Robot Situation and Task Awareness using
Large Language Models and Ontologies

Victor Molina*
victormolina.diez @estudiantat.upc.edu

Oriol Ruiz-Celada*

oriol.ruiz.celada@upc.edu

Jan Rosell

Jjan.rosell@upc.edu

Raul Suarez
raul.suarez@upc.edu

Isiah Zaplana

isiah.zaplana@upc.edu

Institute of Industrial and Control Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract—Robot situation and task awareness requires a
deep understanding of the environment, the domain knowledge,
and task planning. We present a novel framework that
integrates ontologies, Large Language Models (LLMs), and the
Planning Domain Definition Language (PDDL) to enhance the
comprehension capabilities of robotic systems. The framework
employs an LLM to extract structured knowledge from natural
language descriptions provided by a human user, populating an
OWL ontology that captures relevant objects, properties, and
relations. This populated ontology is then used to parse a PDDL
Domain file and generate a corresponding PDDL Problem file to
solve particular planning problems. This research contributes to
the intersection of knowledge representation, natural language
processing, and automated planning, providing a solution for
intuitive human-robot interaction through LLMs.

Index Terms—robotic manipulation, task planning, ontologies,
Large Language Models

I. INTRODUCTION

The advancement of robotic manipulation systems has
become a focal point in the development of autonomous
and intelligent systems, particularly in dynamic and complex
environments. A major challenge in this domain is to enable
robots to perform manipulation tasks autonomously while
adapting to changes in the environment and responding to
various uncertainties. Achieving such levels of autonomy
requires the integration of robust planning, execution, and
monitoring capabilities, all of which must be dynamically
adjusted as new information about the environment becomes
available. To this end, knowledge-based frameworks that
utilize ontologies [1]-[3] have proven to be promising
approaches that facilitate adaptive behaviors.

Ontologies provide the robot with an understanding of the
domain, the current situation, and the execution structures
necessary to perform the tasks. This includes the ability to
reason about the initial and goal states of a task, configure
planning and execution processes, and monitor the task in
real time. The awareness of the robot about the situation,
domain actions, and execution structures enables it to adapt
its behavior as needed, ensuring more efficient and flexible
task execution in uncertain or dynamic settings. However,
even with these capabilities, robotic systems often encounter
gaps in knowledge, particularly when sensory data from
the environment is incomplete, ambiguous, or misleading.

* These authors have contributed equally to this work.

Addressing these gaps is critical for improving the overall
autonomy and decision-making capabilities of robotic systems.

To bridge these knowledge gaps and enhance robot
adaptability to new or uncertain environments, we propose
a novel approach that utilizes human information through
Large Language Models (LLMs). LLMs have demonstrated
remarkable success in understanding and generating natural
language, motivating their integration into the perception and
task specification processes of the proposed framework. This
integration enables human users to complement the robot’s
understanding of the environment, enhancing situational
awareness and improving task goal specification.

The framework is illustrated in Figure 1. At the center is
the Knowledge Database Manager, responsible for updating
ontologies with new knowledge and performing ontological
reasoning. It uses Owlready2 [4], a Python library that
provides efficient access to and modification of ontologies in
the OWL (Web Ontology Language) format!. Two components
populate the ontologies. The Smart Perception Module
manages the robot’s perception system and constructs an
ontology-based world model [5]. This world model captures
essential information of the environment, such as object poses
and features, and, through the ontology reasoning process,
the spatial relations between objects. The second one is the
Ontology Populator, the LLM-based component that enables
human users to intervene by providing natural language
descriptions of the environment. The information provided by
human users is used, on the one hand, to complement the
current state information (inif) when the robot’s perception
system encounters limitations, such as ambiguous object
detections or missing data, thereby enhancing the robot’s
situational awareness. On the other hand, it is used to easily
define the desired state (goal), complementing task awareness.

