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Abstract— This paper proposes a novel motion planning
approach that exploits the concept of synergies (correlations)
between degrees of freedom, extending it to the velocity space
and calling them first-order synergies. An automatic partition
method is defined to optimally divide the configuration space
into cells where first-order synergies are significantly different.
Using this partition, an algorithm that tends to grow a tree
by extending the branches in the directions determined by the
the first-order synergies of the cell where the leaf to be grown
lies is introduced and called FOS-RRT. This allows the natural
expansion of the tree along the directions determined by the
data used to define the synergies. 2D examples illustrate the
performance of the proposed approach, which is particularly
attractive for potential applications in human-like robots using
human synergies.

I. INTRODUCTION

Motion planning is a traditional field in robotics [1], but,
nevertheless, new problems are incessantly appearing due
to continuous advances in the robot developments. New
approaches are being proposed to solve them, as well as
to improve the existing solutions to classical problems.
A paradigmatic case is the humanoid robotics, since the
advances done in this field require motion planners not only
to look efficiently for an optimal solution in the classic way
(optimizing energy or time in the plan execution) but also
looking for human-like solutions, i.e. requiring the robot
movement to be similar to those of the human being.

Successful approaches to motion planning for systems
with many degrees of freedom (DOF) are those called
sampling-based planners [2]. The most representative pro-
posals being the Probabilistic Road Map planners (PRM) [3]
and the Rapidly-exploring Random Trees planners (RRT) [4].
Following these pioneering proposals several variations were
proposed improving or modifying some particular aspects;
some examples are the consideration of optimality criteria [5]
or task constraints [6], and the biasing of the sampling pro-
cess towards regions of the sampling space that potentially
could be more interesting [7], [8].

Trying to mimic the human movements while reducing the
complexity of the search space for planning purposes lead
to the concept of synergies, which could be conceptually
defined as correlations between the DOF of the system.
These correlations were used in the field of robotic hands.
The idea was to look for the existing correlations in the
human hand joints while grasping an object [9] and then
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try to replicate them with robotic hands [10] in order to
reduce the dimension of the planning space, and therefore
the complexity of the problem. This concept was recently
applied to manipulation tasks using a two-arm anthropomor-
phic system [11]. Hand synergies were also considered with
other related goals [12], and some relevant examples are
the optimal identification of the hand pose using low-cost
gloves [13], the design of the gloves for this purpose [14],
the analysis and design of robotic hands in order to mimic
human grasps [15], the selection of grasping forces [16], or
the design of specific hand control systems [17][18]. Most of
the mentioned works use synergies for grasp synthesis, thus
the synergies are determined from the human hand analysis
while performing graspings. Other approaches determine the
synergies from freely movements of the human hand trying
to cover the whole hand workspace without any external
constraint [19], and then use the synergies for motion plan-
ning while mimicking human hand poses [20]. In addition,
a related alternative work fixes artificial synergies to impose
a common behavior to a team of mobile robots [21].

In this work we propose a new approach to motion
planning exploiting the concept of synergies (as correlations
among the system DOF), extending it to the velocity space.
The final goal of the approach is to allow the system to
learn the synergies of the human actions and use them for
motion planning. As explained above, in previous works
synergies were computed considering samples of the system
to be replicated (typically the human being) captured in
the configuration space. The approach we propose here
complements the information embedded in these traditional
synergies with information obtained from the computation of
new synergies from samples captured in the velocity space of
the system, which we call first-order synergies in comparison
with those obtained from the configuration space, that can be
considered as zero-order synergies. The paper presents the
first-order synergies and demonstrative examples of their ap-
plication in motion planning problems. The obtained results
are satisfactory and encourage the application to different
robotic problems, specially in the field of motion planning
for humanoid robots.

After this introduction, Section II presents the concepts
of zero- and first-order synergies, Section III presents the
used nomenclature and an overview of the proposal, which
is detailed in Sections IV and V. The approach is illustrated
in Section VI and finally Section VII presents the conclusions
and future work.



II. JOINT SYNERGIES

This section presents the concepts of zero- and first-order
synergies, including a brief description of its computation.

