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Abstract—This paper presents a method to compute con-
tact forces for bimanual grasps. The method is based on the
optimization of the force distribution of the hands and min-
imizing the force exerted by each finger, using two different
cost functions. Both cost functions and the constrains of the
optimization problem are formulated as functions of the joint
torques based on the existing relation between the grasping
forces, the hand-jacobian matrix and the torque of the joint
fingers. Additionally, a bimanual grasp index is presented to
measure the force distribution between the hands. The paper
includes some application examples of the proposed approach.

I. INTRODUCTION

The human grasping behaviour has been analyzed along
many years, providing a better understanding of how humans
manipulate objects with the hands. As result of years of
research, a big amount of knowledge has been obtained and
used in different domains, such as in medical rehabilitation
with the development of anthropomorphic prosthesis, as well
as in the robotic field with the design of mechanical hands and
the formulation and implementation of theoretical strategies to
compute suitable hand configurations to grasp different types
of objects.

The use of complex mechanical hands to grasp and ma-
nipulate objects involves two main phases [1], the first one
is the well-known grasp synthesis or grasp planning phase,
which consists in finding the location of grasping points in the
object surface that can be reached by the hand, accomplishing
at the same time some basic constraints; the second phase can
be called the grasp holding phase, it consists in keeping the
grasp while the object is manipulated by computing the force
that each finger of the hand must apply on the object contact
points in order to resist external disturbances.

The grasp holding phase has been widely studied and
some of the results are discussed bellow in the section II.
However, the development of dual-arm systems equipped with
anthropomorphic hands adds an extra complexity to finding
bimanual grasps and to the computation of the contact forces,
and a new variety of challenges arises, such as equilibrate the
forces that each hand should exert while they lift the object
or to balance an external perturbation acting on it.

In this work we present a method to compute contact forces
for dual-arm robotic systems considering the torque limitation
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of the hand joints and an index that describes the degree of
balance between the forces that each hand contributes.

The rest of the paper is structured as follows. A review of
related works is present in Section II. Section III presents the
problem statement. The proposed approach is introduced in
Section IV. Experiments and results are shown in Section V
and finally, Section VI summarizes the work and presents some
topics deserving future work.

II. RELATED WORKS

The determination of grasping forces to compensate external
disturbances has been an active field of research and many
approaches have been proposed to find them. One of them
was the decomposition of the forces into two components: the
manipulating and grasping forces, together with the introduc-
tion of the Grasp Matrix to find a solution [2], [3]. These two
components are better known as the particular and homoge-
neous solutions of the static grasping force problem, which
basically can be solved by determining the homogeneous
component, also defined as the internal forces of the grasp.
Some researchers have characterized these internal forces as a
virtual linkage with virtual actuators representing the grasped
object, such that when a force is applied at each grasping
point it generates a joint force in the virtual mechanism [4],
[5]. Many of the works that have adopted the internal forces’
approach to determine the grasping forces have considered
only fingertip grasps with full control of the joint torques of the
fingers in order to simplify the grasp force distribution among
the contacts [6], [7], [8]. However, has been shown that when
enveloping or power grasp is used, there are some contacts
that exerts force against the object that are not controllable [9],
[10]. This fact has been analyzed by decomposing the space of
the contact forces into four subspaces that represent the active
and passive forces and the controllable and uncontrollable
internal forces, which allow characterize grasps based on the
size of such subspaces [11], [12], [13].

The computation of the contact forces using the internal
forces’ approach involve to solve a problem with a large
number of variables and with an infinite number of possi-
ble solutions, arising the Grasp Force Optimization problem
(noted GFO hereafter) whose goal is to find the optimal
solution or at least a sub-optimal one. The GFO often has
to deal with the nonlinearity of the contact friction models
which can be expressed as the positive definiteness of a
symmetric matrix [1], as linear matrix inequalities [14], [15]
or modelling the whole problem so that it accomplish the
requirements to be formulated using the dual method of linear
programming [16], then, the GFO problem can be solved
by choosing a suitable cost function. Furthermore, one of



