
Combining Motion Planning and Task Assignment
for a Dual-arm System

Carlos Rodrı́guez and Raúl Suárez

Abstract— This paper deals with the problem of combining
motion and task assignment for a dual-arm robotic system.
Each arm of the system performs independent tasks in a
cluttered environment. Robot actions are determined to remove
potential obstacles and obtain collision-free paths to grasp the
target objects. The approach uses the information provided
by the motion planner to build a graph structure in order to
represent the obstacles to be removed. The graph is used, first,
to decide which is the next motion path to be computed, and,
second, to assign the tasks to each arm of the robotic system.
The approach has been implemented for a dual-arm robotic
system and real experiments are presented in the paper.

I. INTRODUCTION

Object manipulation in cluttered environment is a task
that humans perform daily. Different types of problems are
found when humans are replaced with robots that have to
perform this type of tasks, like the motion planning in order
to move the robot from an initial to the goal configuration,
the computation of the object grasping, and the computation
of a path to move the object from its initial configuration to a
new goal configuration. This kind of problems are considered
classics in the literature in robotics.

On the other hand, there are higher level problems to be
solved, like planning for task distribution or the precedence
relationship between tasks. In the case of two or more robots
that execute tasks in a shared environment, planning the task
assignation/distribution to each robot is a relevant problem,
i.e. defining which robot is in charge of each task, and
how the tasks are prioritized in order to avoid collisions of
the robots with the obstacles of the environment as well as
collisions between the robots.

In this context, this work deals with the motion and task
assignment problem for a dual-arm robot in cluttered envi-
ronments. Each arm is used in an independent but coordinate
way to grasp and manipulate target objects, and there are
other objects in the environment acting as potential obstacles.
The two arms can be used to remove these obstacles if it is
necessary. The target objects can be pre-assigned to each
robot or not, depending on the task to be performed.

The proposed approach uses a motion planner to find the
robot movements to grasp and manipulate the target objects,
and, at the same time, determines which are the obstacles
that must be removed. With the information from the motion
planning a graph structure is build, which allows to easily

The authors are with the Institute of Industrial and Control Engineering
(IOC) - Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
(carlos.rodriguez.p, raul.suarez@upc.edu).

This work was partially supported by the Spanish Government through
the projects DPI2013-40882-P and DPI2014-57757-R.

represent the tasks that the robots should execute.The graph
allows the distribution and the prioritization of the tasks
between the arms by using a backtracking search algorithm.

After this introduction the paper is organized as follows.
Section II presents a review of related works, Section III
presents the proposed approach, and Section IV presents
the manipulation task graph. Then, Section V presents some
application examples and, finally, Section VI summarizes the
work and presents some topics deserving future work.

II. RELATED WORKS

The use of a dual-arm robotic system is becoming quite
common to perform manipulation tasks, either involving
manipulation of a single object using both arms [1], [2],
or manipulation of multiple objects using each arm in an
independent way [3], [4].

Motion planning for a dual-arm system or multiple robots
with large number of degrees of freedom in a shared en-
vironment implies complex problems in high dimensional
spaces. The approaches to deal with these problems can be
classified into centralized and decoupled [5]. The approach
proposed in this work belongs to the decoupled type. For
each arm an independent motion plan is computed, and then,
the motion plans are coordinated following the approach
proposed by [6], in order to avoid collisions between the
arms during the execution.

Combining motion and task assignment (hybrid planning)
is an open problem in robotics [7], [8], [9], in the litera-
ture there are several relevant algorithms deal with hybrid
planning, one of these works employs a high-level planner
that acts as constraint and provides a heuristic cost function
in the search algorithm in order to speed up the motion
planner [10]. Furthermore, a grid-based discrete represen-
tation can be also used to combine the information from the
task planner and the information from the motion planner
in order to obtain a continuous free-collision trajectory for
the robot [11]. Another way to combine the task and mo-
tion planners is formulated as a representational abstraction
between them, where, each action in the task planner can
have a multiple instantiations in the motion planner, this
increases the possibility of finding a feasible trajectory for
the robot [12].

