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Abstract— The paper deals with the problem of finding
a form-closure fixturing of objects modeled with triangular
meshes and considering as quality measure the maximum
wrench that the object can resist in any direction. Although a
triangular mesh is a polyhedral representation of the object, the
number of faces is too large to allow a practical application of

existing approaches for polyhedral objects, and therefore some
search procedure have to be applied. In the proposed approach
the search of contact points is done looking for points directly
on the object boundary instead of on the wrench space. In this
way, all the object surface is homogeneously considered, while
the quality is evaluated in the wrench space. The procedure
iteratively looks, using heuristic criteria, for sets of points that
improve the quality. The procedure was implemented and some
application examples are included in the paper to illustrate the
performance.

Index Terms— Grasp planning, fixturing, optimization, sam-
pling.

I. INTRODUCTION

Fixing objects such that they can resist external pertur-

bations without changing their positions is a quite relevant

action in a number of tasks in robotics and automation.

Typical examples where the object position must be kept

when a perturbation force acts on it are grasping (the object

position with respect to the grasp device must not change

when, for instance, it collides with the environment), and

fixturing in production lines (the object position with respect

to the fixturing device must not change when, for instance,

forces are applied on it by manufacturing tools or due to the

assembly with another object).

The constraint of an object position can be done satisfying

any of the following two properties: form-closure (the po-

sition of the fixtures/fingers ensures the object immobility)

and force-closure (the forces applied by the fixtures/fingers

ensure the object immobility) [1]. The force-closure con-

straint is more frequently required in grasping, since the

movement of the object makes its own weight to act as

an external perturbation, while the form-closure constraint

is more frequently required in fixturing, where the object

usually lies in a stable position while no operation in being

performed on it.

∗This work was partially supported by the CICYT projects
DPI2004-03104 and DPI2005-00112, and Acción Integrada HI2005-0290.

The constraint of an object has been addressed considering

different situations [2], mainly characterized by the dimen-

sion of the object (2D or 3D objects), type of object to be

constrained (polyhedral or non-polyhedral), type of contact

between the finger and the object (frictionless, frictional or

soft contact), and the number of fingers (for 3D objects:

equal or larger than 2 when soft contacts are considered,

and equal or larger than 3 for frictional contacts, and equal

or larger than 7 for frictionless contacts). Non-polyhedral

objects are frequently modeled with a finite (but large)

number of points, either using clouds of points as samples of

the object surface or, for instance, triangular meshes approxi-

mating the object boundary (this representation is sometimes

also used for polyhedral objects when the exact model is not

available). There are a number of works covering all these

cases, like, for instance: 2D polygonal objects [3], 2D non-

polygonal objects [4], 2D discrete objects [5], 3D polyhedral

objects [6], [7], 3D non-polygonal objects [8], [9], and 3D

discrete objects [10], [11].

This paper deals with the problem of finding form-closure

constraint points on 3D objects described by triangular

meshes. Even when a mesh can be considered a polyhedral

representation of the object, the number of faces is too large

to allow a practical application of existing approaches for

polyhedral objects. Also, although some optimization criteria

are applied in the search of the constraint points, it is not

possible to assure the obtention of the optimal ones in a

reasonable time, due to the exponential complexity of the

problem and the large number of triangles. As it was already

mentioned above, in order to obtain a form-closure constraint

of a 3D object (i.e. without care about friction) seven is

the minimum number of necessary frictionless contacts, and

therefore seven frictionless contacts are considered in this

work.

II. PROPOSED APPROACH

The idea behind the proposed approach is to find a

solution searching the constraint points over all the object

surface, instead of just search the corresponding wrench

space which may lead to a solution with all the constraint

points concentrated on a portion of the object.

The following nomenclature will be used to described the

proposed approach:
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pi: point on the object boundary

ni: unitary inward normal to the object boundary at pi.

f i: the contact force applied at pi.

τ i: torque produced by f i (if the same reference sys-

tem is used to describe pi and to compute τ i then

τ i = pi × f i)

wi = (fT
i λτT

i )T : wrench produced by f i at pi (λ is a

constant to adjust the metric of the wrench space).

P = {pi, i = 1, ..., n}: set of n known points on the object

boundary

W = {wi, i = 1, ..., n}: set of the n wrenches produced

at the points in P .