the main challenges of the GFO is to find optimal or sub-
optimal solutions as faster as possible in order to be used
in real time applications. Researchers have concluded that
finding good initial conditions for the optimization problems in
combination with gradient methods and convex optimizations,
it is possible obtain a faster convergency with an optimal or
sub-optimal solutions [14], [17], [18], [19]. Another method
to fastly compute the grasping forces consist in transform
the optimization problem into a non-constrained quadratic
problem that can be solved analytically, reducing the time
computation significantly [20]. The extension of the GFO
approaches to bimanual systems is an interesting area of
research that has not been deeply explored [21], [22], even
when the use of binamual systems for cooperative task is
increasing. For this reason, we propose here a new method to
compute the contact forces for bimanual grasps. The proposed
approach uses a linear optimization method based on the
torque limitation of the joints of the hand fingers. Unlike
the approaches cited above the proposed optimization method
does not need to compute the internal forces on the grasped
object to compute the contact forces. Moreover, two different
cost functions for the optimization of the contact forces are
proposed in order to distribute them uniformly between the
hands and to minimize the finger forces, respectively. The use
of any of them depends on the pursued objective. Furthermore,
an index to measure the force distribution between the hands
is also presented in this work.

III. PROBLEM STATEMENT
In a previous work we presented a grasp planner for bulky

objects using a dual-arm robotic system [23]. The scope of
that work included the search of the reachable contact points
for two robotic hands using an object slicing method (See Fig.
1). In the real experimentation, the target contact points have
been moved a certain distance towards the interior of the object
following the normal direction to the object surface in order
to grasp the object with large enough forces using a control
position of the fingertips. With this approach it is possible
that the force contributions of the hands are not balanced. The
problem to be solved in this work is the determination of the
suitable contact forces for the bimanual grasps in order to
compensate external perturbations during the manipulation of
the object with balanced force contributions of the hands.

The general assumptions taken into account in the proposed
approach are the following:
• Only precision grasps with frictional hard contacts be-

tween the fingers and the object are considered (Never-
theless, the approach can be easily reformulated to use
soft contacts).

• The frictional behaviour at the contact points is described
by the Coulomb’s friction model.

• Each hand uses the same number of fingers.
• All the fingers can exert the same maximum torque.
• Only the weight of the object is considered as the external

perturbation to be counteracted.
• The weight of the object is known.

(a) (b)

(c) (d)

Fig. 1. Bimanual grasp planner based on an object slicing method. a) The
object to be grasped segmented in slices. b) Location of the grasping points
after searching through the object slices. c) Simulation of the bimanual grasp.
d) Execution of the bimanual grasps in a real system.

IV. PROPOSED APPROACH

Given the weight of the object, it must be found the forces
that the fingers must apply on the object to counterbalance
it. The general equation to describe this force balance can be
expressed as:

GF = −we (1)

where F = {f1, . . . ,fn}T are the forces applied by the n
fingers contacting on the object, G is the grasp matrix and
we is the external wrench to be compensated produced by the
object weight.

To find F , it is proposed a contact force optimization
strategy with two different cost functions used to minimize
either the infinite norm (L∞) of the quotient between the
finger joint torques and the maximum torque of the joints,
and the Least Square Norm (L2) of the finger joint torques, in
order to balance the forces between the hands and minimize
the force exerted by the fingers respectively. Furthermore, an
index to measure the force distribution between the hands are
also presented.

A. Formulation of the Problem Constraints

When a grasp is redundant (i.e. when the number of
grasping points is larger than the minimum needed to grasp
an object), like in the case of bimanual grasps with more than
two fingers per hand, there are infinite force combinations that
could compensate an external perturbation, but not all these
combinations can be exerted by the fingers.

