, despite years of
research, achieving similar grasping abilities in robotic hands
remains a major challenge.

A Human—Robot Interface (HRI) is essential for controlling
robotic hands in tasks that require precise grasp force, such
as telemanipulation, assistive robotics, and prosthetics. For
example, over 57 million people worldwide live with limb
amputations [1]. Surface electromyography (SEMG) is a non-
invasive HRI method that uses muscle signals recorded from
the skin to control movement or recognize patterns. It also
plays a key role in Human-in-the-Loop (HITL) systems, where
users actively adjust control during operation.

Robotic grasping requires precise and flexible control strate-
gies, which are typically categorized into three main types:
(1) Heuristic model-based: These methods use mathematical
representations of the robotic hand’s kinematics and dynamics,
contact interactions, and environmental conditions to compute
control actions [2]; (ii) Machine learning-based: These meth-
ods rely on data-driven approaches that enable robotic systems
to autonomously learn control policies through experience,
interaction with the environment, or demonstrations [3]; (iii)
HITL-based: These methods use bio-signals, such as postural
synergies [4], to translate human motor intent into control
commands.

Effective grasping especially in prosthetic robotic systems
also requires reliable sensory feedback. However, most current
HRIs rely primarily on visual feedback, where users observe
the prosthesis to assess performance. Other forms of feed-
back are often lacking. Vibrotactile feedback, which conveys
grasp force through vibration intensity, has shown promise
as a simple, non-invasive method for providing force-related
information [5].

This paper aims to improve the precision and stability of
strength control in myocontrolled robotic hands during tripod
grasps. We propose a non-invasive, HITL control architecture
using a fuzzy-based force controller optimized through Global
Learning from Imprecise and Surrogate Preferences (GLISp).
The approach is compared with heuristic model-based and
neural network (NN) force controllers. Building on previous
work [5], our main contributions are: (i) a novel fuzzy force
controller with a graphical user interface (GUI) to collect
user preferences for GLISp optimization, representing the
first application of preference-based tuning for fuzzy force
control in this field, (ii) a new NN controller trained on
data generated by the fuzzy system, enabling the network to
learn human-optimized policies without requiring large-scale
datasets, which is a novel approach in this field, and (iii)
experimental validation on the AR10 robotic hand' equipped
with OptoForce? fingertip sensors.

II. SYSTEM SET-UP

The proposed control architecture follows the approach
described in [5] and includes five main modules, as illustrated
in Fig. 1 and described in the following subsections.

A. HRI Components, AR10 Hand, and Contact Force Sensors

The HRI setup includes an SEMG system and a vibrotactile
feedback module (see Fig. 2(b, c)). sEMG signals were
recorded using the OYMotion armband’, a wearable device
equipped with dry electrodes positioned around the forearm.
Data were sampled at 1kHz and transmitted via Bluetooth
to a computer. Moreover, vibrotactile feedback was provided
by a small vibration motor embedded in a custom wristband
and connected to a microcontroller via a Grove interface*.
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Fig. 2: Tllustration of (a) the AR10 robotic hand, (b) the vibrotactile module,
(c) the OYMotion SEMG armband, and (d) the OptoForce sensor.

The motor operated at 1 Hz, with vibration intensity controlled
through pulse-width modulation (PWM). A normalized input
signal, v € [0, 1], adjusted the duty cycle of a 1-second binary
waveform and vibration was delivered during the high phase
and suppressed during the low phase. The AR10 robotic hand
used in this study (Fig. 2(a)), developed by Active8 Robots,
is a humanoid, anthropomorphic hand designed for grasping
and manipulation. It features 10 joints (ny; = 10) and 10
linear actuators (n,, = 10), powered at 12V with a peak
current of 5 A and a maximum power of 60 W. The hand has
a sturdy aluminum frame combined with lightweight plastic
components to ensure both precision and durability. It supports
USB and serial communication, provides four analog inputs
for external sensors, and is compatible with ROS>. To measure
contact forces, three OptoForce OMD-20-SE-40N sensors are
mounted on the thumb, index, and middle fingertips using 3D-
printed supports (Fig. 2(d)). Each sensor captures forces along
the z, y, and z axes. The total force at fingertip ¢ is computed

as:
|f1| 1/ ii +fy2ﬂ +f22,i7 1€ {Ta IaM}v (1)

where T', I, and M refer to the thumb, index, and middle
finger, respectively.

