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Abstract: This paper presents a method to design fixtures for complex objects in robotized
environments. The object is described with a set of points on its surface. First, an initial form-
closure fixture is found with an iterative algorithm. The initial fixture is then improved with an
iterative approach relying on a geometrical reasoning that efficiently looks for a locally optimum
fixture; the quality of the fixture is measured considering the largest perturbation wrench that
the fixture can resist, with independence of its direction. Once a locally optimum fixture has
been reached, independent contact regions are computed to provide robustness in front of the
locator positioning errors or to allow variations in the locators position. The proposed approach
can also be applied to compute fixtures when one or several locators are fixed beforehand. The
procedure has been implemented and application examples are included in the paper.
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1. INTRODUCTION

Manufacturing or inspection operations on industrial
workpieces usually require the immobilization of the object
to resist external disturbances, specially when a robot
or any other machine must perform an action on them;
such problem is known as fixture layout design. In fixture
design, a set of clamps and locators must be placed such
that the position of the contact points on the object
ensure its immobility; this property is commonly called
form-closure or kinematical immobility, and it is mostly
used when the task requires a robust grasp not relying on
friction (Bicchi, 1995). When friction is taken into account
so that the forces applied at the contact points ensure
the object immobility, the object fulfills the force-closure
property, which is used in grasping and manipulation of
objects with a lower number of frictional contacts.

The problems related to fixture design and grasp synthesis
on 3D objects, with different number of fingers and satis-
fying the form or force-closure condition, have been exten-
sively investigated. Several algorithms have been proposed
for 3D polyhedral objects or objects with smooth curved
surfaces (Ponce et al., 1997; Zhu and Wang, 2003). More
recently the synthesis of fixtures/grasps for 3D discretized
objects has been addressed. A strategy based on random
generation of grasps was shown to be quick and efficient
to generate good grasps on arbitrary objects (Borst et al.,
2003); the complexity of such grasp planner depends on the
form of the object, but the generated grasps are not opti-
mal. An algorithm for fixture synthesis on discrete objects
was proposed by minimizing the workpiece positioning
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errors due to uncertainties in the position of the locators
and in the geometry of the workpiece (Wang and Pelinescu,
2001). An algorithm to generate a form-closure grasp with
7 frictionless contact points was proposed (Ding et al.,
2001), although it can be trapped in local minima; this al-
gorithm was extended to find one force-closure grasp with
frictional or frictionless contact points (Liu et al., 2004).

Most of the approaches mentioned above require precise
finger placements; however, in a real execution the actual
and the theoretical fixture/grasp may differ due to posi-
tioning errors. The concept of independent contact regions
(ICRs) was introduced in order to provide robustness in
front of these errors (Nguyen, 1988). ICRs are regions
on the object boundary such that a finger positioned on
each of them assures a form-closure (FC) grasp, with
independence of the exact position of each finger. The de-
termination of ICRs was initially addressed for polygonal
and polyhedral objects (Ponce and Faverjon, 1995; Ponce
et al., 1997). The ICRs have also been used to determine
contact regions for the grasp of 3D objects based on initial
examples, although the results depend on the choice of
the example (Pollard, 2004). Recently, the computation of
ICRs for 2D discrete objects with four contact points has
also been addressed (Cornellà and Suárez, 2005); however,
the determination of ICRs on 3D discrete objects has not
been efficiently tackled yet.

This paper presents an approach to design form-closure
(FC) fixtures on general 3D workpieces with 7 frictionless
contacts representing the constraints provided by locators
and clamps. The object surface is approximated with a
triangular mesh with a high number of faces or with a set
of surface points and their corresponding normal direction;
this representation allows dealing with complex objects,
and with objects whose boundary is only known at a finite
set of points, as in the case of the aerodynamic design



of an airfoil (Liu et al., 2004). The proposed integrated
approach comprises three phases. The first phase finds
at least one FC fixture, and the second phase optimizes
the initial fixture to get a locally optimum one; the
optimization procedure is an oriented search that looks
for the fixture that resists the largest perturbation wrench,
with independence of the perturbation direction. Finally,
the third phase computes the ICRs from the locally
optimum fixture, assuring a FC fixture with a controlled
minimum quality. The algorithms are based on geometrical
procedures that avoid using a costly FC test, simplifying
the overall complexity of the approach. The proposed
approach is easily extended to deal with n > 7 frictionless
contacts without increasing the computational complexity.
It can also deal with the more simple case where k contacts
are fixed beforehand, looking for the location and ICRs for
the n − k missing contacts.

