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Abstract—Mission-critical operations, particularly in the con-
text of Search-and-Rescue (SAR) and emergency response situa-
tions, demand optimal performance and efficiency from every
component involved to maximize the success probability of
such operations. In these settings, cellular-enabled collaborative
robotic systems have emerged as invaluable assets, assisting first
responders in several tasks, ranging from victim localization
to hazardous area exploration. However, a critical limitation in
the deployment of cellular-enabled collaborative robots in SAR
missions is their energy budget, primarily supplied by batteries,
which directly impacts their task execution and mobility. This
paper tackles this problem, and proposes a search-and-rescue
framework for cellular-enabled collaborative robots use cases
that, taking as input the area size to be explored, the robots fleet
size, their energy profile, exploration rate required and target
response time, finds the minimum number of robots able to
meet the SAR mission goals and the path they should follow
to explore the area. Our results, i) show that first responders
can rely on a SAR cellular-enabled robotics framework when
planning mission-critical operations to take informed decisions
with limited resources, and, ii) illustrate the number of robots
versus explored area and response time trade-off depending on
the type of robot: wheeled vs quadruped.

Index Terms—5G, Cellular, Collaborative Robots, Energy Sav-
ing, Search-and-rescue.

I. INTRODUCTION

In mission-critical Search-and-Rescue (SAR) operations, the
fast response times to disasters and emergencies is paramount
for saving lives. First responders teams tend to risk their
lives in these situations. Such risks can be mitigated by
using mobile robots for victim localization and exploration
of hazardous areas [1]. Effective coordination of a multi-
robot fleet is essential to meet the rapid response requirements
of SAR operations, optimizing zone exploration and task
allocation while avoiding redundancy [2]. This coordination
can be achieved through a centralized task planner in an edge
server [3] that collects feedback from the robots, maps the
explored area and generates optimal path plans for each robot.

However, mobile robots face a significant challenge in the
form of energy constraints since they normally rely solely
on batteries. Increasing battery capacity would lead to added
weight, resulting in higher mobility energy consumption and
thus, a design trade-off [4]. Extensive research has explored
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energy-aware strategies to enhance overall efficiency [5] [6]
[7] [8]. These features, including battery charging decisions,
can also be integrated into the decision-making algorithms of
edge/cloud task planners.

The efficiency of SAR operations hinges on both their
execution and prior planning. Effective strategic planning
involves allocating and distributing equipment resources across
the deployment area to significantly reduce mission response
times. Factors such as the battery capacity of the robots,
required number of robots, and the characteristics of the area
are key to develop a plan that anticipates the mission demands.

Our previous work [9] proposed to integrate the orches-
tration logic from the mobile network infrastructure and the
robot domains in an online manner, thus enabling information
exchange between the robots and a centralized control-level
task planner in real-time. Despite achieving promising results
in mission efficiency, the outcomes of such approaches heavily
depend on the initial assumptions and conditions considered.

Given the importance of such mission planning decisions,
in this work, we propose a novel robotic SAR framework that
enhances state-of-the-art orchestration strategies for mobile
collaborative robots by introducing a SAR mission planning
phase. Specifically, we introduce a mission planning building
block that takes into account readily available information
to first responders such as the area to be explored and the
number of robots available and, considering mission goals
such as exploration rate and response time, provides informed
decisions on the number of robots required for a mission.

II. RELATED WORK

The adaptability and robustness of robot devices make them
a valuable asset in hazardous environments, and it is no
surprise that several works in the literature already investigated
the adoption of mobile robots for SAR operations [10]. In
unstructured environments such as post-disaster areas, key
metrics like response time and area coverage depend on
multiple external factors, including the exploration strategy,
the collaborative multi-robot system implementation, as well
as robotic energetic and hardware resources [11]. Several
works in the literature tackle these issues, but mostly in an
independent manner. For example, the authors in [12] focus on
the energy consumption estimation to extend the operational



Fig. 1: Cellular-enabled Collaborative Robotics Search-and-Rescue Framework.

range. Similarly, in [13], the authors propose to save energy
by enabling/disabling certain robot hardware components,
increasing the exploration efficiency and robot autonomy when
revisiting already known areas. However, these works only
focus on a single robot. Furthermore, other implementations
such as computation offloading can significantly improve the
energy savings as well [14].

