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Abstract— This paper deals with the problem of determining
independent contact regions on a 3D object boundary such that
a seven finger frictionless grasp with a contact point in each re-
gion assures a force-closure grasp on the object, independently
of the exact position of the contact points. These regions provide
robustness in front of finger positioning errors in grasp and
fixture applications. The object’s surface is discretized in a
cloud of points, so the procedure is applicable to objects of any
arbitrary shape. The procedure finds an initial force-closure
grasp that is iteratively improved through an oriented search
procedure; once a locally optimum grasp has been reached,
the independent contact regions are computed. The procedure
has been implemented and application examples are included
in the paper.

Index Terms— Grasp planning, force-closure grasps, inde-
pendent contact regions.

I. INTRODUCTION

The determination of contact locations to immobilize the

object despite external disturbances has been a topic of great

interest in grasping, manipulation and fixturing. The contact

locations are characterized by the properties of form or

force-closure [1]. In form-closure the position of the contacts

ensures the object immobility; this property is mostly used

when the task requires a robust grasp not relying on friction,

e.g. the fixture of objects to be manufactured or inspected.

On the other hand, force-closure is achieved when the forces

applied at the contact points ensure the object immobility;

it is specially used in grasping and manipulation of objects

with a low number of frictional contacts using mechanical

grippers or hands.

Several algorithms have been developed to determine

precision grasps (i.e. grasps formed by a set of finger contact

points on the object´s surface), with different number of

fingers and satisfying the form or force-closure condition in

2D polygonal [2], non-polygonal [3] or discrete objects [4],

3D polyhedral objects [5] [6], objects with smooth curved

surfaces [7] or 3D discretized objects [8]. Precision grasps

require a good precision in the finger placements; however,

in a real execution the actual and the theoretical grasp may

differ due to fingers positioning errors. Nguyen [9] intro-

duced the concept of independent contact regions (ICRs)
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in order to provide robustness to the grasp in front of

positioning errors. ICRs are regions on the object boundary

such that the fingers can be positioned on them assuring

a force-closure (FC) grasp, with independence of the exact

position of each finger.

The determination of ICRs was initially addressed for two

frictional contacts on polygonal and polyhedral objects, and

with four frictionless contacts on 2D polygonal objects [9].

The concept was extended to three-finger grasps of polyg-

onal objects [10] and to four-finger grasps on polyhedral

objects [5]. The notion of ICR has also been used to

determine contact regions on 3D objects based on initial

examples, although the results depend on the choice of the

example [11]. Recently, the computation of ICRs for 2D

discrete objects has also been addressed [12]; however, the

determination of ICRs on 3D discrete objects has not been

directly tackled yet.

This paper deals with the problem of determining inde-

pendent contact regions on a 3D object boundary for a seven

finger frictionless grasp, such that the ICRs assure a FC grasp

with a controlled minimum quality. The proposed approach

has three phases. The first phase finds an initial force-closure

grasp with an algorithm similar to the one proposed in [8],

but using a different FC test that decreases the search com-

plexity. The second phase improves the initial grasp through

an oriented search procedure. The optimization is carried out

using a quality measure equivalent to the largest perturbation

wrench that the grasp can resist, with independence of the

perturbation direction [13]; it is one of the most popular

grasp quality measures. The optimization is carried out to

obtain a locally optimum FC grasp. Finally, the third phase

computes the ICRs from the locally optimum grasp obtained

in the previous phase. The proposed approach does not

take into account the kinematical constraints imposed by the

mechanical hand or gripper.

A work in this line [11] presents a procedure to compute a

family of grasps for 3D objects that keep a fraction of the

quality of the grasp in an initial example; the quality measure

is the reciprocal of the sum of magnitudes of the normal

contact forces required to achieve the worst case wrench in a

task set [14]. However, the selection of a good initial exam-

ple remains as a critical step; this initial grasp is provided

here with a procedure assuring a locally optimum grasp.

This paper is organized as follows. Section II presents the
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approach to compute locally optimum frictionless FC grasps

(phases 1 ant 2), and Section III presents the procedure

to compute the independent contact regions (phase 3). The

algorithms have been implemented, and Section IV shows

the results of their application to different objects. Finally,

Section V presents the conclusions of the work.

II. LOCALLY OPTIMUM FORCE-CLOSURE GRASP

A. Object and contact models

To compute the independent contact regions for a fric-

tionless grasp on an arbitrary 3D object, the following

assumptions are considered:

• The external surface of the object is represented with

a mesh Ω of points, described by position vectors pi

measured with respect to a reference system located

in the center of mass (CM ) of the object. Each point

has an associated unitary normal direction n̂i pointing

towards the interior of the object.