Traditionally, robotic tasks are defined through formal
programming languages such as the Planning Domain
Definition Language (PDDL) [6]. While these languages
provide precise representations of tasks, they can be complex
and inaccessible to users without technical expertise. In the
proposed framework, once the ontology has been populated, a
parsing process is employed to map the knowledge contained
in the ontology to the predicates defined in the Planning
Domain Definition Language (PDDL) domain. After the

Uhttps://www.w3.0org/fOWL/

Ontologies

Knowledge Structure

Ontology Populator Desired goal
Scene description

Smart Perception Module

@ OpenAl " ‘

Types + Predicates

PDDL Domain

Knowledge GPT-4o-mini
Geometric il
. init
P i reasoning ||| init Manager Objects Stuctured
erception . ructure
S stzm > C Ontological goal Attnbytes calls
y State Reasoning Relations
reasonin
° (Owlready?) Current State
Classes + Properties*
Predicate Knowledge
PDDL Domain) PDDL Problem
Parser > (Generator
PDDL Classes

Planner PDDL Problem

Fig. 1. Proposed knowledge-based framework with LLM ontology population and PDDL generation

parsing, the framework is capable to automatically translate the
ontology-based current and desired states of the world into a
PDDL problem file, which the robot uses to generate a formal
task plan.

The proposal presented here not only enables users to
specify using LLMs the initial task goals, but also supports
goal updates during task execution. For instance, if an
unexpected event occurs that requires the robot to replan
or recover from an error, the user can provide a new goal
description, and the system will generate the corresponding
PDDL representation for the updated task. This dynamic
interaction between the user and the robot ensures that
the system can adapt to changes in real-time and continue
executing tasks even in the presence of uncertainties or partial
failures.

The main contributions of the paper are:

o A method to instantiate ontologies using LLMs,
o A method to generate the ontology-based current and
desired states of the world into a PDDL problem file.
The paper is structured as follows. Section II presents some
related works, Section III introduces the Ontology Populator,
Section IV the Ontology-based PDDL generation method and,
finally, Section V presents the conclusions of the work.

II. PREVIOUS WORK

A. Ontology population

Ontology population, the process of instantiating an
ontology with domain-specific entities and relationships, is a
critical step in knowledge engineering. Traditional methods
often rely on manual curation or semi-automated extraction

from both structured and unstructured data sources. While
manual approaches ensure high accuracy, they are labor-
intensive and prone to human bias. Early semi-automated
methods, such as those proposed by Kietz et al. [7],
Maedche and Staab [8], and Cimiano and Volker [9], leveraged
rule-based natural language processing (NLP) techniques but
struggled with domain-specific nuances.

Recent advancements in Large Language Models (LLMs)
have introduced novel methodologies for ontology population.
LLMs, trained on vast text corpora, capture complex
linguistic patterns and domain knowledge, thus facilitating the
automation of ontology population. For instance, Ciatto et al.
proposed using LLMs as oracles for ontology population [10].
Their method utilizes a predefined ontology schema and
query templates to automatically generate instances for both
classes and properties by iterating over the ontology. Their
experimental results demonstrated a significant improvement
in accuracy. However, this iterative process can result in higher
computational time and increased API calls, as each class in
the ontology prompts the LLM to seek entities that match a
specific template, such as “examples of (class)?”.

Similarly, Norouzi et al. explored the use of LLMs for on-
tology population through prompt engineering techniques [11].
Their approach extracts relational triples from unstructured
text using small modular ontologies as guidance, focusing
on processing large text data with Retrieval Augmented Gen-
eration (RAG), rather than solely on the population of the
ontology itself.

Finally, similar to our work, Caufield et al. introduced
the Structured Prompt Interrogation and Recursive Extraction

of Semantics (SPIRES) method for populating knowledge
bases using zero-shot learning [12]. SPIRES exploits the
zero-shot learning capabilities of LLMs to perform general-
purpose query answering from flexible prompts, returning
information that conforms to a specified schema. Given
a detailed, user-defined knowledge schema and input text,
SPIRES recursively interrogates prompts against LLMs like
GPT-3 to obtain responses matching the provided schema.
However, this recursive extraction may lead to increased API
calls and computational costs. Moreover, SPIRES primarily
focuses on entity and attribute extraction, while our work also
aims to extract relations.

B. Generation of Planning files

The generation of task planning files is a well-established
field in robotics, as many approaches have focused on
creating efficient methods to translate ontological and
domain knowledge into formats suitable for task planning
algorithms. These approaches enable robots to operate in
complex environments by reasoning about tasks, actions, and
constraints. While traditional systems often require domain-
specific adaptations to translate ontological knowledge into
PDDL, recent advancements are moving toward more flexible
and dynamic approaches, including the automated generation
of planning domains based on observations [13].