B. Myocontrol

The myocontrol system used in this study (Fig. 3) processes
sEMG signals and outputs a control signal, inpy;, representing
the user’s hand closure level. To prepare the SEMG signals,
a pre-processing pipeline was used, including a 50 Hz notch
filter (to remove power-line noise), a 20 Hz high-pass filter
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Fig. 3: Myocontrol module for grasp strength regulation.

(to remove low-frequency noise), and a 200 ms sliding win-
dow to calculate the Root Mean Square (RMS) value [6].
The processed SEMG signals are stored in an input matrix
E € R"BX" where ng = 2 is the number of SEMG channels,
and n is the number of samples. A short calibration phase is
first performed, where the user opens and closes their hand
twice. The resulting data, Eomine, 1S then factorized using
Non-negative Matrix Factorization (NMF) [7]. In this context,
NMF helps extract muscle synergies related to the user’s hand
motions [4] as follows:

Eofﬂine ~ SM Uofﬂine (2)

where Sy € R"2*™U js the muscular synergy matrix, and
Uottine € R™*™ s the offline neural drive matrix, with
ny = 2 representing the number of supraspinal neural drives
(i.e., control signals originating from the brain). After calibra-
tion, the neural drives during real-time operation are computed
as:

U(t) = S3,E(t) (3)

In this setup, U(t) = [ue(?) uf(t)]T € R? represents the
neural drives, and E(t) = [eq(t) 62(t)]T € R? contains the
current SEMG signals. The neural drives are calculated using
the pseudoinverse of the synergy matrix, SIJ\;. Then, the hand
closure level is estimated as:

Oinput = Cscale (ue (t) —us (t> + Coffset) “4)

Here, cscale and coffser are constants used to map ippy into the
range [—0.5,0.5]. This signal is then provided as an input to
the AR10 hand controller as shown in Fig. 1.

C. ARIO Hand Controller

Let qgg-f denotes the reference position of joint 5 of finger

i, with i € {T, M, T} and j € {1,2};

7
a = [¢5 .. ¢]" € R? be the reference finger
configuration of finger f;;
Qef = [¢Ff .. g .. qrff]T € R™7 be the reference

hand configuration vector.
The velocity control law is based on postural synergies, is
illustrated in Fig. 4 and is defined as:

Q™ = KpinSpa,o 5)
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Fig. 4: Velocity-based hand controller, © is the Heaviside step function.
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where Sp € R™*"s is the postural synergy matrix, and
Q' € R™ is the reference hand velocity, with ng = 3 repre-
senting the number of eigen-postures (principal components).
Kgain € R?"7X™ is a diagonal gain matrix. The control input
o € R is driven by the myocontrol system, and «, € R"S
defines the activation levels of each synergy. For example,
a tripod grasp would activate the thumb, index, and middle
synergies, while the others remain zero. Both ¢ and «, are
defined as:

Oinput — 01, if Tinput <1
o=1+<0, if 61 < Oinput < T2 6)
Cinput — 02, if Oinput > 02

where, 61,02 € R are threshold values that define a dead
zone, typically set to —0.1 and 0.1, respectively, and:

y = Qlclosed — (open 7
||aclosed - aopen H

where aigpen, Qclosed € R™S represent the fully open and fully
closed hand postures in the synergy space. The reference hand
configuration Q™" € R™’ is then updated by integrating the
velocity over time:

Q(t+ At) = Q™(t) + Q- At ®)
where At denotes the time step of the control loop.

D. Force Controller

Stable and adaptive grasping requires effective force regula-
tion, handled by the force controller module (see Fig. 1). This
module takes the contact forces f;, measured by the OptoForce
sensors for each finger i« € {T,I,M}, and computes the
diagonal gain matrix Kgn € R™/ "/, (used in Eq. 5) as:

Kgﬂin = diag(KT, KT, .