Gp = {p
1
, ...,p

7
}: set of 7 points from P .

Gw = {w1, ...,w7}: set of 7 wrenches from W corre-

sponding to the points in Gp.

With this nomenclature the problem can be formally stated

as the search of a set Gp that allows a form-closure fixturing

of the object with a good quality, which is also equivalent

to the search of the corresponding set Gw. The way the

quality of the fixturing is evaluated is described below in

Section II-C.

The search of the contact points is done with the following

basic algorithm:

Step 1: Generate an initial set of seven points Gp and

evaluate its quality.

Step 2: Select another point pj on the object surface.

Step 3: Select a particular point pi ∈ Gp

Step 4: Evaluate the resultant quality when pi is replaced

by pj in Gp.

Step 5: If the quality grows then update G replacing pi

by pj .

Step 6: While a finishing condition is not satisfied goto

step 2.

The finishing condition in step 6 of the algorithm can be:

• A given desired minimum quality is obtained.

• A given number of steps without improving the quality

were performed.

• A given number of points on the object surface were

visited.

• All the points on the object surface were visited.

The algorithm itself is a classical one, being the originality

of the work the way each step is performed, which is

described in the following subsections. As a difference with

other approaches (e.g. [10]), here the algorithm continues

the search for a grasp quality improvement once the first

valid grasp was found.

A. Selection of points on the object surface (Steps 1 and 2)

The same selection procedure is used to generate the

initial set of points in Gp (step 1) and the rest of the points
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Fig. 1. The number in each triangle indicates: (a) and (d) Distance to the
selected ones (colored); (b) Potential Vi when the triangle of Figure a is the
first to be selected; (c) Corresponding potential Ui; (d) Potential Vi when
the two triangles of Figure a and d are the ones selected; (f) Corresponding
potential Ui.

during the search (step 2). The basic idea is to select points

trying to uniformly cover the object surface.

The covering of the object surface is carried out using a

deterministic sampling sequence that places each point of the

sequence as far as possible from all the previous sampled

points. Since each point is placed at the barycenter of a

triangle in the mesh used to describe the object, a sequence

of points can be considered as a sequence of triangles. The

following assumptions about these triangular meshes are

considered:

• The triangles in the mesh have similar size; when this

is not the case the triangular meshes are preprocessed

to obtain triangles with a similar area.

• The number of triangles in the mesh is large enough to

properly describe the object.

• The distance between two triangles in the mesh is

measured as the minimum number of triangle edges

that must be crossed in a continuous path that connects

them (passing through triangle vertices is disallowed).

The sampling procedure selects the triangle of the mesh

that is the farthest from all the previous triangles of the

sequence. Let:

• ∆V c
i be the distance from triangle i to the last sampled

triangle. It is computed by propagation as shown in

Figures 1a and 1d.

• Vi be the summation of the distances from triangle i

to all the already sampled triangles (Figure 1b shows
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Fig. 2. Deterministic sampling of the surface of a cube (using 4, 5, 10,
50, 150 and 500 samples from left-top to bottom-right).

Vi for the single triangle of Figure 1a; Figure 1e shows

Vi when the triangles of Figures 1a and 1d have been

selected).

• Ui be the minimum distance from the triangle i to the

set of the already sampled triangles (Figures 1c and 1f

correspond, respectively, to the situations of 1b and 1e).

Then, the sampling procedure to iteratively select the

triangles in the mesh (and therefore the corresponding

wrenches) is as follows:

1) Randomly choose the first triangle of the sequence and

mark it as the current triangle c.

2) For each remaining triangle i of the mesh:

a) Compute the distance ∆V c
i to triangle c.

b) Update Vi: Vi = Vi + ∆V c
i .

c) If Ui > ∆Vi then Ui = ∆V c
i .

3) Choose the triangles with the highest Vi (colored

triangles in Figure 1b and 1e).

4) Among them choose the one with the highest Ui. If

several triangles have the same value of Ui (as the

colored triangles in Figure 1c and 1f) randomly select

one of them.

5) Add the chosen triangle to the sequence and mark it

as the current triangle.

6) If there are still non-visited triangles in the mesh

goto 2.