A. Zero-order synergies

Zero-order synergies have already been given different
names in the related bibliography, like “postural synergies”,
“eigengrasps”, or “principal motion directions”; in this work
we will use zero-order synergies as a generalization in
contrast to the first-order synergies introduced in the next
subsection.

Zero-order synergies represent correlations between DOF
of the system under study (for instance the joint positions
of a human hand or arms), and they are obtained from an
analysis of a set of configuration samples of such system.
The analysis of these samples is done with a Principal
Component Analysis (PCA) that returns a new basis of the
configuration space (eigenvectors) with the axes ordered
according the dispersion of samples along it (eigenvalues).
Each axis of this basis represents a zero-order synergy, i.e.
the movement along one particular axis, equivalent to one
single DOF, implies a correlated movement of several (or all)
the actual DOF of the system. A basis of the configuration
space representing zero-order synergies will be called a zero-
order basis 0S.

B. First-order synergies

As a generalization of the zero-order synergies we intro-
duce here the concept of first-order synergies, considering
as such the result of applying the PCA to a set of velocity
samples instead of configuration samples. We name these
synergies as first order because they are obtained in the space
of the first derivative of the configuration trajectories. i.e
the velocity space. In practice, we sample the demonstra-
tion movements (for instance, of a human hand or arms)
capturing the configurations with a given sampling rate, and
approximate the velocity with the central finite difference
method of second-order accuracy [22]. A PCA is done on
this set of velocity samples, giving as a result a new basis
of the velocity space, which in accordance with the previous
reasonings, we call first-order basis 1S.

III. OVERVIEW OF THE PLANNING PROCEDURE

Let C be an ordered data set of configurations sampled
from executions performed by an operator, and V the a
velocity data set computed from C. Then, the planning
procedure is as follows:

1) Scale the configurations in C so that each coordinate
be in the range [0, 1] and then apply the PCA to obtain
the zero-order synergies 0S.

2) Scale the samples in V so that each coordinate be in
the range [−1, 1] and then apply the PCA to obtain the
first-order synergies 1S.

3) Obtain a kd-tree partition of the relevant region of the
configuration space determined by 0S, by consecutively
dividing the cells whenever the first-order synergies
of the two resulting subcells differ from each other

(Section IV). A measure of the likeness between first-
order synergies is defined for this purpose.

4) Given a planning query (qinit, qgoal) find a solution path
using the FOS-RRT algorithm (Section V) that grows
a tree taking into account the first-order synergies, i.e.
the growing direction depends on the velocities defined
by the first-order synergies of the cell where the leaf
to be grown lies.

The following nomenclature will be used:
• m: Dimension of the configuration space.
• U = [u1, . . . ,um]: Matrix of eigenvectors resulting

from a PCA (ordered by decreasing order of the corre-
sponding eigenvalues).

• σ = [σ1, . . . , σm]: Vector of eigenvalues (in decreasing
order) resulting from a PCA.

• D: Diagonal matrix with the values of σ in the diagonal.
• µ: Barycenter resulting from the PCA.
• N : Multivariate normal distribution of the samples,

centered at µ and with covariance matrix Σ = UD2Uᵀ:

N (µ, Σ) = (2π)
−m

2 |Σ|−
1
2 e−

1
2 (x−µ)ᵀΣ−1(x−µ) (1)

• S: Synergy basis (µ, [σ1u1, . . . , σmum]).
• B(S): m-dimensional box enclosing the 95% of the

sample normal distribution, centered at µ and with
each side aligned with uj and measuring 2λσj with
λ =
√

2 erf −1(0.95
1
m ).

• V: Volume of a box B(S).
• LAB : Likeness measure between bases 1SA and 1SB .