In order to determine which forces can be exerted by
each finger, consider a hypersphere in the joint torque space,
expressed by

τT
i τ i = 1 (2)

where τ i ∈ <m is the vector of the joint torque of the i-th
finger with m joints. The relationship

τ i = JT
i f i (3)



where J i and f i are the Jacobian and the force applied for
the i-th finger, maps the torque unit sphere into an ellipsoid
in the space of the fingertip forces,

FT
i J iJ

T
i F i = 1 (4)

The ellipsoid represented in (4) indicates the forces
F i = {f i,j , . . . ,f i,∞} that each finger can exert given a
set of joint torques |τ i| ≤ 1 for a given joint configuration
(see Fig.2-a). Therefore, if the maximum torque of the finger
joints is known, it is possible to compute the finger force f i

for a given joint configuration as:

f i = (J†i )
T τ i (5)

where J†i is the pseudo inverse of J i. Since F in eq. (1)
represents the forces exerted by n fingers, eq. (5) can be
extended as:

F = (J †)TT (6)

where J † = diag(J†1, . . . ,J
†
n) is the block diagonal ma-

trix of the pseudo inverse jacobians of n fingers and
T = {τ 1,1, . . . , τn,m}T is the vector containing the joint
torque of the n fingers.

If eq. (6) is replaced into eq. (1) it is possible to counter
balance we considering the joint torque space:

G(J †)TT = −we (7)

Additionally, the forces that the fingertips exert on the object
must lie inside of the friction cone (see Fig. 2-b) defined by

f i

||f i||
· n̂i ≥

1√
1 + µ2

(8)

where n̂i is the unitary normal at the i-th contact point and µ
is the friction coefficient between the fingers and the grasped
object. For convenience eq. (8) is manipulated to be ≤ 0
yielding:

fT
i (I − (1 + µ2)n̂i · n̂Ti )f i ≤ 0 (9)

If ineq. (9) is extended for n fingers, it results:

F T (I − (1 + µ2)N )F ≤ 0 (10)

where N = diag(n̂1 · n̂T1 , . . . , n̂n · n̂Tn ) is the block diagonal
matrix of n̂i · n̂Ti of the n fingers.

Since the finger forces F can be expressed by eq. (6), eq.
(10) can be reformulated as:

T TBT ≤ 0 (11)

where B = J †(I − (1 + µ2)N )(J †)T .
If an optimization problem is formulated to balance the

force contribution of each hand or to minimize the force
exerted by the fingers as functions of the joint torques, eq. (7)
and eq. (11) can be used as the constraints of the problem and
the maximum torque τmax that the finger joints can perform

Force Ellipsoid
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Fig. 2. a) Illustrative example of the exertable forces belonging to the Force
Ellipsoid of a finger for a given joint configuration and |τ i| ≤ 1. b) Valid
exertable forces given a friction coefficient.

can be used to set a bound constraint, so that the optimization
problem can be expressed as:

minimize
T

Φ

subject to − τmax ≤ T ≤ τmax

T TBT ≤ 0∣∣∣∣∣∣G(J †)TT +we

∣∣∣∣∣∣2 = 0

(12)

where Φ is a generic representation of a cost function.

B. Cost Functions

Two different cost functions have been selected to perform
the optimization of the contact forces. The first one is based
on the minimization of the infinite norm (L∞) of the torque
vector T and divided by the maximum torque of the joints
τmax, i.e.:

Φ0 =

∣∣∣∣∣∣∣∣ T
τmax

∣∣∣∣∣∣∣∣
L∞

(13)

This cost function allows a uniform distribution of the forces
between the fingers, which means that for a bimanual grasp
the force contribution of each hand would be well balanced if
each hand uses the same number of fingers.



The second cost function is based on the minimization of
the Least Square norm (L2) of the torque vector T ,

Φ1 = ||T ||L2
(14)

This cost function allows to minimize the torque performed
by each finger joint. However, unlike the first cost function,
this one does not ensure a uniforme distribution of the forces
between the hands.

To solve the optimization problem as fast as possible, a
gradient-based algorithm [24] was used, which is implemented
in the NLopt nonlinear-optimization package [25]. Therefore,
it is necessary to formulate the gradient of the cost functions
as well as the gradient of the constraints by computing their
partial derivatives as a function of T .

The gradient of the cost function Φ0 is:

∇Φo =


τ i

τmax
, if τ i = τmaxi

,

0, otherwise.
(15)

the gradient of the cost function Φ1 is:

∇Φ1 = 2T (16)

and the gradient of the constraints in eq. (12) are:

∇c1 = 2T TB

∇c2 = 2(G(J †)TT +we)TG(J †)T
(17)

C. Bimanual Force Index

Based on the cost functions formulated for the optimization
problem, it is proposed the Force Distribution Index (FDI) to
measure the force distribution between the hands:

FDI =
Hf

1

Hf
2

(18)

where Hf
j =

∑n/2
i=0 ||f i|| is the sum of the norms of the forces

exerted by the fingers of the hand j, and j ∈ {1, 2} with
j = 1 corresponding to the hand with the smallest summatory,
i.e Hf

1 < Hf
2 . FDI indicates how well distributed is the force

contribution between the hands, it tends to 1 when the forces
are well balanced and to zero otherwise.