7) Return.

The six snapshots of Figure 2 show the covering of the

surface of a cube as the sampling sequence is executed. It

illustrates how the surface is incrementally and uniformly

Fig. 3. Random sampling of the surface of a cube: 150 (left) and 500
samples (right).

Fig. 4. Deterministic sampling (left) and random sampling (right) of the
surface of a sausage using 150 samples.

covered. The already selected triangles are red while for

the remaining triangles the higher Vi the darker the grey.

Just to compare the sequence obtained with this procedure

with a pure random selection of triangles in the mesh with

uniform distribution, Figure 3 shows two snapshots of the

random sampling of the surface of the cube for 150 and 500

samples, and Figure 4 shows the comparison between the

deterministic and the random sampling of the surface of a

sausage for the first 150 samples.

B. Selection of the point of Gp to be replaced (Step 3)

Given a new point pj (obtained from Step 2) the selection

of the point pi ∈ Gp to be replaced is done using a criterion

that avoids checking for a local optimal replacement among

the seven points in G and reduces the computational cost

of the selection. The relevant property of the seven points

pi ∈ Gp that makes them to define a form-closure grasp

(FC-grasp for short) is the relative directions of the wrenches

wi ∈ Gw. The module of wi may affect the quality of the

fixturing produced by Gw but is irrelevant for the existence

or not of a FC-grasp. Considering this property, the point

pi ∈ G whose associate wrench wi has the closest direction

to the direction of the wrench wj associated with the new

point pj is selected as candidate point to be replaced in Gp,

i.e. the candidate point is the point pi, i = 1, ..., 7, that

minimizes

arccos

(

wi · wj

‖ wi ‖‖ wj ‖

)

(1)

This criterion minimizes the change in the directions of the

wrenches in Gw.

C. Evaluation of the quality (Step 4)

The evaluation of the quality of a set Gp in Step 4 is

done in the following way. When the set Gp produces a
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FC-grasp, the quality is equivalent to the largest perturbation

wrench that the grasp can resist with independence of its

direction [12], [13]. Calling P to the set of wrenches that

the forces applied by the fingers can generate, the quality

can be expressed as

Q = min
ω∈∂P

‖ω‖ (2)

with ∂P being the boundary of P . The geometrical interpre-

tation of the grasp quality is that it is equivalent to the radius

of the largest 6-dimensional ball centered at the origin of the

wrench space and fully contained in P , thus, the criterion is

also known as the criterion of the maximum ball. This is one

of the most popular quality measures (examples of its use

can be found in [14–16]) because it is independent of any

external perturbation. In the case that the directions of the

expected perturbations were known a variation of the quality

measure optimizing the resistance along these directions can

be considered, like for instance the Q-distance presented

in [8].

In order to speed up the search of a good grasp, here

we also considered a quality measure for the sets Gp that

does not produce a FC-grasp; in these cases, the quality

defined above should be zero, since the origin is outside P ,

nevertheless we consider a negative quality defined by

Q = − min
ω∈∂P

‖ω‖ (3)

The geometrical interpretation in this case is that the quality

is equivalent to the radius of the largest 6-dimensional

ball centered at the origin of the wrench space and fully

outside P , indicating in some way, how far is the grasp

from being a FC-grasp.

The shape of P depends on the constraints imposed on the

finger forces [17]. Here one of the simplest and frequently

considered constraints is used. It is assumed that the sum of

the modules of the forces applied by the 7 fingers is limited

(for instance due to a limited common power source for all

the fingers actuators), i.e.
∑n

i=1
‖f i‖ ≤ fmax (without loss

of generality and just to simplify the implementation, it is

considered that fmax = 1). Under this assumption, P is the

6-dimensional polytope defined in the wrench space by the

convex hull of the seven applied wrenches, i.e.

P = ConvexHull (w1, . . . ,w7) (4)

Then, each face of the polytope is defined by 6 of the

wrenches applied by the fingers, and the quality Q of the

set Gp is equivalent to the distance from the origin of the

wrench space to the boundary of P , with positive sign if Gp

produces a FC-grasp and negative sign otherwise. Figure 5

gives qualitative examples in a hypothetical 2-dimensional

wrench space of the polytope P (in this case a polygon) and

the quality Q as the radius of the maximum balls (in this

case a circumference) for a FC-grasp (positive Q) and a non

FC-grasp (negative Q) .