IV. CONFIGURATION SPACE PARTITION

A. Likeness of first-order bases

This subsection proposes a measure of the likeness LAB
of two first-order bases 1SA and 1SB using the multivariate
normal distributions that each basis represents. LAB is
defined as a combination of the likeness LµAB

and LΣAB
,

all in the range [0, 1], with 1 meaning maximum likeness:

LAB = ρLµAB
+ (1− ρ)LΣAB

with ρ ∈ [0, 1] (2)

LµAB
measures the likeness of the barycenters µA and

µB , and LΣAB
measures the likeness of the directions

of two synergy bases 1SA and 1SB and the size of their
boxes B(1SA) and B(1SB). The value of ρ determines the
behavior of LAB . In this work the weight ρ = 0.2 has been
chosen empirically considering the differences between the
barycenters (LµAB

) as less important.
LµAB

evaluates both the direction and the magnitude sim-
ilarities between barycenters (using respectively the variables
dµAB

and mµAB
detailed below) and it is computed as:

LµAB
= 1− dµAB

mµAB
∈ [0, 1] (3)

with

dµAB
=

1

3

(
2− µA · µB
‖µA‖‖µB‖+ ε

)
∈
[

1

3
, 1

]
(4)

mµAB
= 0.5m−

1
2 ‖µA − µB‖ ∈ [0, 1] (5)

where ε is the machine epsilon.



LΣAB
is computed as:

LΣAB
=

ΦAB − ΦABmin

ΦABmax − ΦABmin

∈ [0, 1] (6)

where ΦAB is the value of the integral of the product of
the two multivariate normal distributions NA = N (0, ΣA)
and NB = N (0, ΣB).

Then, ΦAB can be expressed as:

ΦAB =

∫ ∞
−∞
· · ·
∫ ∞
−∞
NANB dx =

(
(2π)

m
2 |ΣA+ΣB |

1
2 + ε

)−1

(7)

and has the following bounds:

ΦABmin ≤ ΦAB ≤ ΦABmax (8)

ΦABmin =
(

(2π)
m
2
∏m
j=1

(
σAj

+ σBm−j+1

)
+ ε
)−1

(9)

ΦABmax =
(
π

m
2
∏m
j=1

(
σAj

+ σBj

)
+ ε
)−1

(10)

with σAj
and σBj

being the eigenvalues of the synergies 1SA
and 1SB respectively.

B. Partition criteria

The box of the global zero-order basis B(0S) is split into
cells of a kd-tree by hyperplanes aligned with the axes of
0S. The kd-tree is built by recursively dividing a cell (called
parent cell) into two subcells (called left and right child
cells). The partition criterion is based on the differences
between the first-order basis of the parent cell 1SP and the
first-order bases of its left and right child cells 1SL and 1SR
respectively. The position x of the partition hyperplane along
the partition axis is the one that optimizes the following two
objective functions:

1) Minimization of the maximum likeness between the
parent basis and those of the children:

OL = max (LPL, LPR) ∈ [0, 1] (11)

This objective function pursues that both child first-
order synergies be different to the parent synergies.

2) Minimization in the velocity space of the maximum of
the volumes 1VL and 1VR of the child boxes B(1SL)
and B(1SR), respectively, normalized to the volume
1VP of the parent box B(1SP ):

OV =
max

(
1VL, 1VR

)
1VP

∈ [0, 1] (12)

This objective function aims at enclosing the velocity
samples of the parent cell within the boxes of the child
cells tighter than within the parent box.

Note that both OL and OV lie in the range [0, 1] and
that OL and OV are equal to 1 in the limits of the x-domain
(when one of the children is equal to the parent and the other
is void). Therefore, there exists always a minimum (unless
the objective function were completely flat).

These two objective functions are joined to get a general
objective function as follows:

O =
OL
thL

+
OV
thV

(13)

Algorithm 1: KD-TREE

Input : Samples M
Thresholds thL, thV

Output: Kd-tree T
1: for j ← 1 to m do
2: πj ← MINIMIZEO(M, j, thL, thV)

3: SORT(π)
4: for k ← 1 to m do
5: if VALIDPARTITION(πk) then
6: (thL, thV)← UPDATETH(thL, thV ,π)
7: T .L←KD-TREE(LEFTS(M,πk), thL, thV)
8: T .R←KD-TREE(RIGHTS(M,πk), thL, thV)
9: return T

10: return T

where thL and thV weight the combination of the two
objective functions and are threshold values used to accept a
partition: the partition is accepted as valid only when the
position x of the partition hyperplane that minimizes O
satisfies OL < thL and OV < thV ; otherwise the parent
cell is not further divided.