The PMK framework [14], for example, employs ontologies
to define task sequences, actions, and constraints, enabling
robots to adapt dynamically based on real-time perception.
This framework is particularly focused on Task and Motion
Planning (TAMP) problems, integrating both task-level
decision-making and motion feasibility. Instead of using
PDDL for planning, PMK queries an ontology with predicates
like robot-reachability—-grasping and feasible
to evaluate constraints and determine suitable actions. This
method trades the broad expressiveness of PDDL for a
tighter coupling between task and motion planning, allowing
the robot to operate with more immediate feedback on its
physical constraints and capabilities. However, this limits the
complexity of tasks PMK can handle, as it focuses more on
streamlining TAMP interactions rather than general planning.

Kootbally et al. [15] take a more traditional approach
to PDDL generation by automating the creation of PDDL
problem files specifically for kitting domains. They use an
OWL/XML schema to structure the knowledge base and a
MySQL database to store and retrieve relevant information
about each task. Their method relies on custom-made functions
that dictate how predicates are built from the ontology and
incorporated into the PDDL file, meaning each domain or
task requires specific coding and adaptation to work with
the planner. This approach demonstrates the potential for
automating task planning in well-defined, repetitive domains
but requires significant manual setup for each new application,
reducing scalability and flexibility.

Hoebert et al. [3], [16] introduce a more flexible pipeline
for PDDL generation by using SPARQL queries to extract
relevant predicates from an ontology and integrate them

into PDDL problem files. This method is particularly suited
for industrial robotics, where tasks are often well-defined
and environments are relatively static. The use of SPARQL
provides a standardized way to query ontological data,
allowing for some adaptability without requiring domain-
specific custom functions for every new task. However, since
their focus is on industrial applications, where the environment
and tasks are predictable, this approach may not be ideal
for more dynamic or unstructured domains where greater
flexibility is required.

As shown, there is growing interest in the integration of
ontological knowledge with planning systems, especially as
robots are increasingly deployed in complex and dynamic
environments. Previous works have demonstrated the potential
of using ontologies to generate PDDL files, but many
approaches remain tied to specific domains or require manual
adaptation for each new task. Unlike these earlier efforts,
this paper introduces a novel PDDL generation mechanism
that uses ontologies instantiated through large language
models (LLMs) for the generation of the problem files.
This approach is domain-agnostic and eliminates the need
for custom-built functions to translate ontology individuals
and relations into PDDL files. By utilizing LLMs for
ontology initialization, the system can handle a wide variety
of domains without requiring domain-specific knowledge
encoding, offering greater scalability and flexibility for diverse
robotic applications.

III. ONTOLOGY POPULATION WITH LLMS

The system developed for the automatic population of
ontologies from unstructured text uses the capabilities of
Large Language Models (LLMs) in conjunction with domain-
specific ontology knowledge. Our system effectively integrates
the open-world knowledge provided by LLMs with the more
constrained, specific knowledge embedded in the ontology. By
doing so, it can accurately identify and map entities, attributes,
and relationships mentioned in the text to the corresponding
elements defined within the ontology.

The system architecture is designed to take an ontology
(Figure 2a) and a corresponding text as input and produce
an instantiated ontology as output (Figure 2b), using the
Owlready? library to manipulate and query the ontology in
the Knowledge Base Manager.

The LLM selected for this system is the GPT-40-mini
model from OpenAl, which represents one of the state-
of-the-art models in natural language processing. OpenAl’s
models are renowned for their robust capabilities and are
fully compatible with the majority of LangChain methods,
a framework designed to build applications with language
models?. Moreover, GPT-40-mini offers a context window of
128K tokens and can generate up to 16,348 output tokens. This
performance makes it an ideal choice for this application.

The population process is organized into a pipeline
consisting of three primary steps (depicted in orange in

Zhttps://www.langchain.com/

|’ Skillet] — {leackipan]
CookingTool
N
% CookingTool RoboticElement P
79 Rosoleement [o - / N
g “® object | |
‘ : alry
£ _cup
, S ~ N N L e
. ‘ ooy |-
*® Object . Py . . [Spoon l { 4 violet_spoon } 3
\ b 1 \ v ¥ oo ite
B physical . Spoon *® KitchenApplianc 7 7
E \ Knif = N
P ’ e - # orange_pot
- N N e @ crimson_pot
N ManipObj
M: Obj
& e e
(@ (b

Fig. 2. (a) Subset of the ontology before population; (b) Subset of the ontology after population. The arrows denote different relations. Blue: subclassOf;
Purple: hasIndividual; Orange: above; Dark Green: inside; Light Green: in.

