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Abstract

This paper proposes a solution to the problem of co-
ordinating multi-robot systems, which execute individu-
ally planned tasks in a shared workspace. The presented
approach is a decoupled method that can coordinate the
participants robots in on-line mode. The coordination is
achieved through the adjustment of the time evolution of
each robot along its original planned path according to
the movements of the other robots to assure a collision
free execution of their tasks. To assess the proposed ap-
proach a two robot system was used, and different tests
were performed in graphical simulations as well as in real
executions. Some examples are presented in the paper.

1 Introduction

The efficient coordination of several robot arms in or-
der to avoid collisions while they carry out some inde-
pendent given tasks in a common workspace is still an
open problem of relevance in several robotic fields, both
in industrial and service applications. Several approaches
have been proposed to deal with this problem, as it is dis-
cussed in the next section. From a global point of view,
we highlight here that the problem can be solved by si-
multaneously planning the trajectories of all the robots in
the shared workspace, or by independently planning the
trajectories of each robot and then applying an additional
coordination phase (either off-line or on-line) to prevent
potential collisions between them. The first approach is
complete but it involves a higher number of Degrees Of
Freedom (dof ) and therefore it is computationally much
more expensive than the second one, which is then con-
sidered from the practical point of view. From another
point of view, in service applications the planned motions
are likely executed only once because, in general, service
tasks are always different and if they have to be repeated it
is under different conditions, and the motion planning has
to be done on-line; therefore, if there are several robots
in the workspace, in order to avoid collisions their motion
coordination has also to be done on-line.
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Figure 1. Two robots in a shared work
space. Each robot must grasp and remove
from the table cans of different color. The
individually computed paths produce colli-
sion between the robots, consequently it is
necessary a motion coordination in order to
avoid them.

Dealing with this last problem, this paper proposes an
approach to on-line coordinate two robot arms consider-
ing that they have to work in a shared workspace and that
their paths have been determined independently of each
other (either off-line or on-line), so each robot path does
not have collisions with the objects in the workspace but
nothing can be guaranteed with respect to collisions with
the other robot. To illustrate the problem consider the two
robots shown in Fig. 1, one of them has to remove the red
cans from the table and the other has to remove the yel-
low cans. The motion planning is independently done for
each robot (either because they are independent systems
or in order to reduce the complexity and running time of
the planning process), so none of the robots will collide
with the table or the cans if it is moved alone, but, if the
two robots work at the same time collisions between them
may actually occur. In order to avoid these potential colli-
sions the proposed approach adjusts the time evolution of
each robot along its path according to the movements of
the other robot to assure collision free executions.

The paper is organized as follows. Related work is pre-
sented in Section 2. Then, Section 3 formally introduces
the proposed approach and Section 4 describes the partic-
ularization for the case of two robots. Experimental re-
sults are described in Section 5 and, finally, a summary
and future work are given in Section 6.



2 Related Work

The approaches for multi-robot motion coordina-
tion are classified into centralized and decoupled ap-
proaches [8]. In the centralized approaches multiple
robots operating in a shared workspace are considered
as a single multi-bodied robot operating in a composite
and multiple dof configuration space, and classical plan-
ning algorithms are applied to simultaneously find a col-
lisions free path and coordinate the robots. In the decou-
pled approaches each robot is treated as a single indepen-
dent system and the motion planning process is divided
into two phases; in the first phase an individual search for
each robot path is performed considering only static obsta-
cles and ignoring the presence of other robots in the envi-
ronment, whereas the second phase applies coordination
methods to avoid potential collisions when the robots are
executing the movements simultaneously. Sanchez and
Latombe [16] presented a comparative study between cen-
tralized and decoupled planning for multi-robot systems
using a PRM planner, which concluded that in applica-
tions with a rather tight robot coordination the use of a
centralized planner is more desirable. As discussed pre-
viously, centralized methods are not practical for on-line
motion planning because they involve a large number of
dof, and therefore a decoupled approach should be used.

An analysis and classification of multiple robot coordi-
nation methods was presented by Todt et al. [18], showing
that the motion coordination algorithms can be applied on
different representations of the workspace (e.g. physical
space, composite configuration space, composite configu-
ration time space, path-time space or coordination space).

