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Abstract— We introduce a simple yet effective approach
for dense depth reconstruction that operates directly on raw
disparity data, eliminating the need for additional disparity
refinement stages. By leveraging disparity maps generated from
conventional stereo methods, we train a U-Net-based model
to directly map disparity to depth, bypassing complex feature
engineering. Our method capitalizes on the robustness of tra-
ditional stereo matching techniques to varying scenes, focusing
exclusively on dense depth reconstruction. This approach not
only simplifies the training process but also significantly reduces
the requirement for large-scale training datasets. Extensive
evaluations demonstrate that our method surpasses classical
stereo matching frameworks and state-of-the-art classical post-
refinement techniques, achieving superior accuracy. Addition-
ally, our approach offers competitive inference times, compa-
rable to classical as well as end-to-end deep learning methods,
making it highly suitable for real-time robotic applications.

I. INTRODUCTION

Depth perception is a fundamental aspect of robotic sys-
tems operating in dynamic and unstructured environments,
particularly in industrial settings where precise object manip-
ulation is crucial for tasks such as pick-and-place operations.
Stereo vision, leveraging the disparities between images
captured by a stereo camera, presents a promising avenue
for depth estimation in such scenarios. By translating pixel
disparities into accurate depth maps, stereo vision facilitates
enhanced spatial understanding critical for robotic decision-
making and manipulation tasks.

Efficiently generating dense correspondences between
stereo image pairs for depth perception poses a critical
challenge in computer vision— particularly in resource-
constrained environments. Existing methods, whether tradi-
tional algorithms or deep learning-based approaches, grapple
with the delicate balance between precision and computa-
tional efficiency. The widespread adoption of stereo vision
in industrial automation and mobile devices, such as au-
tonomous cars [1] and unmanned aerial vehicles [2], has been
propelled by recent advancements in fully-featured embed-
ded microcomputers [3]. However, the evolving landscape
underscores the pressing need for stereo matching solutions
capable of navigating this balance adeptly.
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Fig. 1. Depth Estimation on Edge: The proposed framework (highlighted
in red) embedded in a robotic picking task. Our approach uses the raw
disparity image of a classical stereo method as input for generating a dense
depth map for object localisation

To generate dense depths from initial disparity maps,
refinement techniques are commonly employed in post-
processing stages. Traditional approaches, such as those
utilizing left-to-right consistency checks (LRC) [4], often
incorporate local refinement strategies like median filters [5],
[6]. However, these methods introduce significant computa-
tional overhead, leading to increased processing times. In
contrast, deep-learning based methods, renowned for their
high accuracy in disparity estimation and refinement, are
hampered by slow inference times. The application of time-
consuming 3D convolutions on a 4D feature volume further
escalates the computational cost [7]. Moreover, while direct
regression methods for disparity estimation exhibit effective-
ness in scenarios with abundant training data and similar
train-test distributions, their generalization capability remains
limited.

Within the scope of industrial automation, the effec-
tiveness of deep learning-based approaches hinges on the
availability of high-quality training datasets containing stereo
images of 3D objects paired with accurate ground truth depth
maps. However, there remains a notable scarcity of datasets
[8] tailored to the specific requirements of stereo-based
depth estimation for objects industrial environments, posing
a significant challenge for researchers and practitioners alike.

To overcome these challenges, our proposed approach
provides a dual benefit. Firstly, it significantly reduces com-
putational complexity by eliminating the need for dedicated



disparity refinement, thereby streamlining the direct depth
estimation process from disparity data. This optimization
reduces the training data requirements by half, as the model
no longer needs both left and right images during training—
only the disparity data is required. Secondly, by harnessing
edge computing capabilities, our approach offers an effective
solution for real-world applications with limited computa-
tional resources, as demonstrated in Fig. 1. Transmitting
locally generated disparity data to the edge via wireless
networks (e.g., 5G) is significantly more efficient than trans-
mitting stereo image pairs due to the reduced data size.
Moreover, the utilization of 5G ensures minimal transmission
latency, further enhancing processing speed, which is critical
for time-sensitive applications. This combination of reduced
data volume and low-latency processing makes our solution
particularly well-suited for dynamic environments where
real-time decision-making is essential.

Furthermore, our architecture integrates smoothly with ex-
isting disparity estimation techniques, acting as a lightweight
augmentation for producing dense depth reconstructions. By
relying solely on disparity data for training, we achieve a
significant reduction in both data and computational resource
demands, further optimizing the efficiency of the system
without the need for supplementary inputs.