The approach proposed in this work is different to the
works mentioned above that are focused on high-level task
planners (semantic and symbolic representation) and on
how to combine them with the low level planners (motion
planner) to solve task-oriented problems. Instead, the pro-
posed approach uses the motion planner to obtain motion

plans that have the information necessary to build a graph
representation of the tasks that the robot must execute, as
will be explained later in Section IV.

Our work is closely related with the works presented
in [13], [14], which propose backtracking search algorithms
in the real space in order to know which movable objects in
the workspace block the access to a given goal; a related
algorithm was also proposed in [15], using a high-level
regression-based symbolic planner. Furthermore, Krontiris
and Bekris [16] try to avoid the backtracking search by using
fast monotone rearrangement solve algorithm.

Stilman et al. [13] solves the problem of rearrange a
clutter workspace using a robot in a 2D workspace, and then,
they have extended the work to a 3D workspace using a
manipulator with high number of degree of freedom [17].
In order to rearrange the workspace and reach the target
object, they employ swept volumes to determine, recursively,
which objects must be moved. On the other hand, Dogar et.
al [14] presents an approach focused on determining free
volume space where to put the obstacles that directly block
the access to the target object, and includes a non-prehensile
manipulation such as pushing in order to move the obstacles
that cannot be grasped (pick and place manipulation).

In contrast to [14] and [17], the approach proposed here
uses a dual-arm system, and each robot arm may be able
to solve the same tasks of removing obstacles and grasp
the target objects. Combining the solutions of each arm,
it is possible to obtain a better task execution, where the
arms work in a independent but cooperative way to achieve
a common goal. The proposed approach uses a backtrack-
ing search algorithm to explore the graph and obtain the
sequence of actions to remove the minimum number of
obstacles, and then, distributes the tasks between the robot
arms. In contrast, [18] provides algorithms for removing the
minimal number of obstacles in order to reach a position,
but it does not do recursive removal like in this work.

III. PROPOSED APPROACH

Consider a dual-arm robotic system in a cluttered envi-
ronment with fixed and removable objects. The goal of this
work is to grasp two target objects with the dual-arm system.
The objects can be grasped by any arm or can be assigned
in advance, depending on the task to be performed. Due
to the cluttered environment, the objects of interest may be
blocked by other removable objects, which therefore must
be removed.

A. Background of the proposed approach

The proposed approach follows the work in [3], which
presents a variation of a probabilistic roadmaps planner to
compute the robot paths and uses a precedence graph to
represent the tasks to be executed by each robot arm. The
nodes of the precedence graph represent the target objects
and the removable objects Oj , j = 1, ..., n, and the arcs
represent each robot Ri, i = 1, 2. The motion planner
is used to compute a path from the initial configuration
of Ri to the grasp configuration of Oj . The key point of

the motion planner is that the samples generated in the
configuration space that imply collisions with removable
objects Ok k = 0, ..., n are not rejected like in a classic
motion planner; instead, these samples are added to the
roadmap as valid samples, and the set of obstacles SOi,j

contains the removable objects Ok that generate collisions
is stored. At the end, a robot motion path Pi,j is generated
knowing the involved set of obstacles SOi,j . The motion
planner is used in a recursive way for each Ok ∈ SOi,j

following a minimum cost strategy until finding a collision-
free path Pi,j that allows removing the corresponding Oj .

B. Contributions and limitations

The main contribution of this work is a framework to use
two robot arms to perform independent manipulation tasks in
a cluttered workspace considering the removal of obstacles
if it is necessary. The framework uses a manipulation task
graph that is based on a precedence graph. The graph
contains the possible actions that the robot arms can execute,
according to the information obtained from the motion
planner. A backtracking search algorithm is used to explore
the graph and determine the sequence of actions that the
robot arms must execute to reach the target objects, having
to remove the minimum number of removable obstacles.