• The number of points in Ω is large enough to accurately

represent the surface of the object.

• Each point on the surface of the object is connected

with three neighboring points.

Seven frictionless contacts are necessary and may be

sufficient to hold a 3D object with a FC grasp, provided

that the object has no rotational symmetries [15]. With

frictionless contact points, the grasp forces can only be

applied in the direction normal to the object surface. A

force f i = αin̂i applied on the object at the point pi

generates a torque τ i = pi × f i with respect to CM , with

αi being a nonnegative value representing the magnitude

of the grasping force. The force and the torque are grouped

together in a wrench vector (also known as generalized force

vector) given by

ω̃i =

(

f i

τ i

)

= αi

(

n̂i

pi × n̂i

)

(1)

For a given grasp G = {p1,p2, . . . ,p7}, the wrenches

applied at the contact points on the object are grouped

in a wrench set W = {ω1,ω2, . . . ,ω7}, where each ωi,

i = 1, . . . , 7, is called a primitive contact wrench when

αi = 1. Since each physical point pi in the set Ω has a

corresponding primitive wrench ωi in the wrench space, both

of them will be used to indicate a grasp point.

B. Force-closure test

Several criteria have been proposed to test the force-

closure property in a particular grasp. A necessary and

sufficient condition for the existence of a FC grasp is that

the origin of the wrench space lies strictly inside the convex

hull (CH) of the primitive contact wrenches [16]. Querying

whether the origin lies inside the CH is also equivalent

to a ray-shooting problem, solved as a linear programming

problem [17]. The FC test used in this work is based on the

following lemma.

Lemma 1: Let G be a grasp with a set W of primitive

contact wrenches, I the set of strictly interior points of

P

O

H1

H2

H ′

1

H ′

2

ω1

ω2

ω3

ω∗

Fig. 1. The grasp with wrench set W = {ω1, ω2, ω3} (with CH

represented in continuous lines) is non-FC. The subset of points to be
replaced is Gk

R
= {ω2}. Wrenches in the gray zone (depicted as white

squares) form the set Ωk
C

of wrenches that may provide a FC grasp. The
grasp with wrench set W ∗ = {ω1, ω∗, ω3} (with CH represented in
discontinuous lines) using a candidate point ω∗ is a FC grasp.

CH(W ), and H a boundary hyperplane of CH(W ) (i.e.

a hyperplane containing one of the facets of CH(W )). The

origin O of the wrench space satisfies O ∈ I iff any P ∈ I
and O lie in the same half-space for every H of CH(W ).

From Lemma 1, checking whether a given point P ∈ I
and the origin O lie in the same half-space defined by

each boundary hyperplane H of CH(W ) is enough to

prove whether O lies inside CH(W ), i.e. to prove whether

the grasp G is FC. P is chosen as the centroid of the

primitive contact wrenches, which is always an interior point

of CH(W ). Then, the FC test checks whether the centroid P

and the origin O lie on the same side for all the boundary

hyperplanes of CH(W ); Fig. 1 illustrates the concept with

a FC grasp and a non FC grasp in a hypothetical 2D wrench

space (the actual wrench space is 6-dimensional).

C. First phase: getting one force-closure grasp

The main ideas of the algorithm used in the first phase

are similar to those used in [8]. The algorithm generates

an initial grasp G1 selecting seven random points from Ω;

builds the corresponding wrench set W 1 and checks whether

the points form a FC grasp. If they do, then the algorithm

finishes. If G1 is not a FC grasp, then an oriented search

is performed, based on separating hyperplanes that define a

subset Ω1
C containing candidate points to replace one of the

current points in G1. The steps in the algorithm are:

Algorithm 1: Search of a FC grasp

1) Generate a random initial grasp Gk = {ω1, . . . ,ω7},

k = 1.

2) Form the corresponding wrench set W k.

3) Check whether Gk is a FC grasp; if so, the algorithm

finishes and returns Gk. If Gk is not a FC grasp, the

search procedure iteratively tries to improve the grasp by

changing one of the points in Gk, looking for a reduction

in the distance between CH(W ) and the origin O, as

follows in steps 4 to 6.