This paper is organized as follows. Section 2 provides the
basic assumptions and required background, including the
form-closure test and quality measure used in the paper.
Section 3 presents the algorithms to compute the initial
and locally optimum fixture, and the independent contact
regions. The algorithms have been implemented, and Sec-
tion 4 shows the results of their application to different
objects. Finally, Section 5 summarizes the approach, com-
pares it with previous works, and presents future works.

2. PROBLEM OVERVIEW

2.1 Object and contact models

The object surface is represented with a large set Ω of
points, described by position vectors pi measured with
respect to a reference system located in the object’s center
of mass (CM). Each point has an associated unitary
normal direction n̂i pointing towards the interior of the
object. It is assumed that the number of points in Ω is
large enough to accurately represent the surface of the
object, and that each point on the surface of the object
has three neighboring points.

Seven frictionless contacts are necessary and may be
sufficient to hold a 3D object with a FC fixture, provided
that the object has no rotational symmetries (Bicchi,
1995); the frictionless assumption is realistic in fixturing,
as the fixture requires total kinematical restriction. With
frictionless contact points, the grasp forces can only be
applied in the direction normal to the object surface. A
unitary force n̂i applied on the object at the point pi

generates a torque τ i = pi × n̂i with respect to CM . The
force and the torque are grouped together in a wrench

vector given by ωi = (n̂i, τ i)
T
.

For a given fixture F = {p1,p2, . . . ,p7}, the wrenches
produced by the forces applied at the contact points on the
object are grouped in a wrench set W = {ω1,ω2, . . . ,ω7}.
Each physical point pi in Ω has a corresponding wrench ωi

in the wrench space; when it is clear, both of them will be
used to indicate a fixture constraint (in general, the same
wrench can be produced at different contact points).

2.2 Form-closure condition

A necessary and sufficient condition for the existence
of a FC fixture is that the origin of the wrench space

lies strictly inside the convex hull (CH) of the contact
wrenches (Murray et al., 1994). Let F be a fixture with a
set W of contact wrenches, I the set of strictly interior
points of CH(W ), and H a supporting hyperplane of
CH(W ) (i.e. a hyperplane containing one of the facets
of CH(W )). The origin O of the wrench space satisfies
O ∈ I iff any P ∈ I and O lie in the same half-space
for every H of CH(W ). Thus, checking whether a given
point P ∈ I and the origin O lie in the same half-space
defined by each supporting hyperplane H of CH(W ) is
enough to prove whether O lies inside CH(W ), i.e. to prove
whether the fixture F is FC. P is chosen as the centroid of
the contact wrenches, which is always an interior point of
CH(W ). Then, the FC test checks whether the centroid P
and the origin O lie on the same side for all the supporting
hyperplanes of CH(W ).

2.3 Fixture quality measure

This work uses as quality measure the largest perturbation
wrench that the fixture can resist, with independence
of the perturbation direction (Ferrari and Canny, 1992);
this is one of the most popular grasp quality measures.
Geometrically, the quality is the radius of the largest ball
centered at the origin O of the wrench space and fully
contained in CH(W ), i.e. it is the distance from O to the
closest facet of CH(W ).

A theoretical upper limit on the quality measure for a
particular object can be established to evaluate the fix-
tures generated by the design procedure. A 6-dimensional
hyperplane is described with

∑6

j=1 ejxj = e0, with e =

(e1, . . . , e6) the vector normal to the hyperplane. The
distance to the origin is given by D = |e0| / ‖e‖.

The upper quality limit problem is stated as follows.
Given a wrench set of 7 non-collinear points ωi =
(xi1, xi2, . . . , xi6) ∈ ℜ6, the following max-min problem
should be solved

max

{

min

(

|e01|

‖e1‖
,
|e02|

‖e2‖
, · · · ,

|e07|

‖e7‖

)}

(1)

subject to
λ1ω1 + λ2ω2 + · · · + λ7ω7 = 0 (2)

λ1 + λ2 + · · · + λ7 = 0 (3)
0 < λj ≤ 1, j = 1, 2, . . . , 7 (4)

x2
i1 + x2

i2 + x2
i3 = 1 (5)

−τ4min ≤ xi4 ≤ τ4max (6)
−τ5min ≤ xi5 ≤ τ5max (7)
−τ6min ≤ xi6 ≤ τ6max (8)

with ei and e0i the parameters for each one of the 7
supporting hyperplanes of CH(W ). Constraints (2), (3)
and (4) assure that the origin O lies strictly inside CH(W ),
constraint (5) normalizes the force component of the
wrench ωi (n̂i lies on the surface of the sphere S2), and
constraints (6), (7) and (8) provide the limits for the torque
components (τ i lies inside a parallelepiped in ℜ3).