A potential limitation of the approach is that the workspace
must be known in advance, including the distinction between
fixed and removable obstacles. Beside, in the current imple-
mentation, a finite set of grasping configurations for each
removable object (and the used hand) are given with the
object model, then, there is no guarantee that the motion
planner can find a solution to manipulate a given object
whenever one actually exists using a non-included grasp.

IV. THE MANIPULATION TASK GRAPH

A. Description of the manipulation task graph

The manipulation task graph G is based on an AND/OR
graph [19], where the obstacles Ok (k = 1, ..., n) of a
set of obstacles SOi,j found on the motion plan Pi,j for
each robot arm Ri (i = 1, 2) are represented. Each node
represents an object Oj (j = 1, ..., n) and each arc from that
node represents the robot Ri used to manipulate Oj . The
root nodes represent the target objects, and the descendant
nodes represent the set of obstacles SOi,j of the parent
nodes. Figure 1(a) shows the representation of a node of the
manipulation task graph G. Each node is defined with the
following properties: An id of the node name that indicates
the represented object Oj ; A root id that represents which
is the corresponding root node of Oj ; A root cost for each
root node representing the number of nodes to be removed
from Oj to reach a root node; A local cost for each Ri,
representing the number of siblings nodes of Oj ; A state
represented by a flag for each Ri associated to Oj that
indicates:

• Empty (∅), when a path Pi,j for Ri to grasp Oj was
not computed yet.

• Null (N), when Ri cannot grasp Oj (i.e. Oj is not
kinematically reachable by Ri).

(a) (b)

Step R1 R2

1 O4 -

2 O1 O2

(c)

(d)

Fig. 1: a) Node representing object Oj and the states of the
accessibility to Oj with each robot Ri, b) Example of a
workspace in <2, c) Resulting sequence of actions to reach
O1 and O2, d) Resulting manipulation task graph G.

• Free (F), when exists Pi,j for Ri to grasp Oj and it has
no obstacles (i.e. SOi,j = ∅).

• Blocked (B), when exist Pi,j for Ri to grasp Oj and
has obstacles (i.e. SOi,j 6= ∅).

Henceforth, the robot states are represented as a pair,
i.e. 〈state of R1, state of R2〉.

B. Working with the manipulation task graph

The manipulation task graph G is built using the informa-
tion obtained by the motion planner. First, the target objects
are added as root nodes of G, then, a node is chosen as Oj

(node to be explored) and a motion path Pi,j is computed
for each Ri. Then, each Ok ∈ SOi,j obtained from Pi,j

is added to G as descendant nodes of Oj . Then, the leaf
node Oj with the minimum number of obstacles until the
target object is chosen, and the motion plan to remove Oj is
computed. The process is repeated and G is expanded from
the leaf nodes until finding a path to remove each Oj from
the target object plan. When there is a path Pi,j to remove
each obstacle, a backtracking search in G is done to obtain
the sequence of action that the robot arms must execute.

Figure 1(b) shows an example in <2, a cluttered environ-
ment is composed of removable square objects Oj in front of
the dual-arm system represented by the robot arms R1 and
R2. The blue squares represent the target objects O1 and O2

and the red squares the obstacles.
Figure 1(d) shows the resulting G to grasp O1 and O2 with

each Ri: to grasp O1 with R1 resulted SO1,1 = {O4} and
for R2 SO2,1 = {O5, O7}. The branch of the manipulation
task graph with the lower number of obstacles is chosen, in
this case the branch that contains O4. In order to remove O4

a collision-free paths were found for both robot arms (i.e.