In multi-robot SAR operations, the overall efficiency can
be enhanced by an efficient robot coordination. In [3], authors
propose a centralized orchestration scheme for robot fleet path
planning, leveraging edge computing and Wi-Fi technology for
communication. Conversely, the authors in [15] propose a joint
5G and robot orchestration logic that indicates optimal path
planning of a robot fleet, as well as, robot hardware usage
(i.e. sensors, communication peripherals) and battery charging
priorities using a charging station.

The proposed architecture revolves around the possibility
of using a dedicated 5G network by including a gNodeB 5G-
NR base station in the SAR equipment deployment, which
guarantees fast communications between the orchestrator and
the robots. The results in this paper and in [9] denote that
optimal performance in SAR operations is improved upon
increasing the robot fleet size, while is also negatively affected
by the exploration area obstacle density.

However, SAR performance can also be enhanced by fo-
cusing on the planning before mission execution. In [16],
the authors study the impact of robot fleet sizes on the area
exploration performance. Results derived from a 3D frontier-
based multi-robot collaborative framework denote a positive
increase in exploration efficiency when increasing the fleet
size, up to a certain limit. This justifies the existence of an
optimal resource allocation point that depends on the specific
target deployment area. Authors in [17] also observed that the
achieved exploration area and multi-robot performance depend
on the initial position of robotic teams and need to be carefully
considered during the initial planning phase.

None of the above works though have considered the energy
aspects in their resource planning evaluation, or the impact the
energy savings might have in the resource allocation previous

to execution.

III. CELLULAR-ENABLED COLLABORATIVE ROBOTICS
SEARCH-AND-RESCUE FRAMEWORK

We consider scenarios where first responder teams leverage
on a fleet of robots for SAR mission-critical operations in
unknown areas. We assume the size of the exploration area is
known (as it may be easily estimated), and that robots collab-
orate by making use of their cellular connectivity (4G/5G).

In order to optimize the first responders operation we design
the SAR framework depicted in Fig. 1. It is composed of
two main phases: the Mission Planning phase and the Mission
Execution phase. In the following we describe them in detail.

A. Mission Planning

The mission planning phase is designed as an offline step
preceding mission deployment. In SAR missions, response
time and equipment resources used are two key factors that
determine their efficiency. In general, increasing the number of
robots in collaborative scenarios tends to reduce the operation
time. However, the number of robots available for missions is
finite and their capabilities are limited by the battery capacity
and consumption during operation.

A mission planner is thus needed to determine the minimum
number of robots required for a mission, given an area to be
explored and the available robot fleet size along with their
characteristics (e.g., battery size, energy consumption, sensors,
mobility), and considering the exploration rate required for the
area and the maximum response time for a successful outcome.
In Sec. IV we describe the designed mission planner in detail.

B. Mission Execution

During the mission execution phase, the output of the
mission planner is used as a starting point and updated
during execution. In this phase, robots deployed in the field
are expected to operate in coordination using navigation and
exploration strategies to cover the target area. Additionally,
using energy-aware strategies can also significantly increase



Fig. 2: Overview of the Mission Planner.

exploration efficiency. In our work, we assume that the re-
sponsibility of ensuring energy-aware path planning for the
designated set of robots, achieved through the orchestration
of their hardware and network resource utilization and task
management, lies within the scope of an edge/cloud-based
task planner. The task planner is designed as a centralised
high-level control entity that performs optimization decisions
by performing hardware/software control, i.e., switch on/off
peripherals and related drivers, as well as, cellular radio
resource allocation. By integrating the capabilities of activating
and deactivating sensors, communication peripherals and off-
loading of computation processes, the task planner provides
field robots with an energy-aware coordinated task plan upon
area exploration. Multiple examples of such task planners were
discussed in Sec. II; in this work we will assume the usage of
the task planner described in [9].