The search of the optimum partition position is repeated
for all the axis and the selected splitting hyperplane is the
one with lowest O value among the valid partitions.

C. Partition algorithm

The partition procedure, called KD-TREE, is detailed in
Algorithm 1 and uses the functions detailed below. Let πj
be a partition hyperplane (perpendicular to the j-axis) that
includes information of the associated values O, OL and OV
of the optimization functions corresponding to this partition,
and let π be a m-dimensional vector (π1, . . . , πm).

· MINIMIZEO(M, j, thL, thV): Locates the minimum
of O using Brent’s algorithm [23] and returns the
hyperplane πj at the position that minimizes O. If a
minimum is not found, the hyperplane is set at an
arbitrary position and the associated O value is set at a
very high arbitrary value.
· SORT(π): Sorts the elements of π by ascending order

of the associated optimization value O.
· VALIDPARTITION(π): Returns true if the resulting child

cells are wide enough and both OL and OV are below
their respective thresholds.
· UPDATETH(thL, thV ,π): Takes OLmax, the largest

value of OL among the ones obtained when minimizing
O along each axis, and if thL > OLmax, sets thL ←
OLmax. The same is done for thV .
· LEFTS(M, π) and RIGHTS(M, π): Return the samples

of the set M which lie in the positive and negative side
of the hyperplane π, respectively.

The main features of the KD-TREE algorithm are:

. The parameters thL and thV , the thresholds for the
objective functions OL and OV respectively, are used to
accept or not a partition. The first call to the algorithm
uses thL and thV set to 1. Then, in the next calls,



Fig. 1. A ray-shaped motion (left) and an elliptic motion (right) and the
resulting kd-trees built by splitting the corresponding boxes B(0S) into two
and eight cells, respectively, with hyperplanes aligned with the 0S axes.

when a cell is divided, these values are updated (Line 7)
before calling recursively the algorithm with the sam-
ples of the left and right child cells. Since the threshold
values can only decrease, the acceptance criteria for new
partitions becomes stricter as the kd-tree grows.

. M contains all the samples that lie in the cell. Every
sample is a pair with a position and a velocity vectors.

. (Lines 6 to 11) If a valid partition is found, the cell is
divided and the left and right subtrees are assigned to
the child cells L and R, respectively.

D. Examples

Fig. 1 (left) shows the global zero-order basis 0S of the
samples of a motion that follows a ray shape with two
parts where the motion directions differ from each other.
The figure shows the result of the KD-TREE algorithm that
partitions 0S into two cells. Fig. 1 (right) shows the global
zero-order basis 0S of the samples of a motion that follows
an elliptic trajectory counter-clock wise. In this case the
partition algorithm found a kd-tree composed of 8 cells.

V. PLANNING PROCEDURE

A. The FOS-RRT algorithm

The basic RRT planning procedure [4] builds a tree T
rooted at an initial configuration qinit, by consecutively sam-
pling a configuration qrand, selecting the nearest node qnear in
T and growing a rectilinear segment of maximum length ε
towards qrand (the function that grows the tree is usually
called EXTEND). With a small probability, the sampling
function returns qgoal in order to bias the growing towards
the goal and thus accelerate the search of the solution path.
Once the tree reaches the goal configuration the solution path
is retrieved by backtracking the parent relationships in T
from qgoal to qinit.

In this work the basic RRT planning procedure has been
modified by changing the EXTEND function. The proposal
takes into account the first-order synergies in the region
where the node qnear lies in order to modify the growing
direction. The new planning procedure, called FOS-RRT
or First-order Synergy-RRT, is shown in Algorithm 2. It
can be seen that the tree is grown using the FOS-EXTEND
function, described in Algorithm 3. The functions used by
these algorithms are:

Algorithm 2: FoS-RRT
Input : Configurations qinit, qgoal

Probability Pgoal
Output: Path

1: T .Init (qinit)
2: for j = 1 to K do
3: qrand ← RANDOMCONFIG(qgoal, Pgoal)
4: if FOS-EXTEND(T , qrand, qgoal) then
5: return PATH(T , qinit, qgoal)