Algorithm 1: Main
input : W , SG
output: TS

1 SA, TS ← ∅
2 create G with the target objects SG as roots
3 select a target from SG
4 while target 6= ∅ do
5 select an unexplored node Oaux with root = target
6 if Oaux 6= ∅ then
7 for each Rj do
8 find the motion plan Pi,j to grasp Oaux

9 if Pi,j has SOi,j 6= ∅ then
10 for each obstacle Ok in SOi,j do
11 if Ok is already in G then
12 if Ok not generates a loop then
13 update the properties of Ok

14 else
15 add Ok as child of Oaux in G

16 update the properties of Oaux

17 if Oaux has at least one state = Free then
18 find solution from Oaux to target
19 if there is a solution then
20 add the solution to the set of actions SA
21 select a new target from SG

22 if Oaux has state = Null for each Rj then
23 update the properties of the parent nodes

24 else
25 error: not solution for target
26 break

27 if solution for each target in SG then
28 TS ← taskDistribution(G,SA)

29 return TS

SO1,4 = {∅}, SO2,4 = {∅}. On the other hand, to grasp O2

with R1 resulted SO1,2 = {O6} and for R2 SO2,2 = {O4},
since O4 has a collision-free path this branch is chosen.
Figure 1(c) shows the resulting sequence of actions.

C. Implementation

Algorithm 1 shows the main procedure of the proposed
approach. The algorithm receives as input the model of the
workspace W , which includes the 3D models of the dual-
arm system, the fixed and removable objects, as well as their
corresponding location in the workspace, the set of target
objects SG, and the grasping configurations of the removable
objects, and returns the task sequence TS that the dual-arm
system must execute. The algorithm is divided in two parts,
building and exploring the manipulation task graph G. These
two parts are executed sequentially until a set of robot actions
SA is found to grasp the target objects.

G is created with each element of SG as a root node that
represents a target object. Next, a leaf node Oj is chosen to
be explored, which in the first iteration is obviously one of
the root nodes. It is necessary to know which node Oj will be
explored in order to find a solution for a given target. Only
the leaf nodes that fulfill with the robot states = 〈∅, ∅〉 can
be selected, this means that the node has not been explored.
Then, the terminal Oj that complies the previous condition
and has the minimum root cost is selected. The root cost is
given by the number of obstacles that should be removed
from the obtained path to grasp a target object.

Then, a motion path is computed for each Ri in order
to grasp and manipulate the corresponding Oj . The motion
planner returns the path Pi,j and also returns the set of
removable obstacles SOi,j found along Pi,j .

In order to increase the probability of finding feasible paths
with the motion planner, it is considered that the objects can
be grasped in different ways. A set of grasp configurations
is used to compute different motion paths, and the one with
the minimum number of elements in SOi,j is chosen. The
grasping configurations for each object can be obtained using
different procedures (see for instance [20], [21]). Here we
assume that the set of grasping configurations of an object
for a given hand has been computed in advance and it is
provided with the model of the object. Then, the grasping
configurations of the hand are related to the object reference
frame, but since the position of the object in the work
environment is known, the grasping configurations can easily
be mapped to the robot configuration space.

Then, after Oj is analyzed, the corresponding SOi,j is
used to expand G. An empty SOi,j means that there is a free
collision path to grasp and move Oj , otherwise the obstacles
in SOi,j should be added to G as children of Oj . If SOi,j

has only one element it generates an OR arc, while if SOi,j

has more than one element they generate AND arcs.
Before adding an obstacle to G it is verified whether it has

already been previously added, because it can produce loops
in G. A loop means there is a collision between Ok and one
of its predecessor nodes (e.g. father, grandfather or any other
predecessor) and vice versa. The properties of Ok must be
updated with a null state, i.e. Ok cannot be grasped by Ri.
In the case that any Ri cannot grasp Ok, it is checked which
nodes of the same branch are affected and they states are
updated as null. On the other hand, if adding Ok does not
generate loops the properties of Ok and Oj must be properly
updated (e.g. the robot states of Oj change from unexplored
to blocked if SOi,j is not empty).