IV. MISSION PLANNER - UNDER THE HOOD

In Fig. 2 an overview of the Mission Planner is depicted.
The input parameters are: i) exploration area size, ii) explo-
ration rate required (ERR), i.e., the percentage of the whole
area to be explored, iii) target response time (TRT), i.e.,
maximum time envisioned to complete a mission, and, iv) total
robot fleet size (TFS). Then, using preloaded mission charac-
teristics data (e.g., robots energy profiles, obstacle density)
the mission planner launches a multi-robot resource planner
optimizer to find the minimum fleet size for a given mission.
As output, the Mission Planner provides: i) the number of
robots to be used, ii) the expected exploration area, iii) the
mission completion time, and, iv) an initial multi-robot path
plan to perform during the mission execution.

Algorithm 1, detailed below in this section, summarizes the
Mission Planner implementation in pseudocode. As it can be
observed, The Mission Planner iteratively evaluates a multi-
robot resource planning problem considering an energy-aware
optimization solution. At each iteration, we consider the usage
of an increasing number of robots (with their corresponding
energy profile and battery size) and determine the amount of
time required to satisfy a predetermined ERR within a given
TRT. The robot fleet size is increased by one at each iteration
until either the ERR and TRT requirements are met or the
total available fleet size is reached with no feasible solution. A

Algorithm 1: Mission Planner
Input : TRT, TFS,ERR, G,ma,b,a′,b′ ;
Procedure:

1 while !solved do
2 UPDATE R ⊂ TFS;
3 SOLVE RP ( T ,R, ERR) ;
4 GET dt, et,a,b, lr,t,a,b∀t ∈ T ;
5 if

∑
dt ≤ TRT OR R == TFS then

6 solved = True;
7 end
8 end

Output : R, dt, lr,t,a,b;

detailed description of the RP optimization problem evaluated
at each iteration is described next.

Hereafter, we present our assumptions, notation and prob-
lem formulation to model the multi-robot Resource Planner
problem (RP), based on the adaptation of the problem formu-
lation described in [15].

Input variables. Let us consider a discrete set of time
instants T = {t1, . . . , t|T |}, and a set of robots R =
{r1, . . . , r|R|}. Each robot is equipped with a battery char-
acterized by a maximum capacity Bmax, ∀r ∈ R, whose
charging status br,t varies over time depending on the robot
activities and hardware usage. We assume the set of robots
R to be deployed in an area of interest covered by mobile
infrastructure for 5G connectivity. We consider the area of
dimension A × B and discretize its 2D surface into a grid
G = {ga,b,∀(a, b) ∈ (A,B)}, where each element ga,b ∈ G
needs to be explored. We assume the same robot mobility
approach described in [15], where the motion energy con-
sumption of a robot depends on a terrain-velocity constant
Pmovea,b,a′,b′ . As mentioned before, robots exploit an exist-
ing mobile infrastructure for communications. We consider
PTXa,b as a variable representing the energy consumed by
a robot for transmitting data, and PRX for receiving data.
Finally, we collect the energy consumption derived by all
the cameras and sensors, as well as their processing, in the
variable PSEN .

Decision variables. Let dt be a binary variable that deter-
mines whether there are still areas to be explored at a certain
time t ∈ T . To keep track of the multi-robot exploration,
we introduce et,a,b as a binary variable indicating if the
area unit ga,b has already been explored at time t ∈ T .
Additionally, lr,t,a,b is a binary decision variable to control
the robot mobility. Its value gets positive if the robot r is at
position ga,b at time instant t.