6: return ∅

· RANDOMCONFIG(qgoal, Pgoal): Returns with probability
1 − Pgoal a random configuration of the configuration
space, and with probability Pgoal returns qgoal.
· PATH(T , qinit, qgoal): Returns the solution path as a

sequence of configurations obtained by backtracking the
parent relationships in the nodes of T from qgoal to qinit.
· NEARESTNEIGHBOR(q ,T ): Returns the node of T

closest to q .
· FOS-BASIS(q ): Returns the first-order basis of the cell

where the configuration q lies, or ∅ if it lies outside
B(0S).
· SCALE(w): Returns a velocity with all the components

in the range [−1, 1] which is obtained from w in
two steps. First, each coordinate of w is divided by
the maximum velocity in the corresponding axis to
obtain wscale. Second, while there exists a wscale,j with
|wscale,j | > 1, wscale is divided by |wscale,j |.
· REAL(v): Returns the velocity resulting from multiply-

ing each component of v (that lies in the range [−1, 1])
by the maximum velocity in the corresponding axis.
· RANDTRIA(k1, k2, k3): Returns a random value of a

triangular distribution with minimum at k1, mode at k2

and maximum at k3.
· COLLISIONFREE(q1, q2): Returns true if the rectilinear

segment between q1 and q2 is collision-free, and false
otherwise.

The main features of the FOS-EXTEND function are:

. The ε parameter defines the standard advance step of
the standard RRT. The ∆t parameter defines the time
step used to advance with the velocity defined by the
synergies. An empirical value of ∆t that gives good
results is ∆t = 20 ε

‖vmax‖ where vmax is the velocity
when all the DOF are actuated at their maximum speed.

. (Line 4-5) FOS-EXTEND behaves as the basic EXTEND
function (the tree grows like the standard RRT) when:
a) qnear is outside the box B(0S) (since in this case

no first-order basis is available).
b) qrand is equal to qgoal (in order to bias the growing

and to guarantee the goal reaching).
c) v points in the opposite direction to µ (the growth

along non-natural directions should be restrained).
. (Line 7) vε is a velocity defined by qrand that allows to

advance a distance ε when it is applied during ∆t.



Algorithm 3: FOS-EXTEND

Input : RRT T
Configurations qrand, qgoal

Output: Bool
1: qnear ← NEARESTNEIGHBOR(qrand, T )
2: 1Snear(µ,σ, [u1, . . . ,um])← FOS-BASIS(qnear)
3: v ← SCALE

(
qrand−qnear

∆t

)
4: if 1Snear = ∅ or qrand = qgoal or µ ·v < 0 then
5: qnew← qnear + min(ε, ‖qrand − qnear‖)

qrand−qnear
‖qrand−qnear‖

6: else
7: vε ← v

‖v‖
ε

∆t
8: vFOS ← µ +

∑m
j=1 uj σj

(
v − µ
‖v − µ‖ · uj

)
9: c← RANDTRIA(0, 1, 1)

10: vc ← (1− c)vε + cvFOS
11: qnew ← qnear + ∆tREAL(vc)

12: if COLLISIONFREE(qnear, qnew) then
13: T .AddVertex(qnew)
14: T .AddEdge(qnear, qnew)
15: return qnew = qgoal

16: return false

Fig. 2. Example of the region where vc lies, given the first-order basis 1S.

. (Line 8) vFOS is a velocity defined by the synergies. It is
computed with the barycenter and a weighted projection
(onto the synergy basis) of the qrand direction (Line 3).

. (Line 11) qnew is computed from qnear by moving during
∆t with the velocity vc defined as a linear combination
of vFOS and vε (Line 10). The parameter of the linear
combination is extracted from a triangular distribution
(Line 9) that gives more weight to vFOS.

As an example Fig. 2 shows in yellow the region where all
the possible vc lie. The figure also illustrates the first-order
basis 1S and the vectors v, vε and vFOS.