V. EXPERIMENTS

To demonstrate the performance of the proposed approach,
we use two objects, a rugby ball and a detergent bottle. For
each object three different bimanual grasps were computed
(Fig. 3 and 4), then, for each grasp, the contact forces were
computed 10 times optimizing the cost functions Φ1 and Φ2.
At each time the object weight was incremented in 100 g
starting from their original weights. The considered friction
coefficient was 0.4.

Table I and table II show the resultant grasping forces
to counteract the weight we

Rug = [0, 0,−2.13858, 0, 0, 0]T

and we
Det = [0, 0,−2.923, 0, 0, 0]T of the rugby ball and the

detergent bottle respectively for the grasping points shown in
Fig. 3-a and 4-a. The difference between the external forces

(a) (b) (c)

Fig. 3. Three different sets of grasping points for a rugby ball. a) Symmetrical
grasp. b) Semisymetrical grasp. c) Irregular grasp.

(a) (b) (c)

Fig. 4. Three different sets of grasping points for a detergent bottle.
a) - c) Irregular grasps.

and the sum of the computed grasping forces (Σf i)Rug and
(Σf i)Det is small enough and therefore negligible.

The average time to compute the contact forces is 150 and
1500 ms, respectively for each object.

Fig. 5 depicts the force contribution of each hand as well
as the Force Distribution Index (FDI) optimizing Φ0 and Φ1

for the three grasps of both the rugby ball and the detergent
bottle. Fig. 5 a) - c), show the resultant force contribution of
each hand for both cost functions for the three grasps of the
rugby ball. Each picture shows four curves: two continuous
ones colored in red and blue depicting the force contribution
of the left and right hand respectively obtained by optimizing
the cost function Φ0 and two dotted ones colored in magenta
and cyan depicting the force contribution of the left and right
hand respectively by optimizing the cost function Φ1. As can
be seen, the continuous curves have a similar pattern and
magnitude at each iteration, indicating an uniform distribution
of the force contribution between the hands. On the other hand,

TABLE I
RESULTANT CONTACT FORCES TO COMPENSATE THE EXTERNAL

PERTURBATION we = [0, 0,−2.13858, 0, 0, 0]T ACTING ON THE RUGBY
BALL

fT x y z mx my mz

fT
1 1.682 -1.824 -0.903 -0.009 -0.040 0.063
fT
2 1.326 0.204 0.061 0.005 -0.013 -0.060
fT
3 -0.444 5.552 0.594 0.347 0.057 -0.270
fT
4 -0.504 -3.376 1.043 -0.223 0.068 0.112
fT
5 0.979 -1.378 1.945 0.132 -0.055 -0.105
fT
6 -1.435 1.792 -0.182 -0.058 -0.030 0.158
fT
7 -2.023 2.605 -0.950 -0.035 0.060 0.239
fT
8 0.419 -3.575 0.531 -0.164 -0.040 -0.143

(Σf)TRug 0.000 0.000 2.139 -0.004 0.006 -0.006
we

Rug 0.000 0.000 -2.138 0.000 0.000 0.000



TABLE II
RESULTANT CONTACT FORCES TO COMPENSATE THE EXTERNAL

PERTURBATION we = [0, 0,−2.923, 0, 0, 0]T ACTING ON THE
DETERGENT BOTTLE

fT x y z mx my mz

fT
1 1.838 -3.307 -0.798 0.000 -0.054 0.224
fT
2 0.355 2.364 0.267 0.047 0.019 -0.234
fT
3 0.471 0.108 1.220 0.008 0.086 -0.010
fT
4 -1.320 0.304 0.622 -0.038 0.043 -0.102
fT
5 0.531 2.321 -0.357 -0.047 0.036 0.168
fT
6 -1.282 0.130 0.572 0.030 -0.032 0.076
fT
7 -0.448 -0.183 1.238 0.012 -0.082 -0.007
fT
8 -0.144 -1.737 0.158 -0.010 -0.010 -0.120

(Σf)TDet 0.001 -0.001 2.923 0.003 0.007 -0.005
we

Det 0.000 0.000 -2.923 0.000 0.000 0.000

the dotted curves show a significant disparity between them,
but the magnitudes at each iteration are smaller in comparison
with the continuous lines.