Constraints. Since the algorithm needs to guarantee that the
ERR is satisfied, we need to enforce that the total explored
area in the last time step is at least the corresponding ERR
(i.e., the percentage of the total area |AB|, now represented
as κ). For this purpose, we include the following constraint:∑

(a,b)∈(A,B)

etf ,a,b ≥ κ|AB|. (1)

We ensure that each robot r ∈ R can only be in one place



in every time instant t ∈ T :∑
(a,b)∈(A,B)

lr,t,a,b = 1 ∀r ∈ R,∀t ∈ T , (2)

and with the following constraint we also ensure that the robots
only move between neighbouring areas, or stay in the same
position:

lr,t+1,a,b ≤ lr,t,a,b + lr,t,a−1,b + lr,t,a+1,b + lr,t,a,b−1+

lr,t,a,b+1 + lr,t,a−1,b−1 + lr,t,a+1,b+1 + lr,t,a−1,b+1+

lr,t,a+1,b−1 ∀r ∈ R,∀t ∈ T ,∀(a, b) ∈ (A,B). (3)

In order to keep track of the exploration progress among
multiple robots, if any robot r ∈ R visited an area unit
ga,b ∈ (A,B) at some earlier time, or if it is exploring such
area unit at the current time t, that area becomes explored at
time t and we update the variable et,a,b accordingly.

et,a,b ≤ et−1,a,b+
∑
r∈R

lr,t,a,b ∀t ∈ T ,∀(a, b) ∈ (A,B), (4)

et,a,b ≥ et−1,a,b ∀t ∈ T ,∀(a, b) ∈ (A,B), (5)

|R|et,a,b ≥
∑
r∈R

lr,t,a,b ∀t ∈ T ,∀(a, b) ∈ (A,B). (6)

In order to update the decision variable dt, according to the
explored area at every time instant, we include the following
constraint: ∑

(a,b)∈(A,B)

et,a,b ≥ κ(1− dt)|AB| ∀t ∈ T . (7)

Finally, as mentioned before, we assume the mobility con-
sumption to be included in the constant Pmovea,b,a′,b′ and
mainly dependent on the robot velocity and terrain charac-
teristics. For the robot communications, we assume that the
robot can always receive data consuming PRX . During data
transmission, the consumed power depends on the distance to
the base station (according to PTX,a,b). If a robot has never
been in an area unit, its sensors, camera, processing units and
transmission elements should be active. However, to reduce
the energy consumption, if the robot is in an already explored
area, we consider the possibility of turning them off to save
energy. Taking this into account, our algorithm updates the
expected battery level br,t+1 as:

br,t+1 = br,t − PRX−∑
(a,b)∈(A,B)

∑
(a′,b′)∈(A,B)

lr,t,a,b × lr,t+1,a′,b′ × Pmovea,b,a′,b′

−PSEN ×
∑

(a,b)∈(A,B)

(1− et,a,b)× lr,t+1,a,b− (8)

∑
(a,b)∈(A,B)

PTX,a,b × (1− et,a,b)× lr,t+1,a,b ∀t ∈ T ,∀r ∈ R.

Objective. To increase the chances of detecting and assist-
ing a target person in an unknown area it is necessary to
minimize the time required to explore the target area:

min
∑
t∈T

dt (9)

(a) Wheeled robot (b) Quadruped robot

Fig. 3: Robots evaluated in the SAR Framework.

To sum up, the overall problem formulation of our multi-robot
resource planner can be summarized as:
Problem RP (T ,R, κ) :

min
∑
t∈T

dt

subject to:
(1)(2)(3)(4)(5)(6)(7)(8);

V. WHEELED VS QUADRUPED ROBOTS
ENERGY PROFILING

A key aspect to be considered for achieving an accurate
mission plan is the energy profile of the robots. For this reason,
in this section, we focus on analyzing the energy profile of
two of the most common robot types used in SAR operations:
wheeled and quadruped robots. Fig. 3 depicts examples of
representative wheeled [18] and quadruped robots [19].

Terrain-adaptability, motion speed and task-related energy
consumption are key factors to be considered when choos-
ing mobile robots for real-world scenarios, which should be
carefully evaluated upon mission planning. While for cellular-
enabled wheeled robots detailed energy profiling results al-
ready exist, e.g. [9], for quadruped robots no detailed energy
profiling was found in the literature. Thus, to have a detailed
model for our SAR framework of both wheeled and quadruped
cellular-enabled robots, we acquired a Unitree GO1 EDU robot
(see Fig. 3b) and performed our own profiling. The results are
summarized next.

