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Abstract
The paper deals with the problem of determining in-

dependent regions on the edges of 2D polygonal objects
that allow a force-closure grasp using N fingers. First,
the grasp is decomposed into several non-redundant
grasps, establishing each one a necessary and suffi-
cient condition for force-closure. If at least one of
them is satisfied, then the global grasp is also force-
closure. The non-redundant grasps are used to deter-
mine the independent regions considering each condi-
tion on the given edges. The main advantage of the
proposed approach is that it is not necessary to com-
pute the entirely force-closure N -dimensional space
for determining the independent regions. The algo-
rithm has been implemented and a numerical example
is included in the paper.

1 Introduction
Grasps capable of resisting external disturbances

satisfy one of the following properties: form-closure
(the position of the fingers ensures the object immo-
bility) or force-closure (the forces applied by the fin-
gers ensure the object immobility) [1]. The study of
force-closure grasps, hereafter FC grasps, has been
a topic of great interest in grasping and manipula-
tion of objects. Mishra [7] enunciated a necessary
and sufficient condition that a FC grasp has to satisfy.
Based on this condition, some qualitative tests (deter-
mining if a set of contact points on the object allows
a FC grasp) [2] and quantitative tests (measuring the
goodness of the configuration) [4] have been proposed.
The synthesis of optimal FC grasps based on the mea-
sure used in [4] was addressed in [3]. Another related
problem is the determination of independent regions
on the object boundary such that a finger in each re-
gion ensures a FC grasp. Nguyen [9] determine the
maximum independent regions on 2D objects using a
geometrical approach for four frictionless contacts and
for two friction contacts. Ponce and Faverjon [10] de-
termined these regions for three friction contacts using
linear programming. Even when this approach has
been extended to polyhedral objects [11], it is based
on a sufficient condition and it only can evaluate a
sub-set of all possible FC grasps. Moreover, the two
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works mentioned above ([9] and [10]) are specific for
a given number of fingers. Liu [5] proposed an algo-
rithm to determine the N -dimensional space that al-
low a FC grasp using N fingers on 2D objects. This is
the same objective of [6], although in the latter with-
out considering any constraint on the finger forces.
Even when these two approaches are general and all
the FC grasps are considered, they have not been used
to compute the maximum independent regions.

This paper deals with the problem of determining
the maximum independent regions on 2D objects, con-
sidering all the possible FC grasps. The approach
developed here is based on a decomposition of any
grasp (with any number of fingers) into several non-
redundant grasps (with four frictionless contacts or
two friction contacts). Each one of these non-redun-
dant grasps has associated a necessary and sufficient
condition for the existence of a FC grasp and, in order
to produce a global FC grasp, at least one of them has
to be satisfied. Then, the necessary and sufficient con-
ditions are used independently in an algorithm based
on linear programming to calculate the maximum in-
dependent regions on the object. The computational
cost of the decomposing algorithm for N fingers is
O(N3). The main advantage of this decomposition is
that it is not necessary to compute the N -dimensional
set of points that allow a FC grasp, whose computa-
tional cost is at least O(N3 log N). Moreover, this
set can be concave, making difficult the application of
standard optimization algorithms.

The main assumptions considered in this work are:
1) Grasped objects are planar and polygonal-shaped;
2) The object edges where the fingers will contact are
given; 3) Forces applied by the fingers act only against
the object boundary; 5) The fingertip is a point. Note
that in this approach there is no constraint regarding
the number of fingers per edge, then, it is possible to
consider two fingers on the same edge.

2 Wrench Space
2.1 Representation of forces and torques

Let f i be the maximum force exerted by each finger
on the object boundary at each contact point. In the
absence of friction, f i is the applied force normal to
the object boundary and it produces a torque τi with
respect to the object’s center of mass. Considering



that f i is normalized to be ‖f i‖ = 1, the components
of f i (respect to the reference frame of the object)
and τi form the wrench vector:

ωi = [cos θi sin θi τi]T (1)

where θi indicates the direction of f i. Since ‖f i‖ = 1,
τi is equal to the distance di from the object’s center
of mass (CM) to the line of action of f i (see Fig. 1.a).