Figure 5 d) - f) show the Force Distribution Index (FDI)
for both cost functions, being the red line the results obtained
by Φ0 and the blue line the results obtained by Φ1. The red
line is always over 0.8 indicating that the force contribution is
well distributed between the hands, which is coherent with the
results in graphics a) - c). However, the blue line is below of
0.5 in almost all cases, indicating a poor balance of the force
contribution of the hands.

Figure 5 g) - i) , show the resultant force contribution of
each hand for both cost functions for the three grasps of the
Detergent bottle. As in grasps a) - c) the two continuous lines
colored in red and blue depict the force contribution of the left
and right hand respectively obtained by optimizing the cost
function Φ0 and the two dotted lines colored in magenta and
cyan depict the force contribution of the left and right hand
respectively by optimizing the cost function Φ1. Since the hand
configurations depends of the location of the contact points,
the forces that each hand contribute can vary considerably. On
the other hand, the dotted lines show a force magnitude smaller
in comparison with the continuous lines but less evident than
in the case of the rugby ball grasps.

Figure 5 j) - l) show the Force Distribution Index (FDI) for
both cost functions, being the red line the results obtained by
Φ0 and the blue line the results obtained by Φ1. The results for
both cost functions are always over 0.65, indicating that they
produce an acceptable force distribution between the hands

VI. CONCLUSIONS AND FUTURE WORKS

This work has presented a method to optimize the con-
tact forces for bimanual grasps as a function of the joint
torques. The method is based on the optimization of the force
distribution between the hands and the minimization of the
forces exerted by the fingers. The optimization was performed
using two different cost functions. The first one minimizes the
infinite norm of the quotient between the torque vector of the
fingers and the maximum torque of the joints in order to obtain
a balanced force distribution between the hands in a bimanual
grasp. The second one minimizes the torque performed by

each joint, hence, minimizing the force exerted by each finger.
The user can choose any of the two cost functions depending
on the desired goal. The experiments shown good results using
any of the two cost functions, with an average computation
time of 150 and 1500 ms for each object.

Furthermore, a bimanual force index FDI, to measure how
well balanced are the force contribution between the hands
has been presented. FDI has shown that the cost function Φ0

effectively allows a good distribution of the contact forces
between the hand. On the other hand, using the cost function
Φ1, FDI shows a poor distribution of the contact forces but
the force exerted by each finger is smaller than those resulting
with Φ0.

One thing that is worths to remark is that when the grasping
points of each hand are symmetric, the FDI could easily
reach high values. However, when the bimanual grasp is not
symmetric the contribution could not be totally balanced, but
exists a uniform behaviour in the force contribution of each
hand, namely, the force contribution of each hand increases or
decreases proportionally according to the external force acting
on the object.

A future work is the implementation of the proposed ap-
proach together with a hand controller in order to perform real
experimentation and the generalization to cases where each
hand uses different number of fingers.
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Fig. 5. Graphics of the results of the optimization method using the cost functions Φ0 and Φ1. a) - c) Force contribution of each hand for the three grasp
of the rugby ball: Continuous lines colored in red and blue depict the force contribution of each hand by optimizing Φ0 and dotted lines colored in magenta
and cyan depict the force contribution of each hand by optimizing Φ1. d) - f) Force Contribution Index (FCI). The red line show the results obtained by
optimizing Φ0 and blue line show the results obtained by optimizing Φ1. g) - i) Force distribution of each hand for the three grasp of the detergent bottle.
The meaning of the lines is the same as in graphs a) - c). j) - l) Force Contribution Index (FCI). The red line show the results obtained by optimizing Φ0

and blue line show the results obtained by optimizing Φ1.
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