3. FIXTURE POINT DETERMINATION

3.1 Search of an initial fixture

An initial FC fixture is determined based on geometric
reasoning, avoiding the inclusion of an explicit FC test in
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Fig. 1. Synthesis of a FC fixture. The convex hull of
the wrench set W = {ω1,ω2,0} (in continuous lines)
defines the supporting hyperplanes H1 and H2 that
contain the origin. The convex set C1 contains 4
points (depicted as white squares), thus the algorithm
provides 4 FC fixtures, one of them illustrated with
the convex hull in discontinuous lines.

the algorithm. First, a set S1 of 6 random points is selected
from Ω, and the convex hull CH(W ) of the selected points
plus the origin O of the wrench space is computed. Let Hl

be a supporting hyperplane of CH(W ) containing the
origin, and let H−

l be the closed half-space defined by Hl

that contains CH(W ); l = 1, . . . , 7. Let C1 and C2 be
the intersection of all of the half-spaces H+

l and H−

l ,
respectively, as illustrated in Fig. 1 for a hypothetical 2D
wrench space (the actual wrench space is 6-dimensional).
If there is at least one wrench in C1, it will provide a FC
fixture when added to S1 (Section 2.2). If C1 is empty, the
algorithm iteratively replaces one of the wrenches in S1

and performs another search of points in the new C1 until
it contains at least one point, i.e. until it finds at least one
FC fixture. The steps in the algorithm are:

Algorithm 1: Search of a FC fixture

(1) Generate a random set Sk = {ω1, . . . ,ω6}, k = 1
(2) Build W k = Sk ∪ {O}
(3) Compute CH(W k)
(4) Find C1 =

{

ω | ω ∈ H+
1 ∩ . . . H+

7

}

and C2 = {ω |

ω ∈ H−

1 ∩ . . . H−

7

}

(5) If C1 6= ∅ then return F = {ω1, . . . ,ωc}, with ωc

randomly picked from C1

Else
Pick up a ωj /∈ C1 ∪ C2

Form Sk+1 by replacing a ωi ∈ Sk such that
dL2

(ωi,ωj) be a minimum. Go to Step 2.
Endif

The algorithm finishes when one FC fixture is obtained,
and it provides as many FC fixtures as points lie in C1

in that iteration. When C1 is empty, any combination of
6 wrenches in C2 (including the wrenches in Sk) will not
yield a FC fixture, thus all of these possible combinations
are left out for subsequent searches. The wrenches in C2 are
labeled as explored wrenches to progressively explore the
search space and assure the completeness of the algorithm.

The computational complexity of Algorithm 1 is hard to
estimate, as it has an heuristic nature; however, some re-
marks can be pointed out. Step 3 requires the computation
of a convex hull, which is O(N log N); however, only the
supporting hyperplanes are required, which can be easily
computed as every 6-point combination defines one of the
7 facets of CH(W ). Step 4 requires the classification of the
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Fig. 2. Optimization procedure in a 2D wrench space. The
set P of wrenches that improve the actual quality (de-
picted as white squares in the gray area) is defined by
the hyperplanes H ′

1 and H ′

2 = HQ. The fixture for the
next iteration cycle, F k = {ω1,ω2,ωr} is also shown.

N -points in Ω with respect to the 7 hyperplanes (described
by a linear equation). The total number of iterations re-
quired to determine a FC fixture (or to decide if there is
no solution at all) depends on the random choice of Step 1
and in the random replacement in Step 5.

3.2 Optimization of the initial fixture

The optimization algorithm improves the fixture quality
for the initial FC fixture obtained with the previous
algorithm, looking for the fixture that resists the largest
perturbation wrench with independence of its direction
(Section 2.3). The steps in the algorithm are:

Algorithm 2: Optimization of an initial FC fixture

(1) Find an initial FC fixture F k = {ω1, . . . ,ω7}, k = 1
(2) Determine HQ such that D = |e0| / ‖e‖ is a minimum.

The current fixture quality is Qk = Dq

(3) Build T = {ω̃m, m = 1, . . . , 6 | ‖ω̃1‖ ≤ . . . ≤ ‖ω̃6‖};
ω̃m lie on Hq

(4) Initialize m = 1. Compute the 6 hyperplanes H ′

l

containing every possible 5-point combination in F k−
{ω̃m} and lying to a distance Qk from the origin O.