WK, Koo, Ky, K 9)

Each gain value K; € R is computed using one of three
methods: Heuristic model-based, Fuzzy-based, and Neural
network-based. Heuristic model-based force controller using
a piecewise control law to calculate the gain values, K; € R:

R(I_—V@Jﬂ) if |fi| < F

_ ) U~ g

K=&/ it | f,] > f (10)
0 otherwise

where f € RT is the minimum force required to detect
contact, K € RT is the default gain when no contact is
present, and v € R™ is a scaling factor that reduces the

gain when contact is detected for a specific finger. The other
controllers are described later in Sections III and IV.

E. Vibrotactile Feedback

To provide users with intuitive feedback on grasp strength,
a vibrotactile signal v € [0,1] was generated based on
the error between the measured thumb contact force |fr|
and its target value Fie. In tripod grasps, the thumb force
is treated as an estimate of the internal grasp force, as it
approximately balances the forces applied by the index and
middle fingers. The normalized vibrotactile signal is computed
using a piecewise function:

0, - if |lfrl = fr| <8
v= “ff‘i_mm if B < [|fr| = fr| < crom (b
1, if HfT‘fle > Cnorm

where cyom 18 a scaling constant that defines how the feedback
signal is normalized, and [ is a tolerance margin. In our
experiments, 3 was set to 0.03 N to reflect 5% of the highest
target force level. The signal v was then sent to a vibration
motor.

I11. FuzzY-BASED FORCE CONTROLLER

Compared to heuristic model-based force controllers, the
proposed fuzzy-based force controller augmented with a GUI
for real-time user feedback and optimized through GLISp
offers greater adaptability and user-centered tuning, enabling
more intuitive and personalized grasp strength regulation in
dynamic tasks.

A. Fuzzy Inference System for Gain Modulation

To compute the gain K; € R for each finger, i € {T, I, M},
based on tactile feedback, a Fuzzy Inference System (FIS)
was designed with two inputs: (i) the tracking force error,
efi = Frey — fi € R, and (ii) the rate of change of contact
force fl = ‘thi. These inputs capture both the intensity and the
dynamic behavior of the fingertip contact interaction, which
are essential to achieve responsive and adaptive force control
during grasping. The FIS uses these inputs to compute the
gain through the following four layer processing:

(i) Fuzzification layer: Each variable = € { ey;, f;, K;}is
represented by a fuzzy set my € {me,,, mj, mg, }, which
describes its values using predefined categories or fuzzy labels
(i.e. linguistic labels), and is defined as:

Me,;, = {large neg., negative, zero, positive, large pos.}
ms = {falling, steady, rising}
mpy, = {very low, medium, very high}

Fuzzy sets are represented mathematically using membership
functions (MFs), tim,, (z), which assign a degree of member-
ship to each input. While several types of MFs can be used
in fuzzy systems, this work employs triangular membership
functions due to their simplicity, computational efficiency, and
suitability for real-time applications. Each MF is defined as:
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Fig. 5: Fuzzy membership functions used in the force controller: tracking
force error ey; (top), force rate f; (middle), and output gain K; (bottom).

T — Amy,

b
— Amg,

Hm, (z) = max (min ( Cma — T ) ,0) (12)
Cmy — bmy

where, a,_, by, , and ¢,,,, define the start, peak and end points

of the triangular MF used for both input and output variables.

(ii) Rule Evaluation (Product) Layer: After fuzzifying the

inputs, the FIS evaluates a set of fuzzy rules that link input

combinations to output actions. These rules focus on the most

important and intuitive responses for adaptive force control,

as shown in Fig. 5. Each rule’s activation (firing strength) is

calculated by multiplying the membership degrees of the two
1nputs:

b

Wgo = /u’mgeﬂ (efl) ’ Mmof}, (fl))g =1,...,50=1,...,3
(13)
where, mye,, is the g-th fuzzy lable (e.g, negative, zero,
positive) in the fuzzy set me,,.

(iii) Normalization Layer: This layer calculates the relative
strength of each rule by dividing its firing strength by the total
across all rules:
Wyo

Zz:l Zi:l wgo
(14

where, Wy, denotes the normalized firing strength for the rule
using the g-th fuzzy label of m.,,.

wgo: s g=1,...,5; 0:1,...,3
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Fig. 6: Heatmap of the fuzzy output gain K; as a function of the tracking
force error ep; and its rate of change f;.