When a path Pi,j with SOi,j = ∅ is found to remove Oj

and its siblings (i.e a collision-free path), this means that a
sequence of actions exists to remove Oj and the predecessors
nodes that are blocking the path to a given target object.

The sequence of actions is computed using a backtracking
search method, from Oj to the target object. The search in
the graph is done as follows. Check if Oj has at least one
collision-free path, then, check if it has sibling nodes for the
same Ri and the same parent node. Recursively, check if
each sibling node has a collision-free path, and if its child

nodes (if there exist) have collision-free paths. Then, choose
the parent of Oj and continue the exploration recursively
until arriving to the given target object, which means that
there exists a sequence of actions to remove all the obstacles
to allow the grasp of the target object. Then, the sequence
of action is added to the set of sequence of actions SA and
a new target is selected.

When a sequence of action has been determined for each
target object the algorithm computes the taskDistribution
function. The input to the taskDistribution function is G
and SA. The function distributes the actions of SA as pairs,
i.e. 〈 taski for R1, taskj for R2 〉 (in order to parallelize the
actions to be executed by each robot arm) generating a set
of tasks sequence TS. The tasks that correspond to the
removal of the objects represented by leaf nodes of G that are
included in SA are selected and, then, from these tasks, those
that unlock a larger number of nodes in G are selected. This
process is executed recursively until all the removal tasks in
SA are assigned. In some cases a pair may has an empty
element, this means that one of the arms can not perform
any task in parallel with the other arm.

The output of the Algorithm 1 is TS. If the algorithm
returns empty TS, it is because it does not exist a sequence
of action for one of the targets (i.e. when the target is not
reachable by any of the robot arms, or, when the obstacles
block the access to the target.

V. EXPERIMENTAL RESULTS

The proposed approach has been implemented using a
dual-arm robotic system in a simulated and real workspace.
The dual-arm system is composed of two 6 DOF Universal
Robots (UR5), each one is equipped with an Allegro Hand
(AH) with 16 DOF. The simulated workspace includes the
corresponding 3D models of the two robots and the two
hands, and a data base with different types of objects.

The motion planning and graphical simulations have been
performed using The Kautham Project software tool [22],
which is a home-developed open source environment that
provides several useful tools for the development of plan-
ners, like, for instance, random and deterministic sampling
methods, metrics to evaluate the performance of the planners
(number of generated samples, collision check callings, num-
ber of nodes in the graph solution, connected components)
and simulation tools (including direct and inverse kinematic
models of the robots) that use Coin3D for the graphical
rendering, PQP for the collision detection, ROS for the
communication layer, and more recently OMPL has been
integrated providing the motion planning tool with more
options. The experiments were run in a computer with a
2.3 GHz Intel Core i7 processor with 8 Gb RAM, Ubuntu
OS 14.04 and ROS Hydro.

In the experiments presented below, several cylinders lie
on a table in front of the dual-arm robot. The target objects
are the green cylinders O1 and O2 and there are a set of
removable objects (blue cylinders Oj , j ≥ 3) that may act as
obstacles that block the direct access to the target objects.
The goal is that each robot arm grasps a green cylinder.

O4

O5 O6 O7

O1
O3O2

R2 R1

(a)

(b)

Fig. 2: Experiment 1, (a) Setup of the workspace, (b) The
resulting manipulation task graph.

As mentioned above, a set of grasp configurations of
the objects were computed in advance. In this case, the
grasp configurations are such that the fingers wrap around
the axis of the objects (grasping the objects from the top
is not allowed). The set of graps contains 35 different
configurations. The inverse kinematics of the robot arms
is computed for each configuration of the set of grasps in
order to know whether they are actually reachable. Then,
the reachable configurations are used as goal configurations
for the motion planner (i.e. the motion planner computes a
motion path for each goal configuration). The paths with the
minimum number of obstacles are selected. Then, a new set
of motion paths are computed to remove the obstacles from
the paths toward the target objects (the obstacles are thrown
out of the workspace instead of being relocated).