II. RELATED WORKS

A. Depth through Conventional Stereo

Depth reconstruction through traditional stereo algorithms
takes n = 2 rectified images as input and aims to compute
the disparity of each pixel by matching the pixels along
corresponding epipolar lines, which enables depth estimation
via triangulation. [9] formulates this problem as minimizing
an energy function E(D), formulated as:

E(D) =
∑
x

C(x, dx) +
∑
x

∑
y∈Nx

Es(dx, dy)

Here, x and y represent image pixels, where Nx is the
set of pixels within the neighborhood of x. The first term
of the equation represents the matching cost whereas the
second term is a regularization criteria for constraints like
smoothness and left-right consistency. In rectified stereo
pairs, dx = D(x) ∈ [dmin, dmax] determines depth through
triangulation. Discretizing disparity into nd levels creates a
3D cost volume of size W ×H × nd. For multi view stereo
(n ≥ 2), C(x, dx) gauges the inverse likelihood of x having
depth dx on the reference image.

A traditional stereo algorithm typically follows a com-
bination of the following steps [10], [11] - (1) Matching
cost computation,(2) Cost aggregation, (3) Disparity compu-
tation, and (4) Disparity refinement. Following this pipeline,
algorithms are categorized as local, global, or semi-global.
Local algorithms ascertain disparity by identifying the lowest
cost or highest correlation through a winner-takes-all (WTA)
strategy. Global stereo matching algorithms conceptualize the
disparity estimation problem as a global energy minimization
challenge, often addressed using optimization algorithms

based on Markov random fields (MRF) [12], such as graph-
cut (GC) [13] and dynamic programming (DP) [14]. Semi-
global matching (SGM) [15] approximates MRF inference
by aggregating costs in all directions within the image. This
approach significantly enhances the balance between the
accuracy and efficiency of stereo matching.

B. End-to-end Depth Estimation

Deep learning based works address the stereo matching
challenge through an end-to-end trained pipeline. Initial
methods in this domain [16], [17] employ a single encoder-
decoder architecture. This architecture combines the left and
right images into a 6D volume and predict the disparity
map. Despite their runtime efficiency, these methods demand
a substantial volume of training data. Recent approaches
[18], [19] replicate the conventional stereo matching pipeline,
fragmenting the training process into differentiable blocks,
thereby facilitating end-to-end training. In spite of achieving
impressive results, these methods have a huge number of
learnable parameters resulting in long inference time [3].
Supervised approaches in this domain have demonstrated
remarkable success in disparity estimation. However, the
significant amount of ground truth data required for training
poses a time-consuming and labor-intensive challenge. To
circumvent this, unsupervised stereo methods [20], [21] have
emerged to eliminate the dependency on disparity ground
truth. While supervised and unsupervised approaches share
architectural similarities, their training processes differ sig-
nificantly. Unsupervised methods, despite recent advance-
ments, still struggle with performance instability in chal-
lenging areas, especially those with occlusions, due to the
sensitivity of a single network to outliers. Consequently, a
noticeable performance gap persists between existing super-
vised and unsupervised approaches.

C. Disparity Refinement

Disparity maps often exhibit inherent noise and inac-
curacies needing meticulous refinement. In [22], a novel
neural architecture for disparity refinement was introduced
with a specific focus on advancing 3D computer vision
capabilities on consumer-grade devices. Within the domain
of medical imaging, [23] addressed the intricacies of laparo-
scopic images by devising a sophisticated disparity refine-
ment framework tailored for learning-based stereo matching
methods. This framework incorporates both local and global
disparity refinement strategies, demonstrating efficacy in re-
fining noise-corrupted disparity maps without compromising
prediction accuracy. In tackling the challenge of reliable
matching in weakly matchable regions, [24] proposed a
stereo matching network that adopts a pixel-wise matcha-
bility perspective. This network performs regression on both
disparity and matchability maps, leveraging 3D probability
volumes. Additionally, a matchability-aware disparity refine-
ment module is introduced to augment depth inference.

Lastly, [25] introduces a recurrent network tailored for
disparity refinement by integrating recurrence, multi-scale
processing, and residual design to enhance input disparity



Fig. 2. Network Architecture: Leveraging pre-generated disparity data, the
proposed network based on U-Net [26] adeptly learns disparity to depth
mapping for a comprehensive depth estimation.

maps. The method demonstrates substantial error rate re-
ductions, particularly on Multi-Channel CNN (MC-CNN)-
generated [5] disparity maps. While promising, the approach
has limitations, as it lags slightly behind complete end-to-end
stereo pipelines in terms of accuracy.