Figure 3): Entity Extraction, Property Extraction, and Relation
Extraction. Each step is tailored to handle distinct aspects of
the population task by guiding the LLM through a series of
prompts (depticted in blue in Figure 3), ensuring that entities,
their corresponding attributes, and relationships are correctly
identified and instantiated within the ontology framework.

Entity Extraction: The first step in the pipeline focuses on
extracting the entities present in the text and mapping them
to the corresponding classes in the ontology. This process
involves prompt-tuning the LLM through a series of prompts
designed to guide the model in identifying and extracting
entity mentions that align with the predefined classes in the
ontology. These classes are derived directly from the ontology
and correspond to the leaf classes, as we aim to instantiate
concrete, real-world entities. This approach ensures that the
extraction process is grounded in the domain-specific concepts
defined within the ontology.

To enhance the accuracy of entity-class matching, the
prompt provided to the LLM is enriched with descriptive
information for each ontology class. This augmentation helps
the model to more effectively align the extracted entities
with their corresponding classes, particularly when the class
names are ambiguous or lack inherent descriptive clarity.
Additionally, it is common that not all entities within the
ontology have a complete or precise description, as crafting
these can be a labor-intensive task for ontology modelers.
To address this challenge, the system utilizes the LLM
to autonomously generate descriptions for classes that are
not sufficiently detailed. By generating these descriptions,
the system augments the class information, ensuring better
matching during the entity extraction process. The LLM
generates these class descriptions using a specialized prompt
designed to capture the class’s inherent geometry, function,
and relationships with similar entities. This approach is based
on the principles suggested by Tang et al. [17], informed
by Rosch’s theory of cognitive representations of semantic

categories, which postulates that categorization is grounded
in perceptual and functional similarities among objects. By
incorporating these factors into the class descriptions, the
system strengthens the alignment between extracted entities
and their corresponding ontology classes, even in cases
where manual descriptions are absent. This method not only
improves the precision of the entity-class matching process
but also ensures that entities can be effectively extracted
and categorized, regardless of the availability of pre-existing
descriptions.

In cases where an entity does not directly match any
ontology class (e.g., due to synonym usage or lexical
variations), a secondary matching mechanism is triggered.
This mechanism uses embedding-based similarity, where
embeddings are generated for both the unmatched entity and
the descriptions of ontology classes. Then, a cosine similarity
measure is applied to identify the closest matching class based
on a predefined similarity threshold. For example, in our
ontology we have the class Skillet, which represents a
frying pan. However we do not have the class Pan itself.
If the human describes a black_pan it may happen that
the LLM is not capable of recognizing it as a Skillet,
miss-classifying it as a Pan or even not matching it to
any class. With our embedding method, the embedding of
black_pan is extracted and compared with the embeddings
of the other classes, resulting with high similarity match
with the class Skillet, as shown in the example populated
ontology (Figure 2b). This approach ensures that only
semantically relevant entities are matched with appropriate
classes, minimizing the risk of erroneous or random matches.

Property Extraction: The second step in the pipeline
involves extracting the attributes associated with each
identified entity. Similar to the entity extraction phase, this
step also involves prompt-tuning the LLM to extract relevant
properties or attributes for each entity. The LLM is instructed
to focus on specific attributes that are allowed or expected for

(You are an expert entity extractor:

Entity match an

« Entity names must be unique, ontology class?

meaningful and use y
underscores instead of
spaces.

« If an entity does not match
any allowed class, assign

You are an expert relation extractor:

« The "subject" and "object" must be
selected from the following list:
{allowed_entities}.

+ The "relation" must be selected from the
following list: {allowed_relations}.

« Do not infer or assume any relationships 1
that are not directly stated.

e If no valid relation is found, return an

None class.

Allowed Classes and
descriptions: {allowed_classes}

Entity Extraction

LLM call

Property Extraction

Embedding empty List [1. L
similarity |
5 |

T elation Extraction

Ontology
Instanciation

| Instantiated
Ontology

LLM call

Ontology |

text-embedding-ada-002

[Extract attributes of specified objects from
the provided text.

GPT-40-mini « If an attribute is explicitly mentioned,
extract its value, even if phrased
differently.

e If an attribute is absent or cannot be
inferred with high confidence, set its
value to null.