(5) Build P =
{

ω | ω ∈ H ′

1
+ ∩ . . . ∩ H ′

6
+
}

If P = ∅ and m 6= 6
Let m = m + 1. Go to Step 4

Elseif P = ∅ and m = 6
A local maximum has been reached; return F k

Elseif P 6= ∅
Find ωr ∈ P such that

∏

D (ωr,H
′

l) is a maximum
Replace ω̃m with ωr. Go to Step 2

Endif

Steps 4 and 5 are the more complex steps in Algorithm 2.
Step 4 requires the computation of 6 hyperplanes H ′

l to
find the points that improve the actual fixture quality
(Fig. 2). A supporting hyperplane Hl is defined by 6 points,
one of them being ω̃m. The parameters of H ′

l are computed
from 5 linear equations (5 points lying on the hyperplane)
and one non linear equation (‖el‖ = 1/Qk). These 6 equa-
tions admit 2 solutions; the hyperplane searched is the one
leaving O and ω̃m in different half-spaces. Step 5 requires,
in the worst case (the local maximum) 6 classification
cycles of the N points in Ω with respect to 6 hyperplanes.
The local maximum implies there are no more points that,
combined with the point F k − T , improve the actual
quality Qk. The total number of iterations required to
reach the local maximum depends on the number of local
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Fig. 3. Search of the ICRs in a 2D wrench space. The
hyperplanes HQ, H ′

1 and H ′

2 define the search zones
S1, S2 and S3, depicted in gray. The points within
each ICR are depicted as white squares. An instance
of a fixture with quality higher than Qr is also shown.

maximums in the wrench space, which is related with the
object shape.

3.3 Determination of the independent contact regions

The independent contact regions (ICRs) ensuring a min-
imum fixture quality Qr are computed for the locally
optimum FC fixture obtained with the previous algorithm.
Several fixtures may be formed when placing a finger in
different positions inside its corresponding ICR; any of
these fixtures must satisfy O ∈ CH(W ) and have a
quality Q > Qr. The proposed approach is based on
these geometrical conditions, as illustrated in Fig. 3. For a
given FC fixture, the quality Qr is fixed by FQ, the facet of
the convex hull closest to the origin. Six hyperplanes H ′′

k

(two in the hypothetical two-dimensional wrench space),
parallel to the remaining facets of the convex hull and
tangent to the ball of radius Qr are then considered. These
hyperplanes define Si, the search zone containing the ICR
for each wrench ωi; Si is the intersection of the half-spaces
containing the wrench ωi. The ICR is the set of neighbor
points of pi whose wrenches fall into the search zone Si.

The procedure can also be applied to generate ICRs with
points that produce a lower fixture quality Qr = αQi, with
Qi the quality of the initial fixture and 0 < α < 1. When
α → 0, the ICRs contain FC fixtures without a lower limit
on the fixture quality. In fact α = 0 is a forbidden value,
as it does not assure that any CH(W ) will strictly contain
the origin O. The steps in the algorithm are:

Algorithm 3: Determination of ICRs

(1) Find a locally optimum FC fixture, Fo = {ω1, . . . ,ω7}
(2) Fix the minimum acceptable quality Qr = αQ
(3) Build the hyperplanes H ′′ such that DH′′ = Qr

(4) Let Si =
⋂

H ′′

k such that ωi ∈ H ′′

k , i = 1, . . . , 7
(5) Initialize Ii = {pi}. Label the points in Ii as open
(6) Check the wrenches of the neighbor points pkn for

every open point pk ∈ Ii

If ωkn ∈ Si, then Ii = Ii ∪ {pkn}, and label pkn as
open
Label pk as closed

(7) If there are open points in any Ii, go to Step 6.
Otherwise, the algorithm finishes, and returns the sets
of points Ii, i = 1, . . . , 7, i.e. the ICRs for each finger.

Algorithm 3 is computationally very simple. The hyper-
planes H ′′

k are computed for the corresponding facets of
CH(W ). Let HFl

be the hyperplane containing the facet

Fl, described as el · x = e0l; the hyperplane H ′′

l parallel
to HFl

but lying to a distance D = Qr from the origin is
el ·x = e′0l, with e′0l = Qr ‖el‖. Step 6 is the more complex
step in the algorithm; every checked point requires its
classification with respect to 7 hyperplanes.