4) Find the subset Gk
R of grasp points in Gk that may be

replaced. This subset contains all the wrenches in W that

simultaneously belong to all the hyperplanes that produce
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Fig. 2. Selection of the subset Ωk
C

of candidate points (depicted as
white squares in the gray area) that may improve the grasp quality; in
this example, FQ = ω2ω3.

the FC test failure (hereafter called critical hyperplanes).

For instance, in Fig. 1 two hyperplanes, H1 and H2,

produce the FC test failure, and Gk
R = {ω2}.

5) Build the subset Ωk
C with candidate points to replace

one of the points in Gk
R. This subset is determined using

hyperplanes passing through the origin and parallel to

the critical hyperplanes; the candidate points are those

than simultaneously lie in the opposite side of P with

respect to those hyperplanes. In Fig. 1, wrenches that lie

in the gray zone, determined by hyperplanes H ′

1 and H ′

2,

belong to Ωk
C .

6) Replace one point in Gk
R with a point from Ωk

C . A

point ω∗ is randomly picked from Ωk
C ; then, ω∗ replaces

the closest point in Gk
R. The candidate grasp G∗ is

formed with that replacement (in the example in Fig. 1,

G∗ = {ω1,ω∗,ω3}), and the centroid P ∗ and the dis-

tance P ∗O are computed for the candidate grasp. If for

any candidate G∗ the relation P ∗O < P kO is satisfied,

then the best-first option is taken, and the corresponding

point ω∗ is selected as the replacement point. If all

the points in Gk
R have been checked out and none of

them decreases the distance P kO, the replacement is

done choosing the candidate G∗ that gives the smaller

distance P ∗O. Finally, the counter k is updated, the

selected point is included in the new grasp Gk, and the

procedure returns to Step 2.

To avoid falling in a local minimum, the generated grasps

Gk are stored, and if Step 6 gives an already considered

grasp, it is discarded and the next best non-visited candidate

is taken for the replacement. This consideration allows the

grasp search procedure to overcome local minima until a FC

grasp is found. In this sense, the algorithm is complete in

the discrete domain (as the algorithm in [8] it finds a FC

grasp if there is one).

D. Second phase: finding a locally optimum grasp

The optimization algorithm begins with an initial FC grasp

obtained through the procedure described above, and the

optimization is done looking for the largest perturbation

wrench that the grasp can resist with independence of its

direction [13]. Geometrically, that quality is the radius of the

largest ball centered at the origin of the wrench space and

a) b) c)

OO O

HQHQ HQ

ω1ω1 ω1

ω2ω2 ω2

ω3ω3 ω3

ω∗

ω∗

ω∗

Fig. 3. Possible cases for a candidate grasp in the optimization procedure:
a) Non-feasible candidate grasp, b) Discarded candidate grasp, c) Feasible
candidate grasp.

fully contained in CH(W ), i.e. it is the distance from the

origin of the wrench space to the closest facet of CH(W ).
The steps in the algorithm are:

Algorithm 2: Search of a locally optimum grasp

1) Find an initial FC grasp, Gk = {ω1, . . . ,ω7}, k = 1,

using Algorithm 1 presented in Subsection II-C.

2) Determine FQ, the facet of the convex hull CH(W k)
closest to the origin. The distance from the origin O

to FQ is the current grasp quality Qk.

3) Build the subset Ωk
C with the candidate points that may

produce an improvement in the grasp if they replace one

point in FQ. Let HQ be the hyperplane containing the

facet FQ, and H+

Q the open half-space defined by HQ

that does not contain the origin O. The subset Ωk
C

contains the points lying in H+

Q , as illustrated in Fig. 2.

4) Generate 6 candidate grasps G∗

i , i = 1, . . . , 6 by picking

a point ω∗ from Ωk
C and replacing each one of the

vertices defining the facet FQ. Due to the selection

procedure, all the wrenches ω∗ ∈ Ωk
C are external points

to CH(W ), therefore, when replacing one vertex ωi

from the actual CH with the candidate wrench ω∗, the

latter will be a vertex of the new CH . The explicit com-

putation of the new CH is not required, as its facets are

constructed from the old ones replacing ωi with ω∗. The

candidate grasps are checked for the FC property using

Lemma 1. For the FC candidate grasps, the expected

grasp quality Q∗ is computed; if for any candidate grasp

Q∗ > Qk, then the candidate becomes the new grasp

Gk. Fig. 3 illustrates three possible cases related with

the candidate grasps; case (a) is a non-feasible grasp

because it loses the FC property, case (b) is discarded

because the grasp has a smaller quality than the previous

one, and case (c) is a good grasp that actually improves

the grasp quality, thus it becomes the grasp for the next

iteration cycle. After this step, if the quality is improved

then go back to Step 2. If there is no improvement in Qk

once all the points in Ωk
C have been considered, then a

local minimum has already been reached, the algorithm

finishes and returns the current grasp G.