A. Unitree GO1 Energy Profiling

The Unitree GO1 is a quadruped robot equipped with a
Raspberry Pi serving as the main CPU, supplemented by an
array of three additional NVIDIA Jetson Nano units. Commu-
nication capabilities are facilitated through WiFi, Bluetooth,
and a 4G QUECTEL chipset. The sensor suite of the robot
comprises 5 pairs of cameras and 3 ultrasound sensors, with
an additional feature being the inclusion of a 3D LiDAR that
can be mounted on top the robot. Furthermore, Simultane-
ous Localization and Mapping (SLAM) using the LiDAR as
well as human recognition through the camera feed can be
performed. Notably, the Raspberry Pi perpetually powers the
WiFi hotspot, while the cameras and ultrasound sensors rely on
the Nano processors to which they are connected. Bluetooth,
in contrast, remains in a dormant state until a new signal is
received, rendering its power consumption negligible.



TABLE I: Power consumption breakdown of the GO1 robot

Consumption Element Avg. Consumption (W)

Components

4G Peripheral 15.77
Cameras and Nano Proc. 19.25
Human Recognition 29.38
3D LiDAR and SLAM 56.84

Mobility

Idle Down 21.62
Flex Down 75.79
Flex Up 93.14
Idle Up 80.33
Walking Circles 0.76 rad/s 73.86
Walking 0.5 m/s 53.26
Walking 1 m/s 108.86
Walking 2 m/s 211.22

Table I presents a comprehensive breakdown of the obtained
energy consumption associated with the Unitree GO1 EDU
robot. Each row shows the results obtained when analysing
the power consumption of independent robot components
and motions. Tests have been performed averaging power
consumption during a complete discharge of the 4500 mAh
battery. For these measurements, unitree legged sdk and uni-
tree ros to real ROS packages have been used to communi-
cate through User Datagram Protocol to the controller, which
publishes the robot state data, including the battery state1.

The table shows the results upon evaluating the consumption
when enabling/disabling non-critical robot components (i.e.,
cellular communications, cameras, or processors). Power con-
sumption has been determined by comparing it to a baseline
of an idle standing robot state. As can be seen, the main
consumption is due to the use of SLAM techniques with a
3D LiDAR mounted on top of the robot. Similar consumption
is observed when human recognition features (which uses the
NVIDIA-AI-IOT trt pose) are combined with the cameras. The
second section of the table denotes the results of the robot
mobility tests. We have considered two possible idle states:
up (standing) and down (laying). The results show that in a
standing position, the robot consumes four times more energy
than laying. Considering that it takes about 1 s for the robot
to transition from up to down, and viceversa, the idle pose
transition results denote that the robot can save energy by
laying down in idle times longer than 2.87 s. Four additional
tests (driving straight at three different speeds and circling)
have been performed moving the robot. The results, which
are exclusively related to robot motion, denote that energy
consumption tends to increase proportionally to the robot
speed.

B. Wheeled vs Quadruped Energy Profiles

Table II summarizes the energy profiling of both types
of robots, taking the values from [9] for the wheeled one
and our own Unitree GO1 EDU profiling for the quadruped
one. We compare the power consumption related to cellular
communications for the reception and transmission of data,
considering that both robots use similar technologies. As for
sensing, consumption is related to the use of cameras, LiDAR

1The data sets collected during the energy profiling measurements can be
found at: github.com/armedarobotics/EnergyProfile-GO1.git

TABLE II: Power consumption comparison

Avg. Consumption (W) Consumption rate (%)
Quadruped Wheeled Quadruped Wheeled

Cellular Reception 15.77 4 5.30% 13.97%
Cellular Transmission 16.72 4.95 5.61% 17.28%
Camera, LiDAR, Processor 76.09 12 25.55% 41.90%
Idle Up or Idle 80.33 0.29 26.98% 1.01%
Motion 1 m/s 108.86 7.40 36.56% 25.84%

Total: 297.77 28.64

sensor, SLAM processes and the processor. Robot inactivity
is defined as idle state, and it is the minimum consumption
robots have when performing no movement, nor using any
particular hardware nor performing any action. As it can be
observed, the quadruped robot has an overall higher power
consumption than the wheeled robot. On the one hand, this is
due to the quadruped robot having more consuming hardware
components and processes than the wheeled robot. On the
other hand, quadruped robots allow for more payload and are
designed to explore more unstructured areas. In fact, upon
evaluating the percentages of consumption rate, it is observed
that it also consumes when standing in idle state. At the same
time, wheeled robots normally have lower battery sizes than
quadruped ones.