3.4 Fixtures with some contacts fixed beforehand

A particular extension of the proposed approach deals with
the fixture design for objects where a predefined number of
contacts is fixed beforehand, for instance when there exist
several locator pins on the workpiece, or for a workpiece
lying on a surface. If k contact points are provided, the
previous algorithms are used to determine the missing
7−k contacts. Algorithms 1 and 2 remain unchanged when
applied to this particular case; they just must take into
account that the points fixed beforehand can not change
in any iteration.

In Algorithm 3, the independent contact regions for the
fixed contact points are not computed (as it is assumed
that its location is precisely determined). The hyperplanes
H ′′

l in Step 4 (defining the search zones Si for the ICRs of
the remaining points) are computed for the corresponding
facet Fl of CH(W ), l = 1, . . . , 7, according to the following
considerations:

• The facet Fl is formed by 6 wrenches; m of them are
fixed points (with m ≤ k) and 6−m are the wrenches
obtained with Algorithm 2.

• H ′′

l must contain the m fixed points (m linear equa-
tions), must be parallel to the polytope formed by the
6 − m remaining points (6 − m − 1 linear equations)
and must lie at a distance D = Qr from the origin
(one nonlinear equation).

• These 6 equations admit 2 solutions; the hyperplane
required is the one leaving O and the wrench not
belonging to Fl in different half-spaces.

The other steps in Algorithm 3 remain unchanged. Note
that when there exist points fixed beforehand, larger ICRs
are obtained for the rest of the contacts.

The proposed approach can also easily deal with forbidden
contact regions on the object, for instance, regions where
the geometrical features are very delicate. The points lying
in the forbidden regions are just erased from the original
set Ω, and Algorithm 1 will indicate if, in the absence of
such regions, a FC fixture is still possible. If at least one
FC fixture exists, then a locally optimum fixture and its
corresponding ICRs can be computed.

4. EXAMPLES

The proposed approach has been implemented using Mat-
lab on a Pentium IV 3.2 GHz computer. The perfor-
mance of the algorithm is illustrated using two objects;
the considered contact points pi on the object surface
are the centroids of the triangles in the mesh, with the
corresponding directions normal to the triangles.

The first object is a parallelepiped described with a mesh
of 3422 triangles. This simple figure makes more difficult
the search of the first FC fixture, as the initial random
selection of 6 points may place all the fingers on just one
or the two larger faces (the probability of placing a finger
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Fig. 4. Example on a parallelepiped: a) Initial FC fixture, Q = 0.0098 (Algorithm 1), b) Locally optimum FC fixture,
Q = 0.292 (Algorithm 2), c) Independent contact regions for each finger, Qr = 0.219 (Algorithm 3).
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Fig. 5. Performance in the search of a locally optimum
FC fixture for the parallelepiped: a) Increase in the
fixture quality, b) Initial vs. final quality.
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Fig. 6. Histogram with the quality distribution for all the
possible fixtures within the ICRs of the parallelepiped
for Qr = 0.219 (α = 0.75).

on those faces is greater than on the others). Fig. 4 shows
an instance of the results obtained with the proposed
approach. The first FC fixture is shown in Fig. 4a; the
time elapsed to obtain this fixture was 0.49 seconds in
5 iterations. Algorithm 1 provides other 18 possible FC
fixtures. The locally optimum FC fixture, shown in Fig. 4b,
was obtained with Algorithm 2 in 24.3 s and 48 iterations.
Fig. 4c shows the corresponding independent contact re-
gions, obtained with Algorithm 3 and α = 0.75 in 0.17 s.

Fig. 5a plots the fixture quality in the optimization phase;
the quality always increases until it finds the locally op-
timum fixture (which depends on the initial fixture). In
the example, the initial fixture quality is 0.0098, and the
locally optimum fixture quality is 0.2921; the quality im-
provement factor is 29.8. The upper quality limit, obtained
by solving the optimization problem in eq. (1) (Section 2.3)
is 0.32; the locally optimum fixture quality is 91.3% of the
quality limit. To obtain a better insight into the perfor-
mance of the whole process, 50 locally optimum fixtures
were computed. The correlation between the initial and
final qualities is shown in Fig. 5b. The average qualities
give an idea of the behavior of the algorithm, they are
0.024 and 0.215 for the initial and locally optimum FC
fixtures, respectively; the average improvement factor is 9.