Figure 2(a) and Figure 3(a) show two setups of the
workspace used for the experiments. The resulting manipu-
lation task graphs are shown in Figure 2(b) and Figure 3(b).

In the first experiment, the result was as follows. In order
to grasp O1 with R1 the computed motion path has collisions
with O2, O6 and O7 , while to grasp O1 with R2 the objects
O4 and O5 have to be removed. Since the paths obtained
for both robots are not collision free, the branch of the
manipulation task graph with the lower number of obstacles
is chosen, in this case the branch that contains O4 and O5.
After looking for the motion paths to grasp O4 and O5 it was
found a collision-free path for R2 while R1 cannot reach O4

nor O5. On the other hand, to grasp the other target object,
O2, a path that collides with O3 and O7, was found for
R1 and a path that collide with O1 was found for R2, this
generates a loop in G, i.e. O1 has to be removed to grasp
O2 and vice versa. The path found for R1 to remove O3 has
collision with O7 while R2 cannot reach O3 due to a loop
in G. Finally, in order to grasp O7 a collision-free path was
found with R2.

O1 O3

O2

R2 R1

O4

O5
O6

(a)

(b)

Fig. 3: Experiment 2, (a) Setup of the workspace, (b) The
resulting manipulation task graph.

TABLE I: Number of paths computed by the motion planner,
total computation time and average time.

Paths Total time (s) Average time (s)

Experiment 1 R1 29 2.785142 0.096039
R2 18 3.407077 0.189282

Experiment 2 R1 17 3.742668 0.233916
R2 16 2.028555 0.135234

Figure 4(a) shows the resulting task sequence TS describ-
ing which object is assigned to each robot in each step of
the work, and Figures 4(b-d) show snapshots of the real
execution of experiment 1.

In the second experiment, the result was as follows. In
order to grasp O1 a motion path colliding with O2 and O6

was found for R1, and a motion path colliding with O4

was found for R2. Then, a collision-free path was found
to remove O4 with R2. On the other hand, in order to grasp
O2 with R1 a path that collides with O6 was found, and in
order to remove O6 a collision-free path was found for R1

while R2 cannot reach O6 because the path has a collision
with O2, generating a loop in G.

Figure 5(a) shows the resulting task sequence TS, and
Figures 5(b-d) show snapshots of the real execution of
experiment 2.

Table I shows the total number of paths computed for each
experiment using a RRT-Connect planner, the total time used
to compute all the paths and the average time per path.

VI. CONCLUSIONS AND FUTURE WORKS

This work has presented an approach that combines a
motion planner and a task planner for a dual-arm system.
One of the advantages of the proposed approach is that it can
work in workspaces where there are removable obstacles.
The approach generates motion paths for the robot arms
(even though the target objects may be blocked by removable
obstacles) and the set of motion paths to remove the obsta-
cles. On the other hand, the approach includes a task planner
which is in charge of determining the sequence of actions to

Step R1 R2

1 O7 O4

2 O3 O5

3 O2 O1

(a)

O5

O4

O2 O3

O1

O7

(b)

O5
O2

O3

O1

(c)

O1

O2

(d)

Fig. 4: Execution of the real experiment 1, a) The task sequence TS, b) R1 going to grasp O7 and R2 moving O4, c) R1

grasping O3 and R2 grasping O5, d) R1 grasping O2 and R2 waiting to grasp O1.

Step R1 R2

1 O6 O4

2 O2 O1

(a)

O6
O2

O1
O4

(b)

O2

O1

(c)

O2O1

(d)

Fig. 5: Execution of the real experiment 2, a) The task sequence TS, b) R1 going to grasp O6 and R2 grasping O4, b) R2

moving O1 and R1 waiting to grasp O2, c) R1 moving O2 and R2 in the final configuration.

be performed by the robot arms to achieve their goals. The
proposed approach has been implemented and successfully
applied in a simulated and a real environment.