(iv) Defuzzification Layer: This layer combines all the
normalized firing strengths, wy,, to compute the final output
gain as:

5 3

K=Y g 20, i€{T.I,M}

g=1o0=1

5)

In the zero-order Sugeno-type FIS used in this work [8], each
2g0 € R is a fixed output value for its rule. These values don’t
depend on the inputs and can be set manually or tuned during
optimization. A heatmap showing how the output varies with
the inputs is presented in Fig. 6.

B. GLISp Optimization via User Preference Feedback

To tune the MF parameters of the FIS, the GLISp algo-
rithm [9] was employed. It optimizes the boundary values of
the triangular membership functions for the inputs ey € R,
f € R, and the output gain K € R. These are denoted by:
M.; € R®, My € R3, and My € R3, forming a parameter
vector M € M C R!! within a bounded search space M
(see Fig. 5):

M,

ef = [amleﬁ y Am2ey;s Cm3eys;s dmdey; > am5efi]
Mag = (a1 f, Oy Cma ) (16)
My = [amik;, Gm2K; , CmiK;)

M = [My, My, Mi]

These parameters control the shape and placement of the tri-
angular MFs, affecting how the controller responds to changes
in contact force. GLISp then optimizes parameters through the
following steps:

(i) Task Execution by the User: The user completes two
rounds of a grasp force control in any experiment using the
GUI and the fuzzy controller, each time with a different
parameter set M € R!L,

(ii) User Preference Feedback Collection: After the second
round of the experiment with parameter set M, the user
compares their performance with the first round with param-
eter set M,_; based on subjective factors such as thumb
force tracking error ey, grasp stability, responsiveness, or
overall task efficiency, and provide feedback (better, worse, or
equal) via the GUI. Each experiment produces one preference
sample [M,_1, My, label], considering N as the total number



of experiments, the user is required to complete at least three
experiments, i.e., N > 3.

(iii) Subjective Performance Assessment: User prefer-
ences are interpreted as pairwise comparisons. Formally, for
two parameter sets My and M, the preference function
R 5 £1.0,1} is defined as:

—1 if My is “worse” than M

(M1, M3) =<0 if M and My are “equal”  (17)
1 if M5 is “better” than My
Assume we have N > 3 samples {My,..., M, ..., My},

where each M, is unique; i.e., for M, M,. € R, M, #£ M,
for all s # r, with s,» = 1,...,N. For each pair of
samples, an experiment is performed and the user provides
a preference. These preferences are collected in a vector

B = [by,...,bg]T € {~1,0,1}¥, where:

bn = m(Myny, My n)) (18)
Each  index pair h € {1,...,E}, with
s(h),r(h) € {1,...,N} and s(h) # r(h), refers to two

different parameter sets, and F is the total number of
preferences given. Note that each element b, reflects the
user’s judgment on which of the two parameter sets performed
better.

(iv) Surrogate Modeling: User preferences are used to build
a surrogate function J : R — R, modeled as a weighted
sum of radial basis functions (RBFs):

N
J(M) =3~ B, 6(Ad(M, M,)) (19)

s=1

where, d : R1"*11 — R is the squared Euclidean distance
between parameter sets (i.e., d(M,M;) = [[M — M;|3),
A > 0 is a scaling factor, and 8 = [B1, ..., Bn]T are weights
learned from user preferences. The RBF ¢ : R — R can
be, for example: (i) inverse quadratic, ¢()\) = ﬁ, or (i)

Gaussian, ¢(\) = eV, According to the user’s preference
labels (see Eq. 17), the surrogate function J € R must satisfy
the following constraints:

T(Miny) < J(Myny) = £+ i 7(Mon), M) = 1

) = J(My ) + 2 — en,if 7(Mypy, M) =1

|[J (M) = J(Myny)| < B+ ep, if 7(Mgpy, My(py) =0

(20)

where > > 0 is a tolerance value, and ¢j, is positive slack

variables that allows flexibility in satisfying the preference

constraints. Using these constraints, the weight vector [ is

computed by solving the following Quadratic Programming
problem:

min
B

En +

N>

M=

N
P
s=1

st Y (BAd(My(ry, M) — $(Ad(M,.(4), ML) fs < — +en

>
Il

1

s=1
Vh : bh = —1,
N
> (#Ad(Man), My)) = ¢(Ad(My(n), M) Bs > £ — &5,
s=1
Vh: by =1,
N
> (6(Ad(M (), ML) = ¢(Ad(My(n), M) Bs| < 5+ en
s=1
Yh: b, =0,