« Extract only the following entities:

« {allowed_entities}

Text Document

Fig. 3. Ontology population framework

each entity type, based on the attributes range and domain,
similar to what the SPIRES framework does [12]. A list of
permissible attributes is provided to the model, ensuring that
only valid properties are considered. This step ensures that all
entities are comprehensively characterized by their associated
properties, which are then integrated into the instantiated
ontology. The output is subsequently processed to remove
any entities that were extracted during this phase but were
not previously identified in the entity extraction step, thereby
ensuring consistency in the final ontology.

Relation Extraction: The final step in the pipeline is
dedicated to the extraction of the relationships between the
entities identified in the text. Again, the LLM is prompt-tuned
through a series of instructions that guide it to recognize and
extract relations. This process ensures that only valid relations,
as defined by the ontology, are considered. A list of allowed
relations is provided to the model, restricting the possible
relationships to those predefined in the ontology. Furthermore,
the entities involved in the relations are constrained to
those identified in the earlier steps, ensuring consistency and
coherence in the resulting ontology structure. The output is
further processed to remove any relations where the subject
or object are not among the entities identified in the first step
or where the relation is not an allowed one, ensuring that only

semantically meaningful and valid relations are retained.

It is important to note that in each of the three steps, the
LLM is invoked only once per phase to extract all entities,
properties, and relations in a single call. This approach avoids
the need for iterative calls for each individual class or attribute,
which would otherwise increase the number of API calls and
computational time. However, this method has its limitations,
as LLMs have a fixed context window size, which may be
exceeded when processing very large texts with numerous
entities and attributes. A promising area for future work
involves combining this system with the already discussed
Retrieval-Augmented Generation (RAG) approach [11], to
handle large-scale documents more effectively.

Ontology population: After the entities, attributes, and
relations have been extracted, the final step is the population
of the ontology using the Owlready2 library. During this
stage, the identified entities, along with their associated
attributes and relationships, are incorporated into the ontology.
Which is incrementally updated to reflect the newly extracted
information.

A key feature of the population process is the dynamic
assignment of ontology classes based on the relations. In some
cases, the domain or range of a relation may conflict with
the class of an entity. For example, consider an entity such

as white_fridge, which is identified as an element of
the Fridge class. If a relation like (crimson_pot, in,
white_fridge) is extracted, and the relation schema is
(ManipObj, in, Location) where the range has to be
of type Location (which does not include Fridge as a
subclass), the system automatically assigns the Location
class to the entity white_fridge to reflect the semantic
context of the relation. Same happens if the class Pot for
crimson_pot is not a subclass of ManipObj as shown
in Figure 2b. This ensures that the instantiated ontology
accurately represents both the entities and the logical structure
of their interrelationships, similar to what can be seen in the
relation phase in [10].

Overall, this system offers an automated approach to
ontology population from unstructured text. By leveraging
the power of LLMs for semantic extraction, it ensures the
consistency and integrity of the ontology while respecting the
defined structural constraints and reducing the number of LLM
calls.

IV. ONTOLOGY-BASED PDDL GENERATION

The system developed for the automatic generation of
PDDL (Planning Domain Definition Language) problems is
based on interpreting and integrating knowledge from the
ontology with a predefined PDDL domain file. This process
is done in two steps: PDDL Domain parsing, matching the
information included in the domain file with the ontological
knowledge; and PDDL Problem generation, generating a new
problem file based on the current knowledge of the elements
in the world.

A. PDDL Domain parsing

The process begins by loading the PDDL domain, which
is assumed to be created by a domain expert, to the PDDL
Domain parser. The domain defines the set of predicates,
actions, and types outlining the planning problem space. The
information in the domain file is parsed in the following way:

o Types: Types define categories of objects in the domain,
helping to organize them. For instance, in a robotics
context, types could include Robot, ManipObj, or
Location. The parser performs a direct match between
the types in the domain and classes in the ontology. Using
the reasoning capabilities of the ontology, individuals can
be classified into these classes even when not explicitly
asserted to belong to them by the user, the perception
module, or the LLM ontology instantiator. These classes
are identified as PDDL Classes.