III. METHOD

Our objective is to develop a robust and computationally
efficient method for mapping raw disparity to dense depth.
Instead of relying on an end-to-end network architecture
that simultaneously processes stereo image pairs to produce
disparity or depth information, our approach capitalizes on
pre-computed disparity maps generated directly by a stereo
sensor. The stereo sensor captures left and right images,
computes the initial disparity map on-board, and transmits
this map to the edge device for further refinement. This
approach not only streamlines the computational process
but also ensures that our methodology can be seamlessly
integrated into existing stereo vision systems, regardless
of whether they are based on traditional or deep learning
principles.

A. Network Architecture

We leverage a U-Net [26] based architecture tailored
for depth estimation task, see Fig: 2. The network fol-
lows a symmetrical encoder-decoder structure, incorporating
skip connections to facilitate feature fusion. The encoder
is composed of four consecutive encoder blocks and a
bottleneck block, each comprising two convolutional layers
with batch normalization and ReLU activation, followed by
max-pooling for spatial dimension reduction. Conversely, the
decoder consists of four decoder blocks, featuring transposed
convolutional layers and two additional convolutional layers
with corresponding batch normalization and ReLU activa-
tion. The final output layer employs just a convolutional
layer, producing a depth map.

B. Disparity as Input

Our network is designed to operate directly on pre-
computed disparity maps, which encapsulate critical depth
and local structural information. This approach eliminates the
need for full stereo image pairs during training, drastically

reducing the data and computational complexity compared
to end-to-end stereo pipelines. By concentrating on disparity
data, the learning process becomes more efficient, with the
model focusing on refining depth representations instead
of handling raw image inputs. The result is a streamlined
training process that requires fewer resources while still
achieving high-quality depth predictions, even under chal-
lenging conditions such as occlusions, varying lighting, and
complex surface textures.

C. Disparity Refinement Process

The core of our methodology lies in refining the disparity
maps received from the stereo sensor. The raw disparity
maps, which may suffer from noise and inconsistencies due
to texture-less regions or large depth discontinuities, are fed
into our network for refinement. The U-Net architecture, with
its skip connections and deep convolutional layers, is well-
suited for this task, enabling the network to effectively en-
hance the initial disparity maps by improving object bound-
ary delineation, reducing artifacts, and producing smoother
depth transitions. The final output is a dense depth map
that is more accurate and reliable than the raw disparity
input, making it suitable for applications such as robotic
manipulation where precision is crucial.

IV. EXPERIMENTATION

The scope of the proposed work is object-detection in
industrial and lab automation. Current applications in this
domain typically rely on disparities generated by tradi-
tional stereo algorithms, subsequently refined to yield dense
depth maps. Alternatively, neural networks trained on CAD
(Computer-Aided Design) models of target objects are em-
ployed for detection purposes. Our concept serves as a simple
yet effective augmentation to existing disparity estimation
pipelines. By directly generating dense depth maps, the
reconstruction achieves sufficient density, facilitating the
accurate creation of point clouds for subsequent robotic
manipulation tasks.

A. Dataset Preprocessing

The disparity data utilized during training is derived from
the left-right image pairs sourced from Falling Things (FAT)
[8] dataset, chosen for its relevance to our application. This
dataset offers diverse scenes featuring 3D objects set against
various backgrounds and lighting conditions, providing a
realistic representation of industrial settings. Notably, the
FAT dataset is unique in providing valid stereo pairs for
all objects in the scene, making it an ideal choice for our
proposed network.

The intermediate disparity maps that serve as an input
for training are generated using the Semi-Global Matching
(SGM) algorithm [15]. Our specific implementation of SGM
excludes any disparity refinement modules, ensuring no
additional refinement of the SGM-derived disparities. The
choice of SGM over alternative algorithms [12], [13], [14],
stems from its effectiveness in producing globally consistent
disparity maps and our preference for using a classical



algorithm as a base. Despite its robust performance, it is
crucial to acknowledge the limitations of SGM, particularly
in scenarios with texture-less regions or large depth discon-
tinuities. Irrespective of the choice of our base algorithm,
the proposed network should work with disparities generated
with any algorithm of choice. Given that the generated
disparity is left-aligned, the associated ground truth depth
map from the dataset is utilized for supervision during the
training process.