When friction is taken into account, f i can be de-
composed in two components f i,n and f i,t which are
respectively normal and tangent to the contact edge
(see Fig. 1.b). In order to avoid that the finger slips on
the edge, the Coulomb’s law must be accomplished:
|f i,n| ≥ µ|f i,t|, where µ is the friction coefficient.
This implies that f i can be applied in a range of di-
rections around the normal of the contact edge, deter-
mining the friction cone. Then, f i can be expressed
as a positive linear combination of two forces:

f i = αi,lf i,l + αi,rf i,r (2)

where f i,l and f i,r are the forces along the boundaries
of the friction cone, usually called primitive forces.

Then, the wrench produced in a contact point can
be expressed as a linear combination of two primitive
wrenches:

ωi = αi,lωi,l + αi,rωi,r (3)

with

ωi,r = [cos(θi − ϕ) sin(θi − ϕ) τi,r]T (4)
ωi,l = [cos(θi + ϕ) sin(θi + ϕ) τi,l]T (5)

where θi indicates the direction normal to the edge i,
ϕ = arctan µ and τi,r and τi,l are the torques produced
by f i,r and f i,l, respectively.

Considering that the torque component of each
primitive wrench is produced by the corresponding
force components tangential and normal to the edge
(see Fig. 1.b), we obtain:

τi,r = τi,n + τi,t (6)
τi,l = τi,n − τi,t (7)

where τi,n and τi,t are the torques produced by f i,n

and f i,t, respectively.
2.2 Constraint on the finger forces

The forces applied by the fingers can be subject
to different constraints [8]. The constraint considered
in this work is that the total force exerted by all the
fingers is limited, for instance, due to a maximum
available power for all the finger actuators. Then, the
applied forces can generate a resultant wrench

ω =
N∑

i=1

αiωi with
N∑

i=1

αi ≤ 1 (8)

where N is the number of contacts. If friction con-
tacts are considered, then αi = αi,l + αi,r is a linear
approximation.
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Figure 1: a) Frictionless contact; b) Friction contact,
where f i,l and f i,r are the primitive forces, f i,n is the
normal force and f i,t is the tangential force.

Geometrically, the resultant wrench can be any one
inside the polyhedron P1 defined in the wrench space
as:

P1 = ConvexHull(
N⋃

i=1

{ωi}) (9)

3 Non-redundant grasps
Definition 1 A non-redundant grasp, is the grasp
formed by the minimal number of contact points on
the object that generate the necessary wrenches to
obtain a FC grasp. �

FC grasps formed by four frictionless contacts or
by two friction contacts are non-redundant grasps.
3.1 One unknown frictionless contact

This subsection summarizes part of the results ob-
tained in our previous work [3] where, given three con-
tact points on the object, the range of a given edge
for the fourth finger that allow a FC grasp was deter-
mined using frictionless contacts.
Definition 2 The nominal range of τi, Rfci

, is the
range of values of τi that allow a FC grasp considering
that edge i has infinite length (i.e. only the direction
of the edge is taken account). �

In order to produce a FC grasp, P1 must contain
the origin [7]. Then, in order for a value τ∗

i to be an
extreme of Rfci

, it is necessary and sufficient that it
makes 0 ∈ ∂P1, ∂P1 being the boundary of P1.

Let ω1, ω2 and ω3 be three known wrenches
(of three fingers already on the object) and
ω4 = [fx4 fy4 τ4]T the wrench whose component τ4

is unknown, then the nominal range Rfc4 of τ4 can be
found with the following two steps:
1. Obtention of three candidates τ4m

(m = 1, 2, 3) to
be possible extremes of Rfc4 from the intersection,
in the wrench space, of the three planes defined by
the sets of wrenches {ω1, ω2, 0}, {ω1, ω3, 0} and
{ω2, ω3, 0}, respectively, with the straight line de-
termined by x = fx4 , y = fy4 .