o Predicates: Predicates describe relationships or prop-
erties of these objects, representing the state of the
environment. For example, a predicate like (holding
?robot ?object) indicates that a robot is holding
an object. Predicates are used to define the precon-
ditions and effects of actions, guiding the planner in
achieving goals. Following the previous example, the
predicate (holding ?robot ?object) is a pre-
condition of the action (place ?robot ?object

?location). Predicates indicate the relationship be-
tween elements in the domain or the state of an element.
The parser is employed to extract the predicates defined
in the PDDL domain and matching them with the corre-
sponding property in the ontology. However, not all the
properties in the ontology will have a direct match with
a predicate from the PDDL domain. Even in cases where
there is no explicit match, these additional ontological
properties may still contribute to reasoning about the
state of the world and other properties that do belong
to the predicate space. Consequently, the system defines
a subset of the properties of the ontology that are directly
relevant to the PDDL domain as Predicate Knowledge.
This subset of knowledge is essential for populating the
predicates in the initial state and goal of the generated
PDDL problem.

The parsing of the domain is performed at initialization,
as the domain is constant. If there is a mismatch between
the domain file and the ontology, such as a predicate not
having any matching ontological property, a warning is sent to
the user, ensuring consistency between PDDL and ontological
knowledge.

B. PDDL Problem generation

Once the predicates and types have been matched with
corresponding properties and classes in the ontology, the
system is ready to generate a PDDL problem instance for any
specific scenario. New instances and their properties, which
may be updated by the perception module or generated by
an LLM-based ontology instantiatior, are accessed via the
Owlready?2 library. This allows for programmatic exploration
of the content of the ontology, ensuring that the most up-to-
date knowledge is utilized in problem generation.

When a new goal is received, the system has to match
the parsed PDDL Classes and Predicate Knowledge to a new
PDDL Problem file. By iterating over the PDDL Classes, the
generator identifies all relevant instances (i.e., individuals) that
belong to these PDDL types. These instances, representing
objects in the environment, are considered for inclusion in the
planning problem, and are listed in the :objects field in
the PDDL Problem.

To obtain the initial state of the PDDL Problem in
the :init field, the system iterates over the instances
corresponding to the PDDL Classes. For each instance,
it examines the properties that belong to the Predicate
Knowledge subset of the ontology. Ontological properties
are classified into two categories: object properties and data
properties.

¢ Object properties: Object properties describe relation-
ships between two individuals and can be directly trans-
lated into PDDL predicates in the form (predicate
?subject ?object). For example, an object prop-
erty such as isOnTop would be translated into the
predicate (isOnTop canl tablel) in the PDDL
problem, where canl and tablel are specific indi-

viduals in the ontology belonging to the PDDL Classes
ManipObj and Location respectively.

« Data Properties: Data properties, in contrast, describe
attributes of a single individual and may have various
data types. For PDDL problem generation, the system
focuses on boolean data properties that correspond to
the predicates defined in the domain. The value of
these boolean properties determines whether a predicate
is included in the initial state of the PDDL problem.
If the boolean property is True, the corresponding
predicate is added to the initial state. If the property
is False, the predicate is omitted. For example, the
boolean property gripperEmpty associated with an
individual robot1l_gripper would be translated into
the predicate (gripperEmpty robotl_gripper)
if the value of the property is true, indicating that the
gripper of robot1 is empty.

The system uses the Pellet reasoner [18], an OWL-DL (Web
Ontology Language — Description Logic) reasoner, to infer
additional relationships and classifications based on the logical
axioms defined within the ontology. This reasoning process
enables dynamic classification of individuals by inferring
properties and relationships not explicitly stated. For example,
Pellet may infer that an individual belongs to a particular class
or satisfies specific conditions, allowing that individual to be
included or excluded from the planning domain. By leveraging
Pellet’s reasoning capabilities, the system ensures that the
PDDL generation process is based on a logically consistent
and complete set of knowledge, extending beyond what is
directly stated in the ontology.

An example of a Domain and the generated Problem PDDL
files based on Figures 2 (a) and (b) is shown in Figure 4.
Once the PDDL Problem has been generated, it is formatted
and passed to a planner for execution. In this case, the
system integrates the Fast Forward (FF) planner, a well-
established heuristic search-based planning framework [19].
The PDDL Problem file generated by the system is input
into FF along with the corresponding PDDL Domain file. The
planner then uses this information to compute a solution plan
that satisfies the initial conditions and achieves the desired
goals, based on the actions and predicates defined in the
domain. This integration enables the system to automatically
generate plans for complex domains, leveraging the dynamic
knowledge base provided by the ontology and the inferential
capabilities of Pellet. Through this approach, the system can
generate solutions in evolving environments where knowledge
is continuously updated and expanded through reasoning.