B. Model Training

The disparity-depth pairs, serving as the input and label,
are first resized to dimensions of (256, 256) and then com-
bined into a multi-channel input format. This consolidated
input is subsequently fed into the network for processing. For
optimizing depth estimation, we utilize the L1 loss, which
quantifies the absolute discrepancies between predicted and
ground truth depth values. The optimization strategy relies
on the Adam optimizer [27], with specific parameter settings,
notably betas set to 0.9 and 0.999, and epsilon set to 1e-08.
We trained the model for 200 epochs on an NVIDIA GeForce
RTX 4090 GPU with a batch size of 16, employing a learning
rate scheduler that reduced the learning rate by a factor of
0.1 every 25 epochs. Dropout was applied after the encoder
layers during training to prevent overfitting.

V. RESULTS AND DISCUSSION

In this section, we provide an in-depth analysis of the
performance of our proposed dense depth estimation frame-
work. We assess our method’s accuracy, efficiency, and
robustness across various scenarios and compare it with state-
of-the-art methods. Both quantitative and qualitative results
are discussed, along with the implications for real-world
applications in industrial automation.

A. Quantitative Evaluation

When evaluating the enhanced depth, we employ four
widely used metrics: Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Structural Similarity Index
(SSIM), and Peak Signal-to-Noise Ratio (PSNR). These met-
rics facilitate per-pixel evaluation by comparing the refined
depth generated by our method against the ground truth
depth.

Mean Absolute Error (MAE) quantifies the average mag-
nitude of errors without considering their direction, offering
a straightforward measure of the model’s accuracy.

MAE =
1

n

n∑
i=1

|yi − ŷi|

Root Mean Square Error (RMSE) provides a more
nuanced understanding of performance by additionally pe-
nalizing larger errors.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

TABLE I
COMPREHENSIVE QUANTITATIVE ASSESSMENT OF DEPTH ESTIMATION

METHODS

Method MAE RMSE SSIM PSNR (dB)

Raw SGM Depth 0.849 0.855 0.712 19.5
SGM + Refinement Depth 0.613 0.642 0.765 21.8
Ours 0.368 0.374 0.812 24.6

Structural Similarity Index (SSIM) evaluates the simi-
larity between the predicted depth maps and the ground truth
by assessing changes in structural information, luminance,
and contrast. Unlike MAE and RMSE, SSIM focuses on
the preservation of structural integrity, such as edges and
textures, which are crucial for accurate depth representation.
This metric is particularly effective in capturing perceptual
differences that are more aligned with human visual assess-
ment.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where µx and µy are the mean values of the predicted and
ground truth depth maps, respectively, σ2

x and σ2
y are their

variances, and σxy is the covariance between the two. C1

and C2 are small constants included to stabilize the division
with weak denominators.

Peak Signal-to-Noise Ratio (PSNR) measures the peak
error between the predicted depth maps and the ground
truth. PSNR is expressed in decibels (dB) and provides an
indication of the overall quality of the reconstructed depth
map. Higher PSNR values indicate better quality, as they
correspond to lower levels of distortion. PSNR is particularly
useful for assessing the fidelity of the depth maps in terms of
preserving the overall intensity range and minimizing noise.

PSNR = 10 · log10
(
MAX2

I

MSE

)
where MAXI is the maximum possible pixel value of the
depth map, and MSE is the Mean Squared Error between
the predicted and ground truth depth maps.

In Table I, we assess the losses on depth generated from
three methods: (a) Raw SGM Only Depth; (b) SGM with
Post Refinement Depth; and (c) Depth from our method
which refines the raw SGM disparity.

Our method consistently outperforms the baselines across
all metrics, reflecting its superior depth estimation capabil-
ities. The significantly lower MAE of 0.368 and RMSE of
0.374 achieved by our approach indicate enhanced accuracy
and consistency in depth predictions, which is crucial for
high-precision applications such as robotic manipulation and
autonomous navigation. Furthermore, the higher SSIM score
of 0.812 demonstrates that our method better preserves
structural information, such as edges and contours, in the
depth maps, which is vital for tasks like object recognition
and scene understanding. Lastly, the increased PSNR value
of 24.6 dB suggests that our method effectively reduces noise



TABLE II
COMPARISON OF INFERENCE TIMES FOR DIFFERENT METHODS

Method Time (s)

SGM [15] 0.049
MoCha-Stereo [28] 0.27
GANet+ADL [29] 0.67
Selective-IGEV [30] 0.24
MC-Stereo [31] 0.40
Combined Pipeline (SGM + Our Method) 0.158

and enhances the overall quality of the depth maps, making
them more reliable for downstream applications.