2. Testing these candidates in the necessary and suffi-
cient force-closure condition [3]:

β1,4m
[fx1 fy1 τ1]T + β2,4m

[fx1 fy1 τ2]T +
β3,4m

[fx3 fy3 τ3]T = [fx4 fy4 τ4m
]T (10)



where β1,4m
, β2,4m

and β3,4m
are the coefficients

corresponding to the wrenches ω1, ω2 and ω3,
respectively, used to obtain the candidate τ4m

.
These coefficients can be determined just from the
knowledge of the applied forces and one of them is
always null since the candidates to be extremes of
Rfci

are obtained as a function of only two other
wrenches (step 1). If βj,4m

≤0, (j = 1, 2, 3) then
the candidate τ4m

is an extreme of Rfc4 .
Since P1 is convex, Rfc4 is a continuous set and

only one or two of the three candidates can be valid ex-
tremes of Rfc4 . Depending on the number of valid ex-
tremes of Rfc4 , the type of nominal range is:
Infinite: if only one candidate τ4m

satisfies the
necessary and sufficient condition (here denoted
as τ41), then Rfc4 is the range determined by
Rfc4 =[τ41 ,∞) or Rfc4 =(−∞, τ41 ] such that Rfc4

does not contain the other two τ4m
with m �= 1.

Limited : if two candidates τ4m
satisfy the necessary

and sufficient condition (here denoted as τ41 and
τ42) then Rfc4 = [τ41 , τ42 ] or Rfc4 = [τ42 , τ41 ].

3.2 Four unknown frictionless contacts
The approach used to determine the nominal range

of one unknown contact point is extended here to the
general case in which the four contact points are un-
known (but the contact edges are known).

All the candidates to be extremes of Rfci
with

i=1, ..., 4 are obtained from the torque component of
equation (10) as:

τim
= βj,im

τj + βk,im
τk (11)

where {i, j, k}∈{1, 2, 3, 4}, i �=j �=k, m={1, 2, 3}, τim

is the candidate m to be extreme of Rfci
and βj,im

and βk,im
are the coefficients corresponding to the

wrenches ωj and ωk used to obtain the candidate τim
.

βj,im
and βk,im

can be expressed in general form as:

βj,im
=

sin(θi−θk)
sin(θj−θk)

(12)

βk,im
=

cos(θi) sin(θj−θk)−cos(θj) sin(θi−θk)
cos(θk) sin(θj−θk)

(13)

where θi, θj and θk are the angles that indicate the
directions of f i, f j and fk, respectively.

The signs of βj,im
and βk,im

depends only on the
directions of the applied forces and they determine
the number of valid extremes of Rfci

. Then, the type
of the nominal range Rfci

can be automatically de-
termined just from knowing the edge of the object to
be contacted by each finger regardless of the actual
position of the fingers on the edges.
Proposition 1 Consider the torques of the four
wrenches that form a FC grasp. The nominal range
of two of them are Limited and the nominal range
of the other two are Infinite, except in the particular
case in which the fingers are placed on parallel edges:
if two fingers are placed in two parallel edges, then
three nominal ranges are Infinite and the other one
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Figure 2: Determination of the type of nominal range:
a) Four frictionless contacts with Rfch

, Rfci
Infinite

and Rfcj
, Rfck

Limited; b)Two friction contacts with
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Infinite and Rfcj,l
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Limited

is Limited, and if the four fingers are placed in two
pairs of parallel edges, then the four nominal ranges
are Infinite. �
Proof: Considering all the combinations of
subindexes in equation (11), four different equa-
tions are obtained. One of these equations with
βj,im

, βk,im
≤0 defines an extreme of the three nomi-

nal ranges related with the forces that determine βj,im

and βk,im
(for instance, if β2,11 , β3,11 ≤0 being deter-

mined by the forces f1, f2 and f3, then they define an
extreme of Rfc1 , Rfc2 and Rfc3). No more than two
independent equations with βj,im

, βk,im
≤0 are pos-

sible, because otherwise one of the nominal ranges
would have three extremes, and this is not possible
since P1 is convex. Therefore, a total of six extremes
are obtained for four nominal ranges, and then two of
them are Limited (they have two extremes) and the
other two are Infinite (they have only one extreme).