The points within the ICRs for the example may be com-
bined to provide 45000 different fixtures; Fig. 6 shows the

a) b)

Fig. 7. ICRs on the parallelepiped with a minimum quality
of: a) Qr = 0.146 (α = 0.5), b) Qr ≈ 0 (α = 10−5).

a) b)

Fig. 8. ICRs on the parallelepiped with 2 contacts fixed
beforehand: a) Qr = 0.146 (α = 0.5), b) Qr ≈ 0
(α = 10−5).

quality distribution for all these possible fixtures. For lower
minimum fixture qualities, the size of each ICR grows, as
illustrated in Fig. 7 for the same instance and minimum
fixture qualities given by α = 0.5 and α = 10−5 ≈ 0. Fig. 8
shows the application of Algorithm 3 to compute the ICRs
for the optimum fixture shown in Fig. 4b, but with the 2
contacts in the bottom face fixed beforehand. Note that
the ICRs for the movable contacts are larger than in the
previous case for the same minimum quality.

The second object is a workpiece discretized with 3222
triangles. Fig. 9 shows the results for the ICR search;
the first FC fixture was found with no iterations in 0.08
seconds, the locally optimum fixture was obtained after
33 iterations in 12.4 s and the ICRs (with α = 0.75)
were computed in 0.17 s. The fixture qualities are 0.0066
and 0.278 for the initial and locally optimum FC fixtures,
respectively, with an improvement factor of 42.1. The
upper quality limit is 0.34; the locally optimum fixture
quality is 81.7% of the quality limit. The points within
the ICRs provide 6480 different fixtures. Fig. 10 shows the
ICRs for lower quality ratios: α = 0.5 and α = 10−5.

5. DISCUSSION

This paper proposes an approach to obtain locally op-
timum FC fixtures and independent contact regions on
3D discretized objects with 7 frictionless contacts that
ensure a FC fixture with a controlled minimum quality.
The procedure is composed by 3 algorithms. Algorithm 1
looks for an initial FC fixture in the wrench space; the
search space is progressively covered until finding a FC
fixture, or until all of the space has been covered and
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Fig. 9. Example on a workpiece: a) Initial FC fixture, Q = 0.0066 (Algorithm 1), b) Locally optimum FC fixture,
Q = 0.278 (Algorithm 2), c) Independent contact regions for each finger, Qr = 0.208 (Algorithm 3).

a) b)

Fig. 10. ICRs on the workpiece with different minimum
quality: a) Qr = 0.139 (α = 0.5), b) Qr ≈ 0
(α = 10−5).

no FC fixture is found. The procedure is computationally
simpler than the algorithm in (Liu et al., 2004), as it does
not include an explicit FC test in the algorithm; the FC
condition is embedded in the search process. Moreover,
the algorithm finds one or more FC fixtures, depending
on the number of wrenches lying in the subset C1 when a
solution is found; if there are several FC fixtures, they can
be classified according to the quality measure to pick the
best candidate. The time elapsed to obtain one FC fixture
is significantly lower with our approach.

The initial fixture is optimized with Algorithm 2. Most of
the algorithms presented in the literature for FC grasp syn-
thesis in discretized 3D objects focus only on getting one
FC grasp, regardless of whether it is optimal or not. Some
works in fixturing consider an optimization criterion in
the design process (e.g. minimization of the workpiece po-
sitioning errors (Wang and Pelinescu, 2001)), but none of
them considers the largest perturbation wrench as a qual-
ity measure, despite its popularity in the grasp community.

The independent contact regions around the contact lo-
cations of the locally optimum FC fixture are computed
with Algorithm 3. A work in this line presents a procedure
to compute a family of grasps for 3D objects that keep a
fraction of the grasp quality in an initial example (Pollard,
2004); however, the selection of a good initial example re-
mains as a critical step. This initial grasp is provided here
with a procedure assuring a locally optimum grasp, and
then a minimum quality is guaranteed. A previous work
of the authors (Roa and Suarez, 2007) presented the basis
for the computation of ICRs on discretized 3D objects;
the algorithms proposed there have been simplified here
and the computational complexity and running times have
been significantly lowered down.

The algorithms of our approach have been implemented
and the execution results illustrate the relevance and
efficiency of the approach, which is easily extended to
determine ICRs for more than 7 fingers or to consider the
case with k contact locations fixed beforehand.

The extension of the approach to the case of frictional
contacts in grasp applications is more complex, as the
frictional model is nonlinear. In this case, the linearization
of the friction cone requires suitable modifications in the
algorithms, which are currently under development.
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