2D
(v) Acquisition Function Optimization: Once a surrogate
function J is learned, it can be minimized to find the best
parameter vector M € R!! for the fuzzy-based force controller
by following these steps:
(1) Minimize the surrogate function J:

My, = argminJ(M) st. M e M; (22)

(2) Ask the user to compare M 1 with the best parameter
found so far, M}, and provide a preference.

(3) Update the surrogate J using the new preference data
via Eq. 21.

(4) Iterate over IN.

To choose the next sample M 1, GLISp uses an acquisi-
tion function that balances exploration and exploitation. This
function includes an exploration term based on inverse dis-
tance weighting (IDW), defined by the function z : R'* — R
as:

0
z(M) = {

arctan (

if M = M for some s,

W) otherwise

(23)
Here, ws(M) = d(M, M,)~ !, and the arc tangent function
prevents z(M) from becoming excessively large when M
is far from all sampled points. Then, using an exploration
parameter § > 0, the acquisition function a : R — R is
defined as:

a(M) = J(:\;I) 0z(M), (24)
where
AJ = mgx{j(Ms)} - msin{j(Ms)}. (25)

The range of the surrogate function over the current samples
{Mj,..., My} is used to normalize the acquisition function
and simplify the selection of the exploration parameter §.
Given this sample set and the preference vector B (see Eq. 18),
the next parameter M4 of the force controller is computed
as the solution of the (non-convex) optimization problem:



My = arg 1{/Inin a(M). (26)

eM
(vi) Iterative Refinement: The process is repeated for a num-
ber of iterations (e.g., 20), allowing the algorithm to gradually
find parameter sets that best match the user’s preferences.
(vii) Parameter Evolution: This stage highlights how key
membership function parameters evolve over iterations. By
continuously incorporating user preferences, the optimization
refines the fuzzy controller to improve performance.

IV. NEURAL NETWORK-BASED FORCE CONTROLLER

The neural network-based force controller learns directly
from data, enabling it to generalize across diverse tasks and
adapt to unmodeled nonlinearities and uncertainties in real-
world interactions. To generalize gain estimation and reduce
manual tuning, a Deep Neural Network (DNN) is implemented
in the force controller to learn the mapping from sensory
inputs to gain values for the thumb, index, and middle fingers.
The training data is generated by running grasp regulation
simulations using the fuzzy-based controller with GLISp opti-
mization, as described earlier. The dataset includes ns samples,
represented as T7 = D[X7, Y] € R™*7, where:

o X7 = D[Fys, fr, 1, far] € R™*4 is the input matrix,
containing the force reference signal Fi.s € R, which the
user is expected to follow during the experiment, along
with the measured contact forces from the thumb (fr),
index (fr), and middle (fy;) fingers.

e Yr = D[Kr,K;,Ky] € R%>3 is the output matrix,
containing the fuzzy-based gain values assigned to each
finger (see Eq. 15).

The dataset is split into 80% for training and 20% for
testing using a fixed random seed for reproducibility. All
input and output features are standardized to zero mean and
unit variance to accelerate training convergence. During each
training iteration 7, the DNN processes a mini-batch of B
samples Tp C T, whereb = 1,..., B. The DNN parameters
are updated after processing each mini-batch until the entire
dataset T is covered, constituting one epoch. This process is
repeated over 200 epochs. The DNN architecture (see Fig. 7)
consists of a four-layer fully connected network: an input
layer, two hidden layers, and an output layer. Each hidden
layer I € {1,2} contains 64 neurons and is fully connected
to the preceding layer, forming a dense structure. The training
process involves four key steps:

(i) Forward Pass: The network generates predictions based
on the input features using pre-activation vectors (z;) and
activation functions (a;). For the first hidden layer (I = 1):

z1 = W Xp+b; 27

where W; € R4 and b; € R% are the weights and biases.
For the second hidden layer (I = 2):

zo = Waa; + by (28)

TABLE I: DNN specification for the NN-based force controller.