When two fingers are placed on two parallel edges,
one of the coefficients of the equation that relates
these two forces is always zero (i.e., the coefficient
relating these two forces is always negative regardless
the direction of the other forces). Then, this equation
defines one extreme of only two nominal FC ranges,
obtaining a total of five extremes. Then, three nomi-
nal ranges are Infinite (they have only one extreme)
and the other one is Limited (it has two extremes).
The same reasoning is applied when the four fingers
are placed on two pairs of parallel edges, obtaining a
total of four extremes. Then, the nominal ranges of
the four torques are Infinite. �

It can be easily determined which nominal range
is Infinite and which is Limited knowing the relative
directions of the applied forces: the two applied forces
(let’s say fh and f i) that lies between the negated
other two (let’s say −f j and −fk), have the nominal
ranges Rfch

and Rfci
Infinite and Rfcj

and Rfck are
Limited (the coefficients of equation (11) determined
by {fh,f j ,fk} and {f i,f j ,fk} are always negative).
Figure 2.a shows an example.

Lemma 1 If one of the two Infinite ranges tends to
±∞ the other one tends to ∓∞. �
Proof: Consider that Rfch

and Rfci
are Infinite and



Rfcj
and Rfck

are Limited. It is not known a priori if
Rfcj

= [τj1 , τj2 ] or Rfcj
= [τj2 , τj1 ], then the two cases

are considered.
If Rfcj

=[τj1 , τj2 ] then τj1 ≤τj ≤τj2 . Substituting
τj1 and τj2 by their expressions derived from equa-
tion (11), we obtain

βh,j1τh + βk,j1τk ≤ τj ≤ βi,j2τi + βk,j2τk (14)

If τh and τi are solved from equation (14), then

τh ≤ 1
βh,j1

(τj − βk,j1τk) (15)

τi ≥ 1
βi,j2

(τj − βk,j2τk) (16)

Therefore, τh has an upper bound while τi has a bot-
tom bound.

If Rfcj
= [τj2 , τj1 ] then, with the same reasoning,

the equations (15) and (16) are obtained again but
their inequalities are changed. Then, τh has a bottom
bound while τi has an upper bound. Same reasoning
can be made starting from Rfck

.
As a result, the two Infinite nominal ranges always

tend to infinite with different signs. �
Note that there is no relation between τh and τi.

Then, the values of τh and τi do not influence the
nominal range of each other.

From Lemma 2, the following necessary and suffi-
cient condition for the existence of a FC grasp can be
enunciated.

Necessary and sufficient condition: Four friction-
less contacts allow a FC grasp if and only if

sign(δ) �= sign(ε) (17)

with

δ = βj,h1τj + βk,h1τk − τh (18)
ε = βj,i2τj + βk,i2τk − τi (19)

where τj and τk have Limited nominal ranges and τh

and τi have Infinite nominal ranges. �
Geometrically, equations (18) and (19) represent

two planes in two different 3-dimensional subspaces
when δ and ε are zero. These subspaces are defined
by {τj , τk, τh} and {τj , τk, τi}, where τj and τk have
Limited nominal ranges and τh and τi have Infinite
nominal ranges. Let Rγ , γ = {h, i, j, k}, be the range
of τγ that is physically possible due to the edge length.
Then, the following polytopes are defined (see Fig. 3):
S+

h ={{τh, τi, τj , τk}|τh ∈Rh, τj ∈ Rj , τk ∈ Rk, δ ≥ 0}.
S−

h ={{τh, τi, τj , τk}|τh ∈Rh, τj ∈ Rj , τk ∈ Rk, δ ≤ 0}.
S+

i ={{τh, τi, τj , τk}| τi ∈ Ri, τj ∈ Rj , τk ∈ Rk, ε ≥ 0}.
S−

i ={{τh, τi, τj , τk}| τi ∈ Ri, τj ∈ Rj , τk ∈ Rk, ε ≤ 0}.
The geometrical interpretation of equation (17) is

(S+
h ∩ S−

i ) ∪ (S−
h ∩ S+

i ) �= Ø (20)
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Figure 3: Polyhedrons resulting from the projection
of: a) S+

h and S−
h on the subspace {τj,τk,τh}; b) S+

i

and S−
i on the subspace {τj, τk, τi}.