As future work, it is considered the transfer of the ob-
jects between the robot arms. Besides, it is considered the
inclusion of a grasp planner to determine, when necessary,
the grasp configurations on line during the manipulation
planning.

REFERENCES

[1] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. Di-
marogonas, and D. Kragic, “Dual arm manipulation - A survey,”
Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1340–1353,
2012.

[2] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simultaneous Grasp and
Motion Planning,” IEEE Robotics and Automation Magazine, vol. 19,
pp. 43–57, 2012.

[3] C. Rodrı́guez, A. Montaño, and R. Suárez, “Planning manipulation
movements of a dual-arm system considering obstacle removing,”
Robotics and Autonomous Systems, vol. 62, no. 12, pp. 1816 – 1826,
2014.

[4] R. Suarez, J. Rosell, and N. Garcia, “Using synergies in dual-arm ma-
nipulation tasks,” in Proc. IEEE Int. Conf. Robotics and Automation,
May 2015, pp. 5655–5661.

[5] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[6] A. Montaño and R. Suárez, “Coordination of several robots based on
temporal synchronization,” Robotics and Computer-Integrated Manu-
facturing, vol. 42, pp. 73 – 85, 2016.

[7] K. Hauser and J. C. Latombe, “Integrating task and PRM motion
planning: Dealing with many infeasible motion planning queries,”
in ICAPS Workshop on Bridging the Gap between Task and Motion
Planning, 2009.

[8] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, and
F. Schmidt, “Combining task and path planning for a humanoid two-
arm robotic system,” in Combining Task and Motion Planning for
Real-World Applications (ICAPS workshop), 2012, pp. 13–20.

[9] D. Hadfield-Menell, E. Groshev, R. Chitnis, and P. Abbeel, “Modular
task and motion planning in belief space,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, Sept 2015, pp. 4991–4998.

[10] S. Cambon, R. Alami, and F. Gravot, “A Hybrid Approach to Intricate
Motion, Manipulation and Task Planning.” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[11] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in Proc.
IEEE Int. Conf. Robotics and Automation, May 2011, pp. 4575–4581.

[12] S. Srivastava, E. Fang, L. Riano, R.Chitnis, S. Russell, and P. Abbeel,
“Combined Task and Motion Planning Through an Extensible Planner-
Independent Interface Layer,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2014.

[13] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” in Workshop on the Algorithmic Foundations of
Robotics, July 2006.

[14] M. Dogar and S. Srinivasa.., “A framework for push-grasping in clut-
ter,” in Proceedings of Robotics: Science and Systems, Los Angeles,
CA, USA, June 2011.

[15] L. Kaelbling and T. Lozano-Perez, “Hierarchical task and motion plan-
ning in the now,” in Proc. IEEE Int. Conf. Robotics and Automation,
May 2011, pp. 1470–1477.

[16] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrange-
ment tasks: A fast extension primitive for an incremental sampling-
based planner,” in Proc. IEEE Int. Conf. Robotics and Automation,
May 2016, pp. 3924–3931.

[17] M. Stilman, J.-u. Schamburek, J. Kuffner, and T. Asfour, “Manipu-
lation planning among movable obstacles,” in Proc. IEEE Int. Conf.
Robotics and Automation, 2007.

[18] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 5 – 17, 2015.

[19] D. Stoffel, W. Kunz, and S. Gerber, “And/or graphs,” Technical Report,
1995.

[20] C. Rosales, L. Ros, J. M. Porta, and R. Suárez, “Synthesizing grasp
configurations with specified contact regions,” International Journal
of Robotics Research, vol. 30, no. 4, pp. 431–443, 2011.

[21] F. Gilart and R. Suarez, “Determining Force-Closure Grasps Reachable
by a Given Hand,” in 10th IFAC Symposium on Robot Control,
SYROCO, September 2012, pp. 235–240.

[22] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcı́a, “The kautham project: A teaching and research tool for
robot motion planning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation, ETFA’14, 2014.