B. Planning examples

The proposal has been implemented within The Kautham
Project [24], a motion planning and simulation environment
developed at the Institute of Industrial and Control Engineer-
ing (IOC-UPC) for teaching and research.

Fig. 3 shows the results (the tree and the solution path) of
two simple examples solved using the FOS-RRT algorithm.
On Fig. 3 (left) two regions with different first-order bases
have been artificially defined (the region on the left has its
principal direction along the vertical axis while the region

Fig. 3. Planning examples using FOS-RRT: it can be seen that the tree
branches grow with a greater pace in the senses defined by the first-order
synergies of each of the cells (in red the solution path).

on the right has it along the horizontal one). The edges of
the tree grow according to these main directions.

On Fig. 3 (right) B(0S) is divided into eight cells, each
with its corresponding first-order basis. These bases make
the edges of the tree to grow following an elliptic motion
counter-clock wise. It can be noticed that the branches in
the counter-flow sense or outside the box B(0S) advance
with a slower step size.

VI. APPLICATION EXAMPLE

To illustrate the proposed approach a 2D example has been
designed, it consists of a maze. The problem to be solved
is how to go from one point to another, and the goal of the
proposed approach is to teach the system by showing the
preferred movements of the operator. Experimental data of
position has been recorded while moving a magnetic tracker
repetitively along the corridors in a counterclockwise sense,
as shown in Fig. 4 (left). The PCA has been run and both
the zero- and first-order synergies have been obtained and
used to run the partition procedure. The resulting partitioned
configuration space is shown in Fig. 4.

Then, a query has been set with qinit at the top-right
corner and qgoal at the bottom-right one, and run using
the FOS-RRT, the standard RRT and the KPIECE [25]
planners. The results obtained are shown in Fig. 4. It can be
appreciated how the proposed approach builds a tree whose
branches grow with a greater pace in the sense defined by
the first-order synergies, thus encountering a solution more
similar to those of the demonstration set than the one found
using the standard RRT (mainly with fixed-length branches)
or the KPIECE (with branches with a length that varies
randomly within a given interval). For illustrative purpose,
Table I shows the average results after 100 executions
obtained for this example using the mentioned algorithms.
The comparison parameters are the success rate, the number
of tree nodes, the used time (when running in a 3.40-
GHz Intel i7-3770, 8-GB RAM PC), the solution length,
the percentage of times that the extend functions returned
true and the number of collisions checks. Even when the
FOS-RRT solution has a larger length it was found in a
shorter time and follows better the human demonstrations.



Fig. 4. From left to right: Data acquisition using a magnetic tracker; B(0SG) partition; tree and solution path found using different planners.

TABLE I
AVERAGE RESULTS OF THE MOTION PLANNING.

Planner Success Tree Used Solution Valid Collision
rate nodes time (s) length (m) segments checks

FoS-RRT 100% 2283 1.125 1.165 45.69% 16088
RRT 100% 7013 1.924 0.942 36.06% 23186
KPIECE 100% 1145 1.483 1.469 82.39% 5794

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced the concepts of zero- and
first-order synergies describing the correlation between the
configurations and velocities of the robot DOF, respectively.
These synergies can be, for instance, computed from human
operator demonstrations, or fixed before hand following
some criteria. Since the first-order synergies may vary along
the configuration space, an automatic partition procedure
of the relevant part of the configuration space, determined
by the zero-order synergies, has been proposed that opti-
mizes obtaining cells with significantly different first-order
synergies. A novel planning approach, that modifies the
standard RRT growing, has been introduced. The proposal
defines the growing direction taking into account the first-
order synergies of the cell where the leaf to be grown
lies, allowing in this way the natural expansion of the tree
along the directions determined by the captured data. The
results obtained show that the proposal works well and the
procedure has been illustrated in a 2D example.

Future work is centered in applying the method to the
motion planning for a dual-arm robotic system. The data of
a human operator performing different tasks with both arms
have to be captured and mapped to the robotic system, where
the PCA to obtain the zero-order and the first-order synergies
has to be computed. These synergies will capture the motion
velocities in the different regions of the space and its use
with the FOS-RRT planning algorithm is expected to give
human-like solutions quite efficiently.
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