3.3 Two unknown friction contacts
The wrenches produced by two forces applied

on two friction contact points can be expressed
as a linear combination of four primitive wrenches
(Subsection 2.1.). Considering these four primitive
wrenches, the necessary and sufficient condition that
ensures a FC grasp for four frictionless contacts is
also applicable for two friction contacts. Besides,
the relation of dependency between the two primitive
wrenches associated to one force has also to be accom-
plished in order to obtain a real FC grasp. This de-
pendency can be considered introducing equations (6)
and (7) in the necessary and sufficient condition for
four frictionless contacts given by equation (17).

Let ωi,l and ωi,r be the pair of primitive wrenches
at contact point i, and let ωj,l and ωj,r be the pair
of primitive wrenches at contact point j. Since ϕ ≤ π
(ϕ = arctan µ) the torque components of the primi-
tive wrenches on the same point have different type of
nominal ranges (see Fig. 2.b). Then, the expressions
for δ and ε when two friction contacts are considered
are:

δ = βir,il
(τi,n+τi,t)+βjl,il

(τj,n−τj,t)−(τi,n−τi,t)(21)
ε = βir,jr

(τi,n+τi,t)+βjl,jr
(τj,n−τj,t)−(τj,n+τj,t)(22)

where τi,n and τj,n are the torques produced by the
normal forces, and τi,t and τj,t are the torques pro-
duced by the tangent forces.
3.4 Maximum independent regions

The independent regions are defined as the seg-
ments on the object boundary such that a finger in
each segment ensures a FC grasp [9]. The typical
maximization criterion used in the literature, as well
as here, is the maximization of the shortest segment,
increasing the robustness in front of the finger posi-
tioning errors.

The algorithm used to find the independent regions
is described considering frictionless contacts (fric-
tion contacts can be considered using equations (21)
and (22)). Let [τ−

p , τ+
p ] be the independent region

on the object edge p, with p = 1, ..., 4. The inde-
pendent regions define a 4-dimensional parallelepiped
(4D-parallelepiped) and it can be determined using
the following proposition:
Proposition 2 Let v, v = 1, ..., 16, be a vertex of the
4D-parallelepiped and let δv and εv be the solutions



of equations (18) and (19) for v. A combination of
contact points inside the 4D-parallelepiped produces
a FC grasp if the following condition is true ∀v:

(δv ≥ 0 and εv ≤ 0) or (δv ≤ 0 and εv ≥ 0) (23)
�

Proof: Consider the geometrical interpretation of the
necessary and sufficient condition expressed in equa-
tion (20). By construction S+

h ∩ S−
i and S−

h ∩ S+
i

are convex sets, but the set (S+
h ∩ S−

i ) ∪ (S−
h ∩ S+

i )
is concave. Since the 4D-parallelepiped is convex,
we can guarantee that all its points satisfy the ne-
cessary and sufficient condition if all its vertices be-
long to a convex solution set, i.e., all the vertices
belong to S+

h ∩ S−
i or to S−

h ∩ S+
i , which can not

be true when the vertices of the 4D-parallelepiped
belong to (S+

h ∩ S−
i ) ∪ (S−

h ∩ S+
i ). Thus, if the 4D-

parallelepiped is inside S+
h ∩ S−

i then ∀v δv ≥ 0 and
εv ≤ 0, and if the 4D-parallelepiped is inside S−

h ∩ S+
i

then ∀v δv ≤ 0 and εv ≥ 0. �
The algorithm developed to determine the maximal

independent regions is based on linear programming.
Proposition 2 defines a set of logical relations between
the variables (the vertices of the 4D-parallelepiped)
and they can be introduced in the Simplex algorithm
if equation (23) is expressed as:

If ∃δv ≥ 0 Then ∀δv ≥ 0 and ∀εv ≤ 0 (24)
If ∃δv ≤ 0 Then ∀δv ≤ 0 and ∀εv ≥ 0 (25)
If ∃εv ≥ 0 Then ∀εv ≥ 0 and ∀δv ≤ 0 (26)
If ∃εv ≤ 0 Then ∀εv ≤ 0 and ∀δv ≥ 0 (27)

This kind of relations are denominated If-Then
constraints in linear programming [12]. Let F and G
be two generic functions related with a If-Then Cons-
traint (e.g., If F ≥ 0 Then G ≥ 0), this constraint is
expressed in the Simplex algorithm as:

F ≤ M(1 − y) (28)
−G ≤ My (29)

where y is a binary variable and M is a sufficient large
value.

Let L be the minimum length of an independent
region on a edge. Then, the algorithm used to de-
termine the maximum independent regions has the
following form, for p = 1, ..., 4:

Max L
subject to

L ≤ τ+
p − τ−

p

τ−
p ≤ τ+

p

τ+
p ≤ τmaxp

τminp
≤ τ−

p

Eq. (24), (25) (26) and (27)

4 Redundant grasps
Grasps formed by more than four frictionless con-

tacts and more than two friction contacts are redun-
dant grasps since they can apply forces in more than

four directions. The redundant grasps can be decom-
posed into a set of non-redundant grasps considering
the combinations of four wrenches that ensure a FC
grasp. In order to obtain all the non-redundant grasps
of a given redundant grasp, it is initially considered
that all the primitive wrenches are independent (even
if friction contacts are considered). For each com-
bination of two wrenches the following procedure is
applied (the obtention of these combinations has a
computational cost O(N2)):
1. Consider that the nominal ranges of the torque

components of the two wrenches are Limited and
find from the remaining wrenches those whose
torque components have Infinite nominal ranges
(it can be done knowing the relative directions of
the applied forces, as it was shown in Fig. 2). The
computational cost of this step is O(N).

2. Depending of the number of remaining wrenches
whose torque components have an Infinite nominal
ranges, do:
2.1. If at most one wrench is found, then this com-

bination is rejected since at least four wrenches
are necessary to form a FC grasp.

2.2. If at least two wrenches are found, then
each combination of the two initial wrenches
with two wrenches whose torque components
have an Infinite nominal range forms a non-
redundant FC grasp.

3. For each non-redundant grasp, determine the ne-
cessary and sufficient condition by computing the
coefficients of equations (18) and (19).

4. If friction contacts are considered, use equa-
tions (6) and (7) in order to express the necessary
and sufficient condition as a function of the torques
produced by forces orthogonal to the edge (then,
the dependency on the pairs of primitive wrenches
generated by the same force is considered).

As a result, the non-redundant grasps are obtained
with a computational cost of O(N3).

The linear programming algorithm used to obtain
the maximum independent regions described in Sub-
section 3.4 is applied for each of the non-redundant
grasps, choosing as the best set of independent re-
gions the set with the largest minimum region length.

5 Examples
A numerical example of the proposed methodology

is presented in this section, determining the indepen-
dent regions for three friction contacts. The friction
coefficient is µ = 0.3 and the three edges where the
three fingers will contact are known. Thus, for each
finger i, we know the contact edge i and (see the ob-
ject in Fig. 4.a):

i θi θi,r θi,l τi,nmin τi,nmax τi,t

1 1.570 1.279 1.862 -0.603 2.196 0.331

2 4.112 3.820 4.403 -2.463 -0.160 0.083

3 4.957 4.665 5.248 0.032 1.204 0.278

where θi is the direction of the force orthogonal to
the edge, θi,r and θi,l are the directions of the primi-



tive forces, τi,nmin
and τi,nmax

are the minimum and
maximum torques, respectively, produced by a force
orthogonal to the edge, and τi,t is the torque produced
by the force tangent to the edge.