Parameter Value || Parameter Value
Input Features 4 Output Features | 3
Hidden Layers 2 Neurons/Layer | 64
Connectivity Dense || Activation ReLU
Regularization (\) | None || € 108
Loss Function MSE || Optimizer Adam
Learning Rate 0.001 || Batch Size 32
Epochs 200 Output Layer Dense

where, W, € R64%64 b, ¢ R and a; = ReLU(z;). The
output layer computes a 3-dimensional vector representing the
predicted gains (Y p) for the mini-batch:

Y5 = Wouaz + bou (29)

where W, € R3%64 and by, € R? are the weights and biases
of the output layer.

(ii) Error Calculation: After the forward pass, the difference
between the predicted gains Y 5 and the true gains Y g in the
mini-batch Tp is computed using the Mean Squared Error
(MSE) loss function:

B
1 .
L= ;1 Y5, = Yo, (30)

where B is the number of samples in the mini-batch.

(iii) Backpropagation: Backpropagation calculates how the
loss L changes with respect to the network’s weights and
biases (W, b;) using the chain rule. It starts from the output
layer and moves backward through the hidden layers. In this
work, the gradients are computed automatically using the
PyTorch framework.

(iv) Parameter Update: The gradients are used to update the
network parameters using the Adam optimizer, which adapts
the learning rate based on estimates of the first and second
moments of the gradients. The update rules for the weights
W (and similarly for biases b) are:

m; = fm,_; +(1—-$)VwL
v, = Bovr_1 + (1= B2)(VwL)?

M, = —T
To1-p] G1)
A
M
W =W, - —m,

VVrt€
where m., and v are the first and second moment estimates,
B1 = 0.9 and B = 0.999 are the exponential decay rates,
n = 1073 is the learning rate, and ¢ = 1078 is a small
constant to prevent division by zero. After training, the model
is evaluated on the test set using the MSE loss to assess gen-
eralization performance. Table I summarizes the specifications
of the DNN architecture, and the trained model’s weights and
scalers are saved for future use.
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Fig. 7: Deep neural network structure embedded in the NN-based force
controller.

V. EXPERIMENTAL VALIDATION

A. Implementation and Description of the Experiment

The video of the experimental trials is available as sup-
plementary material at: https://www.youtube.com/watch?v=
20Gyn_JhGXY (accessed: June 4, 2025). The system was
developed in Python 3.13.3 and ran on a PC with Ubuntu
20.04, an Intel Core i5 processor, 16 GB RAM, and an
NVIDIA RTX 3060 GPU. ROS Noetic was used for communi-
cation and control. The AR10 hand was connected via serial
communication, and the control loop ran at 50 Hz, enabling
real-time myocontrol and responsive force regulation. It was
tested in a force regulation task using tripod grasps. Two right-
handed participants (ages 25 and 35), with no prior experience
in myoelectric control, took part in the study. Each participant
sat at a table and wore the SEMG armband and vibrotactile
device on their dominant hand. The robotic hand was placed
in front of them, and the test object was randomly selected
and grasped as shown in Fig. 8. Three different objects were
used to introduce variation in shape and contact conditions:
a cube (S5cm edge), a cylinder (5cm diameter, 6 cm height),
and a sphere (6 cm diameter), all made of hard plastic (Fig. 9).
The experiment consisted of three phases:

Phase 1: sSEMG Control Calibration. As described in
Section II-B, the user performed two hand openings and
closings to calibrate the NMF-based model and set the scaling
parameters (Cscale, Coffset)-

Phase 2: User Preferences Collection. As shown in the
GUI in Fig. 10 (left), the process begins by the user clicking
on Start Grasp, allowing time to become familiar with the
system and complete a stable grasp. Next, the user presses
First Round and follows a reference force for 30s using the
current fuzzy parameters, then proceeds with Second Round,
performing the same task but with a different set of fuzzy
parameters. The user then compares both rounds’ tracking
errors and overall operation, and provides preference feedback
by selecting whether the second round was Better, Equal, or
Worse. Each experiment consists of two rounds, and users
are expected to complete at least three full experiments. All
collected data are saved and used for optimizing the fuzzy
controller through the GLISp framework.