Our proposed approach serves as an augmentation to
existing disparity estimation pipelines, making traditional
benchmarking against standalone depth estimation methods
less directly applicable. Designed for seamless integration
with established stereo matching systems, our method en-
hances their capabilities without requiring a complete over-
haul. Conventional metrics used for benchmarking may not
fully capture the benefits of our approach, which focuses
on enhancing existing systems and addressing industrial
challenges. Therefore, while benchmarking against existing
methods remains important, we advocate for a nuanced
assessment considering our method’s role as an augmentation
to established pipelines.

Lastly, our experiments focused on evaluating the infer-
ence time of our network as shown in Table II. While
the SGM stereo method showed inference times of ap-
proximately 0.049s, our method demonstrated an average
inference time of approximately 0.109s on an NVIDIA
GeForce RTX 4090 GPU. This inference time suggests that
the combined hybrid pipeline of SGM disparity with our
proposed depth estimation would take around 0.158 seconds,
significantly less than most deep learning-based stereo dis-
parity methods [9]. The expedited inference time emphasizes
the suitability of our approach for real-time applications,
where rapid and efficient depth estimation is crucial.

B. Visual Inspection

To further validate the effectiveness of our approach, we
performed a qualitative assessment by visually comparing the
depth maps generated by different methods. Fig. 3 showcases
the depth maps produced by Raw SGM, SGM + Post-
Refinement, and SGM + our proposed method.

One of the key challenges in depth estimation is accurately
capturing depth information at object boundaries and in oc-
cluded regions. As shown in Fig. 3, our method significantly
improves the clarity and sharpness of object boundaries com-
pared to the baseline methods. The post-refinement process
in traditional SGM often introduces artifacts and fails to
handle occlusions effectively, leading to inconsistencies in
the depth map. In contrast, our approach produces smoother
transitions and more consistent depth values across occluded
regions, which is critical for applications like collision avoid-
ance and grasping in robotics.

Another improvement offered by our method is the re-
duction of noise in the depth maps. The raw SGM disparity

Fig. 3. (a) Left Image; (b) Raw SGM Disparity (Input); (c) Depth from
SGM + Disparity Refinement; (d) SGM + Ours; (e) Ground Truth Depth;
The raw disparity input represents the initial data fed into our model. The
depth map generated using SGM with post-processing exhibits noise and
inconsistencies typical of the original disparity. In contrast, our method
significantly refines object boundaries and depth discontinuities, resulting
in a more dense depth reconstruction.

maps often contain noise, particularly in texture-less areas
or regions with weak stereo correspondences. Our model
effectively filters out these noise artifacts, resulting in cleaner
and more continuous depth maps. This enhancement is par-
ticularly beneficial in scenarios where accurate 3D modeling
is required, such as in industrial inspection or augmented
reality.

C. Limitations of Dataset Availability

Our depth estimation study faced a notable challenge
due to the limited availability of diverse stereo 3D object
datasets with paired depth maps [8]. We relied on the FAT
dataset for experimentation, as it met our criteria, yet it
doesn’t encompass the full spectrum of real-world scenes and
object configurations. Consequently, our testing scope was
confined to this dataset, limiting the generalizability of our
findings. Nonetheless, our results offer valuable insights into
our model’s performance in depth estimation tasks. Moving
forward, there’s a pressing need for more comprehensive and
varied datasets containing stereo pairs with depth maps to
enable more thorough evaluations of stereo depth estimation
algorithms.

VI. CONCLUSION

In this paper, we introduced a novel approach for dense
depth reconstruction directly from raw disparity data, elimi-
nating the need for a dedicated disparity refinement stage.



Leveraging locally generated raw disparities, our U-Net-
based model learns disparity-to-depth mapping directly. Our
method demonstrated superior performance compared to
baseline methods through comprehensive evaluation. Visual
comparisons highlighted significant enhancements in ob-
ject boundary delineation, artifact reduction, and occlusion
handling. Our method is optimized for edge deployment
alongside any stereo sensor, as it solely requires a disparity
map for refinement rather than a stereo pair to generate depth
from scratch. This characteristic simplifies implementation
and resource utilization, making it a practical solution for
real-time depth estimation tasks without significant hardware
upgrades. However, limitations in dataset availability empha-
size the necessity for more diverse datasets to enable compre-
hensive evaluations. Future work in this field would involve
integrating our model into an existing disparity estimation
and object detection pipeline to facilitate 3D object detection
in pick-and-place experiments within an industrial setting.
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