O’Donnell and Lozano-Peréz [12] addressed the mo-
tion coordination problem adding a precomputed time de-
lay at the beginning of the movement execution that guar-
antees the collision avoidance between the robots. Lee et
al. [9] and Yamamoto and Marushima [11] found an op-
timized coordination curve using dynamic programming.
Their main goal is the minimization of the execution time
of the tasks, considering the dynamics of the robots and
the torque restrictions. The obtained coordination curve
is used to design the velocity profile for each robot so
that collisions are avoided. Cheng [3] introduced an ad-
justment in the geometric paths identifying the regions
of the space swept by the robots and then modifying the
paths planned a priori so that the robots do not occupy
these regions simultaneously, if it is not possible to mod-
ify the robot paths then their execution time is modified
so that the conflictive regions are occupied by one robot at
a time. Lee et al. [10] proposed an event-based approach
for on-line and off-line collision-free trajectory planning
for dual-arm assembly systems based on a fast geometric
collision detection algorithm. More recently, Chiddarwar
and Babu [4] introduced a method that solves the robot
conflicts based on a path modification approach. The con-
flictive paths are modified based on the robot positions in
a dynamically computed path modification sequence.

In off-line approaches, as those mentioned above, the
objective is to plan time or energy optimal motion trajec-
tories because the computation time is not an important
factor, but, in on-line approaches, this optimization cannot
be achieved because the complete robot plan is unknown
and the computational time of the motion optimization is
usually too large. The proposed approach works in on-line
mode, searching to reduce the dof of the problem in order
to minimize the computation time for the motion planning
and the number of required collision checks for coordinate
the robots.

3 Proposed Approach

This paper proposes a decentralized on-line motion co-
ordination approach for multi-robot systems. Consider n
robots Ri, i ∈ {1, ..., n}, in a shared workspace. In order
to do its task each robot has an assigned geometric path
qi(t) computed independently, where qi is a configuration
of Ri. For the coordination process we will adjust the
evolution of the robot along the original planned path. In
order to do this, we will express the path as a function of a
parameter si that represents the travelling length along the
path with simax being the entire path length, and we will
determine the evolution of si syncronized with the other
robots (i.e. si can decrease along time, meaning that the
robot is moving back along its geometric path). We use
the following definitions:

Definition 1: Coordination space (CS) [17] of n robots
is the space defined by the points P = (s1, ..., si, ..., sn),
with 0 ≤ si ≤ simax .

Definition 2: Collision region (CR) is the set of points
in CS representing collision configurations of the robots.

Definition 3: Discretized coordination space (DCS) is
a discretized representation of the coordination space CS.

In the DCS the goal is to go from the origin point,
(0, ..., 0), to the end point, (s1kmax

, ..., snkmax
), follow-

ing a sequence of points Pk = (s1k , ..., sik , ..., snk
), with

0 ≤ sik ≤ sikmax
without passing through the collision

region CR. (Fig. 2 illustrates the DCS for two robots and
the collision region CR).

Definition 4: Coordination curve (CC) is any continu-
ous curve in CS describing a relative motion between the
robots.

A CC may allow robots to move backward, which may
be necessary for on-line collision avoidance [10]. A CC
that does not pass through CR is called a collision-free
coordination curve (FCC).

Definition 5: Motion direction (MD) is each of the pos-
sible movement direction in DCS. For n robots the num-
ber of possible MDs is 3n − 1.

To illustrate the MDs, consider the piece of DCS for
two robots shown in Fig. 3. At each given point Pk

there are eight different possible MDs to move to an-
other point Pk+1 in DCS. A horizontal or vertical MD in
DCS is equivalent to stop one of the robots while moving
the other. A diagonal MD indicates that both robots are
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Figure 2. Discretized coordination space
DCS and collision region CR for a particular
case with two robots. In a real problem the
collision region is not known a priori, but
here, for illustrative purposes, it was com-
puted making an exhaustive collision check
over all the coordination space.

moved. The default desired motion direction is (+1,+1)
that moves the two robots to Pk+1 = (s1k+1

, s2k+1
).

Now, the problem to be solved can be formu-
lated as: “Given the geometric paths qi(sik) for n
robots, find a FCC ⊂ DCS from the origin to
Pmax = (s1kmax

, ..., snkmax
)”. When the problem is

solved on-line Pmax is not explicitly known a priori and
the collision region CR ⊂ DCS will be discovered and
avoided on-line while the robots are moved along their
paths.