Fig. 8: Experimental setup for grasp strength regulation.

Fig. 9: Objects used in the Experiment

Phase 3: Experiment Execution. As shown in the GUI in
Fig. 10 (right), after selecting one of the available controllers
rule-based, fuzzy-based, or neural network-based, the user
clicks Start Grasp to initiate and stabilize the object grasp.
Next, they press Start Experiment to begin the test, during
which the user attempts to modulate the grasp force to match
predefined target levels F,.; = {0.8,1, 1.2} N. The reference
and actual force signals are displayed in real time, allowing the
user to visually monitor performance. These target forces were
chosen to simulate light, medium, and firm grasp intensities
within the comfortable control range of the robotic hand.
During the experiment, if the tracking error exceeds +0.03 N,
the vibrotactile motor activates to alert the user. At the same
time, on the GUI, the “Close a bit” or “Open a bit” buttons
start blinking when the applied force is below or above the
reference value, respectively, helping the user adjust their
muscle activation accordingly. Each subject completed all
combinations of object and force controller type.

Grasp
Start Grasp -

Experiment Control

Each experiment consists of two rounds (30s each at
1N). Perform and observe First Round, then Second
Round. Compare and previde feedback

mmmmm
Please complete the experiment at least three times.
Your current number of completed is

0

First Round Second Round

Online Graph

20 Force Reference vs Thumb Force

15

210

fos

00

02 I
1 20 30 40 50 60 60 T 5
Time (s)

Your Feedback Open abit

After Second Round, indicate if the result s Better /

Equal / Worse than First Round.

Fig. 10: GUI for collecting user preferences applied in fuzzy force controller
(left) and experiment execution (right).


https://www.youtube.com/watch?v=20Gyn_JhGXY
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Fig. 11:

controller.

Force tracking and user input using the heuristic model-based

o_input

Time (s)

Fig. 12: Force tracking and user input using the fuzzy-based controller.

B. Experimental Results

The performance of the proposed control architecture was
evaluated across 10 trials. The analysis focused on the system’s
ability to accurately modulate contact forces, respond to user
intent, and dynamically adapt control gains through different
controllers: heuristic model-based, fuzzy-based, and neural
network-based. As a sample of the system’s performance,
Figures 11, 12, and 13 illustrate representative trials for each
controller, performed by one participant using the sphere
object, showing the measured thumb contact force |fr|, the
target force Fier, and the user input signal ojppu. The shaded
region around the reference force indicates the £0.03 N error
tolerance band used to trigger vibrotactile feedback. The
heuristic model-based controller exhibited higher overshoot
during transitions to higher force levels. The fuzzy-based
controller reduced overshoot, but still showed moderate fluctu-
ations around the target force and occasional high-frequency
corrections. In contrast, the neural network-based controller
achieved the smoothest and most stable response across all
force levels. The peaks are caused by a combination of user
input variability and the force controller’s ability to adjust the
gain effectively to prevent overshoot and minimize tracking
error. The vibrotactile feedback alerts the user when abnormal
force deviations occur and prompts them to take appropriate
corrective actions, such as slightly opening or closing the hand.
The Root Mean Square Error (RMSE) between the measured
thumb force fr(t) and the reference force Fif(t) over a time
window of n samples is presented in Table II.

VI. CONCLUSIONS AND FUTURE WORKS

We presented a fuzzy and neural network-based force
control system for myocontrolled hands using vibrotactile

— I
—=- fTref
11 +0.03N

e —

o_input

Time (s)

Fig. 13: Force tracking and user input using the NN-based controller.

TABLE II: RMSE of force tracking error for each controller.

Model-Based
0.0525

Neural Network-Based
0.025

Controller
RMSE (N)

Fuzzy-based
0.040

feedback. The fuzzy controller was refined via user preferences
using GLISp, while the NN model learned optimal gains
from data. Experiments showed the NN approach yielded
the lowest tracking error. Although this study was conducted
under controlled conditions, the adaptive fuzzy controller and
the DNN’s generalization help ensure robustness to moderate
noise and input variability. Future work includes extending
to multi-finger tasks and broader evaluation across users and

rasp types.
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