All the non-redundant grasps are produced by the
following combinations of primitive wrenches:

1.{ω1,r, ω2,r, ω3,r, ω3,l} 7.{ω1,r, ω1,l, ω3,r, ω3,l}
2.{ω1,r, ω2,l, ω3,r, ω3,l} 8.{ω1,l, ω2,r, ω2,l, ω3,l}
3.{ω1,r, ω1,l, ω2,r, ω3,r} 9.{ω1,l, ω2,r, ω3,r, ω3,l}
4.{ω1,r, ω1,l, ω2,l, ω3,r} 10.{ω1,l, ω2,l, ω3,r, ω3,l}
5.{ω1,r, ω2,r, ω2,l, ω3,r} 11.{ω1,r, ω1,l, ω2,r, ω3,l}
6.{ω1,r, ω2,r, ω2,l, ω3,l} 12.{ω1,r, ω1,l, ω2,l, ω3,l}
Considering combination 4, τ1,r and τ3,r have Limi-

ted nominal ranges and τ1,l and τ2,l have Infinite
nominal ranges. The values of δ and ε are given by:

δ = −1.3670τ1,r − τ1,l − 2.2696τ3,r (30)
ε = −1.0682τ1,r − τ2,l − 0.0705τ3,r (31)

and using equations (6) and (7) to express δ and ε as
a function of τi,n, we obtain:

δ = −2.3670τ1,n − 2.2696τ3,n − 0.7536 (32)
ε = −1.0682τ1,n−τ2,n−0.0705τ3,n − 0.2902 (33)

Equations (32) and (33) establish the necessary and
sufficient condition for combination 4, and it is satis-
fied if the signs of δ and ε are different.

With the same reasoning, the necessary and suffi-
cient conditions for the other combinations are found.
The result of the Simplex algorithm considering the
necessary and sufficient condition for each combina-
tion and the minimum and maximum values of τi,n

are:
Comb. L [τ−

1 , τ+
1 ] [τ−

2 , τ+
2 ] [τ−

3 , τ+
3 ]

4. 1.172 [−0.349, 0.856] [−2.463,−1.290] [0.032, 1.204]
5. 0.978 [0.059, 1.038] [−2.463,−1.484] [0.226, 1.204]
1. 0.636 [−0.198, 0.437] [−2.463,−1.826] [0.568, 1.204]

12. 0.619 [0.925, 1.544] [−2.463,−1.843] [0.585, 1.204]
10. 0.565 [−0.290, 0.274] [−2.463,−1.897] [0.639, 1.204]
6. 0.486 [1.189, 1.675] [−2.463,−1.976] [0.718, 1.204]
9. 0.405 [−0.457,−0.051] [−2.463,−2.057] [0.799, 1.204]
7. 0.338 [−0.349,−0.010] [−2.463,−0.160] [0.032, 0.370]

11. 0.322 [0.349, 0.671] [−2.463,−2.140] [0.882, 1.204]
3. 0.293 [−0.603,−0.310] [−2.463,−2.169] [0.297, 0.590]
8. 0.181 [0.217, 0.398] [−2.463,−2.281] [1.023, 1.204]
2. 0.097 [1.961, 2.058] [−2.463,−2.365] [1.107, 1.204]

L being the length of the smallest independent re-
gion, and [τ−

1 , τ+
1 ], [τ−

2 , τ+
2 ] and [τ−

3 , τ+
3 ] the indepen-

dent regions on each edge. Combination 4 produces
the best result, which in this case makes the smallest
region on one edge to be equal to the edge itself.
Figure 4 shows the independent regions on the ob-
ject boundary and the parallelepiped that they form
in the space defined by {τ1,n, τ2,n, τ3,n}.
6 Conclusions

The paper provides a new approach to determine
the independent regions on a given set of edges of an
object that allow a FC grasp for N fingers. All the
possible FC grasps are considered in this approach,
although it is not necessary to construct the entire
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Figure 4: Results of combination 4: a) Independent
regions on the object boundary; b) Parallelepiped in
the space defined by {τ1,n, τ2,n, τ3,n}.

N -dimensional set of the FC grasps. The grasp is
decomposed into several non-redundant grasps, and
each one establishes an individual necessary and suf-
ficient condition for force-closure. If at least one of
them is satisfied, then a global FC grasp is obtained.
These conditions are included in an algorithm based
on linear programming that is used to compute the
independent regions.
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