Starting from any point in DCS, using a MD a new
point of DCS is selected and a collision check is per-
formed in order to detect whether it describes a potential
collision configuration of the robots, i.e. whether it be-
longs to CR. The tested points that do not belong to CR
are stored in a sequence describing a FCC for the robots. It
is assumed that during each movement executed by robots
(i.e a transition from one point Pk to Pk+1) it is possible to
carry out at least two collision checks (i.e., verify the pos-
sible existence of collisions in two other points of DCS).
This allows the generation of a FCC from the current robot
position with a number of future points Pk that will grow
when the tested point belongs to the free space of DCS
and thus can be added to the FCC, and will decrease when
the selected point belongs to the CR and cannot be added
to the FCC.

The proposed approach is a decentralized method be-
cause each robot must compute the coordination algo-
rithm to obtain its own trajectory in the physical space,
i.e. the evolution in time of the predefined geometric
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Figure 3. The eight possible motion di-
rections MDs in a discretized coordination
space DCS for two robots.

path qi(sik). It is assumed that each robot has infor-
mation about the next (possible few) movements of the
other robots (it can be an on-line extrapolation of their
already “seen” movements), but there is no general super-
visor and therefore each robot must locally decide its next
movement according to some predetermined and accepted
rules. The algorithms and data used to do this are the same
for all the robots so that the global result will be consistent
for all of them. On the other hand, priority rules must be
established before hand in order to guarantee that all the
robots take consistent decisions.

Algorithm 1 shows the main procedure of the proposed
approach, which must be executed for each robot Ri. It re-
quires as input the set of the geometric paths of each robot
Ri, Q = {qi(sik), i = 1, ..., n; k = 1, ..., sikmax

}. The
algorithm consists of two main actions, the planning of
coordinated movements and the execution of them. The
coordination implies the exploration of DCS, selecting
points Pk, checking them for collisions, and adding them
to a FCC if they are collision free. Since all the robots are
running this algorithm the execution implies moving them
from a point Pk to Pk+1. Both actions must be executed
while the goal of each robot is not reached.

In order to determine the next point Pk of a FCC, a state
diagram is used with the nodes representing the MDs and
the transitions defined according to whether the result of
using a given MD produces a collision configuration or
not. The procedure used to select a new MD is discussed
in detail in Section 4 for the case of two robots.

4 Case of Two Robots

The approach has been formulated above for n robots,
and it was fully implemented for a cell with two robots.



Algorithm 1 Main
Require: Q

1 FCC← ∅, MDk ← (+1, ...,+1), Pk← O
2 while Task is not finished do
3 for i = 1 to 2 do
4 if Pk+1 6= Pgoal then
5 Determine Pk+1 using MDk

6 if Pk+1 does not imply collision then
7 Add Pk+1 to FCC
8 Pk ← Pk+1

9 else
10 Select a new MDk (using the state diagram)
11 end if
12 end if
13 end for
14 Move Ri from its current position to the next one accord-

ing to FCC
15 end while

In this case, the DCS is a 2-dimensional space. For a
given task each robot path qi(sik) is computed off-line,
thus sikmax

is known, and the condition “Task is not fin-
ished” in Algorithm 1 can be formulated as sik < sikmax

.
As mentioned above, the default desired motion direc-
tion MD is (+1,+1), and the starting point in DCS is
Pk = (0, 0).

It is assumed that it is possible to execute two colli-
sion checks per cycle, i.e. check collisions in two points
in DCS during the movements of the robots between two
consecutive points Pk and Pk+1. In order to select the
motion direction MD at each transition, a heuristic was
implemented based on the wall follower, the best-known
rule for traversing mazes, also known as either the left- or
right-hand rule. A state diagram representation is used to
explain the selection of the motion directions, where each
state represents a motion direction MD.