This method, which integrates ontological reasoning with
the structure of a PDDL Domain, facilitates the dynamic
generation of PDDL Problem instances. By incorporating
inferential reasoning from the ontology, the system ensures
that only relevant instances and their properties are included
in the problem, based on both explicit domain definitions and
inferred knowledge. This approach expands the capabilities
of traditional methods by enabling automatic and flexible
inclusion of individuals in the problem space, depending

(:types Robot Location ManipObj Arm)
(: predicates

(inside ?o0bjl ?0bj2

(in ?0bj ?loc)

(above ?0bjl ?0bj2)

(gripperEmpty ?arm)
)

(:objects

black_pan yellow_glass black_mug
navy_cup red_cup blue_fork
orange_pot crimson_pot violet_spoon
purple_knife green_dish ... -
ManipObj

tiago — Robot

tiago_arm— Arm

white_fridge — Location)

(:init

(inside blue_fork red_cup)

(in crimson_pot white_fridge)

(in yellow_glass white_fridge)
(above green_dish yellow_glass)
(gripperEmpty tiago_arm)

Fig. 4. Top: Part of the PDDL Domain file for a kitchen scenario, showing
predicates matching the properties shown in Figure 2 (a). Bottom: Part of the
PDDL Problem file generated based on the populated ontology in Figure 2
(b).

on their inferred classification through the ontology. Conse-
quently, the system is capable of dynamically updating the
planning problem, reflecting changes in the knowledge base,
and enabling a more adaptive approach to problem generation,
particularly in domains where knowledge evolves over time or
new information is continuously integrated.

V. CONCLUSIONS AND FUTURE WORK

By incorporating the LLMs open-world knowledge ca-
pabilities with the domain-specific knowledge provided by
the ontology, our ontology population pipeline is capable of
populating a given ontology with all the entities, attributes
and relations extracted from an unstructured descriptive text
provided by the user, enhancing the human-robot interaction
and automatizing the labor-intensive and prone to human
bias work of populating an ontology manually. Moreover, our
population framework is able to reduce the number of calls
passed into the LLM, avoiding multiple API calls and iterating
over all the ontology classes to find a match, while adding
automatically generated descriptions to enhance the context

and an embedding similarity system to mitigate empty matches
or possible LLM hallucinations into classes not contained in
the ontology.

Furthermore, by integrating ontological reasoning with
traditional PDDL domain structures, the proposed system
enables the dynamic generation of PDDL problem instances
that reflect the evolving state of knowledge represented
within the ontology. This system expands upon previous
approaches by incorporating inferential reasoning capabilities
from ontologies, which allows for more flexible and intelligent
planning problem generation. As a result, the system can
automatically adjust the individuals and their properties
included in the planning problem, ensuring that only
relevant entities and conditions are considered based on both
explicit definitions and inferred knowledge. This capability
is especially useful in complex domains where knowledge
evolves over time or where the planning domain needs to be
dynamically updated based on new perceptions or information.

As future work, the ontology population system could
be improved in order to handle large descriptive texts that
surpass the window of context of the LLM, even though the
implementation in our particular framework for Robot Task
Awareness does not require it, as the user will not write texts
of that lengths. Moreover, other applications of LLMs for
the knowledge-driven robotic manipulation will be explored,
by integrating the LLM for querying over the ontology from
natural text or automatically generating a problem file from
the ontology knowledge and a human task description.

ACKNOWLEDGMENT

This work was supported by the European Commission’s
Horizon Europe Framework Programme with the project
Resilient manufacturing lines based on smart handling systems
(SMARTHANDLE) under Grant Agreement 101091792.

REFERENCES

[1] O. Ruiz-Celada, A. Dalmases, R. Sudrez, and J. Rosell, “BE-AWARE: an
ontology-based adaptive robotic manipulation framework,” in 2023 IEEE
28th International Conference on Emerging Technologies and Factory
Automation (ETFA), 2023, pp. 1-4.

[2] M. Beetz, D. Bessler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and
G. Bartels, “KnowRob 2.0 - A 2nd Generation Knowledge Processing
Framework for Cognition-Enabled Robotic Agents,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 512-519, 9
2018.