III. INDEPENDENT CONTACT REGIONS

The computation of the independent contact regions

(ICRs) ensuring a minimum grasp quality Q begins with

a locally optimum FC grasp. Considering the ICRs for each
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Fig. 4. Search of the independent contact regions. The hyperplanes HQ,
H′

1
and H′

2
define the search zones S1, S2 and S3 (depicted in gray).

The ICRs are the sets of neighboring wrenches falling in the search zone.
Wrenches in each ICR are depicted as white squares, and an instance of a
grasp with quality higher than Q (α = 1) is also shown.

finger, several grasps may be formed when placing a finger

in different positions inside each ICR; any of these grasps

must satisfy O ∈ CH(W ). The proposed approach is based

on this geometrical condition, as illustrated in Fig. 4 for a

hypothetical two-dimensional wrench space. For a given FC

grasp, the grasp quality Q is fixed by FQ, the facet of the

convex hull closest to the origin. Six hyperplanes H ′ (two

in the hypothetical two-dimensional wrench space), parallel

to the remaining facets of the convex hull and tangent

to the ball of radius r = Q are then considered. These

hyperplanes define Si, the search zone containing the ICR

for each wrench ωi; Si is the intersection of the half-spaces

defined by the hyperplanes H ′ that contain the wrench ωi.

The ICR is the set of neighboring points of ωi falling into

the corresponding search zone Si.

The procedure can also be applied to generate ICRs with

contact points that produce a lower grasp quality Qr = αQ,

with 0 < α < 1 and Q the quality of the initial grasp. This is

achieved considering a ball of radius Qr instead of Q in the

procedure described above. When α → 0, the ICRs contain

FC grasps without a lower limit on the grasp quality. In fact

α = 0 is a forbidden value, as it does not assure that any

CH(W ) will strictly contain the origin O. The algorithm

used to determine the ICRs is:

Algorithm 3: Search for the independent contact regions

1) Find a locally optimum FC grasp, Go = {ω1, . . . ,ω7},

with the corresponding wrench set Wo, using Algo-

rithm 2 presented in Subsection II-D.

2) Fix the minimum acceptable quality Qr = αQ.

3) Build the hyperplanes H ′, tangent to the ball of radius

Qr centered at the origin, that define the search space

Si, i = 1, . . . , 7, for each grasp point.

4) Initialize Ii, the set of contiguous points forming the ICR

for the grasp point i, as Ii = {ωi} (i.e. each ICR contains

the original wrench of the set Wo). Label the points in

each Ii as open.

5) For each open point ωk in the set Ii, check whether the

neighbor points ωkn lie into the corresponding search

a) b)
Fig. 5. Objects used in the examples: a) Parallelepiped discretized with a
mesh of 3422 triangles, b) Knight discretized with 4750 triangles.

space Si. If ωkn ∈ Si then add ωkn to Ii and label it as

open; otherwise, discard the point. Label ωk as closed.

6) If there are open points in Ii, go back to Step 5.

Otherwise, the algorithm finishes, and returns the sets

of points Ii, i = 1, . . . , 7, i.e. the ICRs for each finger.

Due to the geometrical construction of the procedure, the

obtained ICRs depend on the used initial grasp. The size

of the ICRs could be optimized changing the locally opti-

mum grasp used to build them. This problem is not addressed

in this paper, but it is an interesting issue to explore in

the future.

IV. EXAMPLES

The proposed approach to compute independent contact

regions has been implemented using Matlab on a Pentium IV

3.2 GHz computer. The performance of the algorithm is

illustrated using the two objects shown in Fig. 5: a paral-

lelepiped and a chess knight. The object surfaces are repre-

sented with triangular meshes (two triangles of the mesh are

considered neighbors if they share an edge). The considered

contact points pi on the object surface are the centroids

of the triangles in the mesh, and the corresponding surface

normal directions are the directions normal to the triangles.

In the first example, the parallelepiped is described with

a mesh of 3422 triangles. Fig. 6 shows an instance of the

results obtained with the proposed approach. The first FC

grasp, obtained with the Algorithm 1, is shown in Fig. 6a;

the time elapsed to obtain this grasp was 5.1 seconds in 17

iterations. The locally optimum FC grasp, shown in Fig. 6b,

was obtained with the Algorithm 2 in 24.8 seconds and

32 iterations. Fig. 6c shows the corresponding independent

contact regions, obtained with Algorithm 3 in 0.25 seconds

and using as minimum quality Qr = 0.2168 (α = 0.75).