VI. PERFORMANCE EVALUATION

In this section, we evaluate through simulations the per-
formance of the cellular-enabled collaborative robotics SAR
framework designed with a special focus on the Mission Plan-
ner building block described in Section IV and considering
both wheeled and quadruped robots with the energy profiles
summarized in Sec. V.

A. Evaluation Scenario Setup

For the performance evaluation scenario setup, we consider
two exploration area sizes (50x50 m2 and 500x500 m2) to
cover scenarios where the battery plays a negligible and a
major role. Moreover, for the wheeled and quadruped robots
we consider a battery maximum capacity of 72 kJ and 350 kJ,
respectively, based on the specifications of each robot. Finally,
as a first approximation to evaluate the trade-offs involved in
the optimization problem, no obstacles and planar terrains are
considered in the deployment scenarios to observe the impact
of different fleet sizes in ideal conditions.

B. Mission Planning Evaluation

In Fig. 4 we compare the performance of wheeled versus
quadruped robot fleets in a 50x50 m2 area moving both robots
at 1 m/s. We consider a total fleet size of 10 robots, a required
exploration rate of 70% of the total area and a target response
time up to 90 s. Note that each epoch is equivalent to 10 s in
our experiments. The results obtained with both types of robots
are similar, as the battery capacity is sufficient to cover the
totality of the area at the given 1 m/s speed. In this scenario,
the Mission Planner outputs a minimal fleet size of three robots
to satisfy the target conditions, for both types of robots.

In Fig. 5 the Mission Planner has been used to evaluate the
impact of a ten times larger area (500x500 m2). As in the
previous case, we consider a total fleet size of 10 robots, a



(a) Wheeled robot (b) Quadruped robot
Fig. 4: Percentage of Explored Area per Time Epoch for a 50x50 m2 scenario. Wheeled versus Quadruped Robots.

(a) Wheeled robot (b) Quadruped robot

Fig. 5: Percentage of Explored Area per Time Epoch for a 500x500 m2 scenario. Wheeled versus Quadruped Robots.

required exploration rate of 70% of the total area, a target
response time up to 180 epochs given the larger size of
the scenario and a moving speed of 1 m/s. The results in
this case differ between the wheeled and quadruped robots
as expected since the differences in the energy consumption
between the robot types become visible. Although quadruped
robots require more energy, this is offset by their larger battery
size. However, they still have a greater impact on the battery
capacity compared to wheeled robots. As a result, the Mission
Planner suggests that while one wheeled robot would suffice
for the mission, two quadruped robots would be necessary
under similar conditions.

VII. CONCLUSIONS AND FUTURE WORKS

In mission-critical operations, the role of cellular-enabled
collaborative robot fleets in augmenting the search-and-rescue
capabilities of first responders is crucial.

In this paper, we proposed a novel SAR framework for
cellular-enabled collaborative robotics mission planning that,
taking as input information readily available (exploration area,
fleet size, energy profile, target exploration rate and target
response time), allows first responders to take informed de-
cisions about the number of robots needed to successfully
complete a mission. Moreover, our results illustrated the
trade-off involved when considering different types of robots

(wheeled vs quadruped) with respect to the number of robots,
explored area and response time.

Future work will consider expanding our SAR framework to
further consider larger scale scenarios (e.g., in terms of larger
areas, number and heterogeneity of robots, terrain diversity,
obstacles) and input parameters available (e.g., detailed surface
information, higher granularity of robot energy and control).
In such cases, the problem complexity might get increasingly
daunting but if analytical and/or machine learning solutions
can be applied to make them feasible, better-informed deci-
sions will be enabled.
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