In this situation, the procedure used to evaluate the quality

Q produced by a set Gw is the following:

P

P

Q

Q

wxwx

wywy

a) b)

w1

w1

w2

w2

w3

w3

Fig. 5. Qualitative bidimensional example of P and the grasp quality Q

using three fingers: a) a FC-grasp (O ∈ P then Q > 0); b) a non FC-grasp
(O 6∈ P then Q < 0).

1) For i = 1, ..., 7 generate the hyperplane Hi defined by

the subset Gw′i ∈ Gw of 6 wrenches that does not

contain the element wi.

a) Compute the distance di from the origin O to Hi.

b) If wi and O lie in the same half-space defined

by Hi then Qauxi
= di else Qauxi

= −di .

2) If ∀i, Qauxi
> 0 then Q = min {Qauxi

}, for i=1,...,7

else Q is the distance from O to ConvexHull(Gw).

III. EXAMPLES

The proposed approach was implemented and tested on

different objects producing satisfactory results. In all the

examples the best results were obtained using large values

of λ to increase the weight of the torques in front of the pure

forces (see Section II). The following are some examples,

where the algorithm was run with λ = 100 until all the

points of the object boundary were selected in order to show

the quick convergence. In both cases, it is given the average

quality with a 95% confidence interval for ten trials, and the

particular information of the best trial. The average time for

the selection of a point and the evaluation of the new grasp

was 17 ms on a Dual Core PC @1.83GHz.

Object 1: Cube modeled with a triangular mesh composed

of 21,312 triangles.

• For ten trials (Figure 6)

Final quality Q: 0.282 ± 0.020
Quality after visiting 10% of the points: 0.252± 0.021

• For the best trial (Figure 7)

Final quality Q: 0.322

Number of visited points: 21,312

Number of point changes improving or maintaining

the quality: 251

Number of visited points to obtain 90% of Q: 8,041

Quality after visiting 10% of the points: 0.212

Object 2: Sausage modeled with a triangular mesh com-

posed of 18,880 triangles.

• For ten trials (Figure 8)

Final quality Q: 0.222 ± 0.012
Quality after visiting 10% of the points: 0.195± 0.018

• For the best trial (Figure 9)

Final quality Q: 0.251
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Fig. 6. Cube. Q for ten trials: evolution after visiting all the boundary triangles (left); zoom of the first 10% of visited triangles (right).
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Fig. 7. Cube: Two views of the resulting fixturing (best trial).

Number of visited points: 18,880

Number of point changes improving or maintaining the

quality: 69

Number of visited points to obtain 90% of Q: 1,923

Quality after visiting 10% of the points: 0.219

IV. DISCUSSION AND CONCLUSIONS

The fixturing of objects is a requirement in many practical

cases, like for instance during parts manufacturing or during

an assembly operation. In this paper a simple yet efficient

method has been proposed to find the seven fixturing points

needed to produce a form-closure constraint of any free-

form object described by a triangular mesh. The method is

based on the deterministic sampling of the triangles of the

mesh that allows an incremental and uniform covering of

the object’s surface. Starting with the first seven samples,

the procedure iteratively changes one of them by the next

sample in the sequence provided it results in a better quality

measured in the wrench space. A polyhedral and a free-form

object represented by triangular meshes with thousands of

triangles were used to illustrate the method performance.

Due to the random nature of the algorithm, it is not

possible to predict the computational cost of a grasp search,

particularly because the algorithm can be stopped at any

time if the current grasp quality is acceptable. Of course,

the higher the current quality the more difficult will be to

improve it, that is the reason why we include as relevant

information in the experiments the number of visited points

to obtain the 90% of the final quality (i.e. the quality after

visiting once all the points in the object boundary, which

is not initially known),and the quality obtained when 10%

of the object boundary points were visited. The experiments

have shown that the approach is more efficient when the

object has a smooth shape (i.e. the boundary normal does not

change a lot); while for objects with very irregular shapes the

approach performance is closer to a pure random selection

of points.

The extension of the method to generate force-closure

constraints with different number of frictional contacts is

currently under development.
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