Fig. 8a plots the distance PO against the iteration number in

the first phase. Fig. 8b plots the grasp quality in the opti-

mization phase, which always increases monotonically up to

the locally optimum grasp. The obtained locally optimum

grasp depends on the initial grasp. In the example, the

initial grasp quality is 0.0102, and the locally optimum

grasp quality is 0.2891; the improvement factor, i.e. the ratio

between the quality of the optimized grasp and the quality

of the initial FC grasp is 28.4. The points within the ICRs

may be combined to provide 75000 different grasps; Fig. 9

TuA2.2

194



a) b) c)

Fig. 6. Example on a parallelepiped: a) Initial FC grasp, Q = 0.0102 (Algorithm 1), b) Locally optimum FC grasp, Q = 0.2891 (Algorithm 2),
c) Independent contact regions for each finger, Qr = 0.2168 (Algorithm 3).

a) b) c)

Fig. 7. Independent contact regions on the parallelepiped with different minimum quality: a) Qr = 0.2168 (α = 0.75), b) Qr = 0.1446 (α = 0.5),
c) Qr ≈ 0 (α = 10−5).
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Fig. 8. Performance in the search of a locally optimum FC grasp for the
parallelepiped: a) Variation in the distance PO, b) Increase in the grasp
quality.
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Fig. 9. Histogram with the grasp quality distribution for all the possible
grasps within the independent contact region on the parallelepiped for
Qr = 0.2168 (α = 0.75).

shows the quality distribution for all these possible grasps.

Obviously, for lower minimum grasp qualities, the size of

each ICR grows; Fig. 7 shows the ICRs for three different

minimum grasp qualities given by α = 0.75, α = 0.5 and

α = 10−5 ≈ 0. In the last case, the ICRs contain points such

that a finger in each region assures a FC grasp, but without

a limit in the lower grasp quality.

The knight used in the second example is discretized

with 4750 triangles (Fig. 5b). Fig. 10 shows the results

for an ICR search on the knight; the first FC grasp was

found after 9 iterations in 5.4 seconds, the locally optimum

grasp was obtained after 48 iterations in 47 seconds and

the ICRs (with Qr = 0.058, α = 0.75) were computed

in 0.17 seconds. The grasp qualities are 0.0003 and 0.077

for the initial and locally optimum FC grasps, respectively,

with an improvement factor of 225.7. Fig. 11 illustrates the

performance of Algorithms 1 and 2 in the search process.

The points within the ICRs may be combined to provide

30 different grasps; Fig. 9 shows the quality distribution for

all these possible grasps. Fig. 13 shows the ICRs for three

different quality ratios: α = 0.75, α = 0.5 and α = 10−5.

V. CONCLUSIONS

This paper proposes an integrated approach to obtain

independent contact regions on 3D discretized objects with

seven frictionless contacts that assure a FC grasp with a

controlled minimum quality. The procedure has three main

parts: the first one looks for an initial FC grasp (its main

ideas were presented in [8], although a different FC test is

used here). The second part optimizes the initial FC grasp

with an oriented search procedure, using as a quality measure

the largest perturbation wrench that the grasp can resist,

with independence of the perturbation direction. The third

part computes the independent contact regions around the

contact locations of the locally optimum FC grasp. The

algorithms were implemented and the execution results, as

the examples shown in the paper, illustrate the relevance

and efficiency of the approach. Although the algorithm

is described just for seven frictionless fingers, it can be

easily extended to determine ICRs for more fingers. The
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a) b) c)
Fig. 10. Example on a knight: a) Initial FC grasp, Q = 0.0003 (Algorithm 1), b) Locally optimum FC grasp, Q = 0.077 (Algorithm 2), c) Independent
contact regions for each finger, Qr = 0.058 (Algorithm 3).
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Fig. 11. Performance in the search of a locally optimum FC grasp for the
knight: a) Variation in the distance PO, b) Increase in the grasp quality.
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Fig. 12. Histogram with the grasp quality distribution for all the possible
grasps within the independent contact region on the knight for Qr = 0.058

(α = 0.75).

extension of the approach to consider frictional contacts is

more complex, as the frictional model is nonlinear. In this

case, the linearization of the friction cone requires suitable

modifications in the presented algorithms, which will be

addressed in future works.
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