[3] T. Hobert, W. Lepuschitz, M. Vincze, and M. Merdan, “Knowledge-
driven framework for industrial robotic systems,” Journal of Intelligent
Manufacturing, vol. 34, 3 2021.

[4] J.-B. Lamy, “Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical
ontologies,” Artificial Intelligence in Medicine, vol. 80, pp. 11—
28, 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0933365717300271

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

O. Ruiz-Celada, A. Dalmases, 1. Zaplana, and J. Rosell, “Smart
perception for situation awareness in robotic manipulation tasks,” IEEE
Access, vol. 12, pp. 53974-53 985, 2024.

M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson,
M. Friedman, C. Kwok, K. Golden, S. Penberthy, D. Smith, Y. Sun,
and D. Weld, “PDDL - The Planning Domain Definition Language,” 08
1998.

J. Kietz et al., “Kaon: A framework for extracting ontology instances
from text using rule-based nlp,” Journal of Natural Language
Processing, vol. 12, no. 3, pp. 234-249, 2000, introduced the "KAON”
framework, utilizing rule-based NLP to extract ontology instances from
text, but faced difficulties with domain-specific language and entity
recognition.

A. Maedche and S. Staab, “Text-to-onto: A system for ontology learning
from domain-specific corpora,” in Proceedings of the International
Conference on Knowledge Engineering and Knowledge Management,
Paris, France, 2001, pp. 246257, developed the “Text-To-Onto” system,
which employed rule-based methods but faced limitations in handling
specialized terminologies.

P. Cimiano and J. Volker, “Ontolearn: A hybrid approach to ontology
learning from text,” Journal of Artificial Intelligence Research, vol. 22,
no. 4, pp. 81-112, 2005, proposed the "OntoLearn” system, combining
rule-based NLP and machine learning for ontology learning, but
struggled with domain-specific expressions.

G. Ciatto, A. Agiollo, M. Magnini, and A. Omicini, “Large language
models as oracles for instantiating ontologies with domain-specific
knowledge,” 2024. [Online]. Available: https://arxiv.org/abs/2404.04108
S. S. Norouzi, A. Barua, A. Christou, N. Gautam, A. Eells, P. Hitzler,
and C. Shimizu, “Ontology population using 1lms,” 2024. [Online].
Available: https://arxiv.org/abs/2411.01612

J. H. Caufield, H. Hegde, V. Emonet, N. L. Harris, M. P.
Joachimiak, N. Matentzoglu, H. Kim, S. A. T. Moxon, J. T. Reese,
M. A. Haendel, P. N. Robinson, and C. J. Mungall, “Structured
prompt interrogation and recursive extraction of semantics (spires):
A method for populating knowledge bases using zero-shot learning,”
Bioinformatics, vol. 40, no. 3, p. btae104, 2024. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btae104

M. Diehl, C. Paxton, and K. Ramirez-Amaro, “Automated generation
of robotic planning domains from observations,” 2021. [Online].
Available: https://arxiv.org/abs/2105.13604

M. Diab, A. Akbari, M. U. Din, and J. Rosell, “PMK—A Knowledge
Processing Framework for Autonomous Robotics Perception and
Manipulation,” Sensors 2019, Vol. 19, Page 1166, vol. 19, p. 1166, 3
2019.

Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and S. Gupta,
“Towards robust assembly with knowledge representation for the
planning domain definition language (pddl),” Robotics and Computer-
Integrated Manufacturing, vol. 33, pp. 42-55, 2015, special Issue on
Knowledge Driven Robotics and Manufacturing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584514000672
Hoebert, Timon, Lepuschitz, Wilfried, and Merdan, Munir, “Automatic
ontology-based plan generation for an industrial robotics system,” 2020.
C. Tang, D. Huang, W. Ge, W. Liu, and H. Zhang, “Graspgpt:
Leveraging semantic knowledge from a large language model for
task-oriented grasping,” IEEE Robotics and Automation Letters,
vol. 8, no. 3, pp. 2023-2030, 2023. [Online]. Available:
https://doi.org/10.1109/LRA.2023.3297896

E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz, “Pellet: A practical owl-dl reasoner,” Journal of
Web Semantics, vol. 5, no. 2, pp. 51-53, 2007, software
Engineering and the Semantic Web. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1570826807000169
J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research, pp. 253-302, 2001.