The state diagram in Fig. 4 shows the wall follower
heuristic with priority for the robot R2. The diagram has
eight states resulting from 3n − 1 for n = 2. At each
state there is an ordered couple to indicate the move to be
done by of each robot, +1 means that the robot moves for-
ward one position, 0 means that the robot remains stopped,
and −1 means that the robot moves backward one posi-
tion. Depending on the result of this movement a tran-
sition to another state is done. The transitions between
states are marked with “C” when the resulting next point
is a collision point and with “F” when it is a collision-free
point. The initial state (default) is always (+1,+1). For
instance, if using (+1,+1) the destination point Pk+1 in
DCS belongs to CR the next MD to be checked is (0,+1),
indicating that R2 moves forward one position and R1 is
stopped. Note that with this conditions if there are colli-
sions the transitions are counter-clockwise in the graphi-
cal representation of the state diagram; by analogy, if the
priority is given to R1 the transitions would be graphi-
cally clockwise (Fig. 5). In the state diagram with priority
for R2 (Fig. 4), when the state (+1, 0) is reached, and the
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Figure 4. State diagram representing the
wall follower heuristic with priority for the
robot R2. The transitions between states
are marked with “C” when the resulting next
point is a collision point and “F” when it is
a collision free point.

destination is a collision point, a special condition must be
considered in order to avoid a close loop in the graph state.
This special condition is marked as the transition “C∗” in
the state diagram, meaning that if the state (+1,+1) is
reached through “C∗” and (+1,+1) leads to a collision
free point the next state is determined by “F∗” instead of
“F”. This consideration is valid for the state diagram with
priority for R1 (Fig. 5) when state (0,+1) is reached.

The robot priorities can be selected applying differ-
ent criteria and can be changed if a solution is not found
with the current selection. In the current implementation,
the robot with the highest number of configurations in its
planned path has the priority (i.e that with largest simax).

5 Experimental Results

The proposed approach has been fully implemented for
the case of two robots. The code implementation is based
on ROS [14] for the communications layer, Qt libraries [1]
for the user interface, Coin3D [6] for the graphical render-
ing and PQP [7] for the collision detection. The path plan-
ning is computed using the home-developed path planning
framework called the Kautham Project [13]. This frame-
work provides the developer with several tools needed for
the development of planners, like, for instance, direct and
inverse kinematic models of the robots and hands, random
and deterministic sampling methods, metrics to evaluate
the performance of planners (number of: generated sam-
ples, collision check callings, nodes in the graph solution
and connected components) and simulation tools. For the
graphical simulation the robots were modelled using tri-
angular meshes.
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Figure 5. State diagram representing the
wall follower heuristic with priority for the
robot R1.

The robots are two Stäubli TX-90 with 6 dof equipped
with a Schunk Anthropomorphic Hand (SAH) [2] with
13 dof, and a Schunk Dexterous Hand (SDH2) [5] with
7 dof.

A PRM planner has been used to generate the geomet-
ric paths for each robot, with the samples generated in a
cloud around the direct linear path from the initial to the
final configuration. The planner also uses the concept of
Principal Motion Directions (PMD) [15], which are di-
rections in the working space resulting from a Principal
Component Analysis (PCA), such that, properly ordered,
the first PMD indicates the most representative direction
of the robot workspace, the second PMD indicates the sec-
ond most representative direction and so on. By choosing
only a reduced number of the first PMDs the dimension
of the search space can be significantly reduce keeping an
acceptable approximation of the complete workspace. In
our particular set up this was used to reduce the search
space of the hand from 13 dof for the SAH and 6 dof for
the SDH2, to only 2 in both cases. The discretization of
the paths must be small enough in order to guarantee col-
lision free movements between two configurations of the
robots.

The synchronization of the robots is achieved applying
event-based control, monitoring the current robot config-
urations and waiting until each robot reaches its desired
configuration. A simple example of this event-based syn-
chronization scheme is the following: when a robot Ri

starts a movement from the current configuration qi(sik)
toward the next one in the path qi(sik+1

), a signal WAITi

is activated, and it is active until Ri reaches qi(sik+1
). In

order to proceed to a new desired configuration qi(sik+2
),

all the signals WAITi from all robots must be off, for our
case with two robots, WAIT1 and WAIT2 must be off to
allow the robots proceed on their paths.

The following two examples illustrate the ability of the
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(a) Setup for Example 1. (b) Collision without coordination.

Figure 6. a) Setup for Example 1. The robot
R1 is in charge of remove the red can and R2

is in charge of the yellow one; b) Collision
configuration during a simulated execution
without coordination.
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(a) FCC with priority for R1.
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(b) FCC with priority for R2.

Figure 7. DCSs for the two robots in Fig. 6.
FCC (in blue), CR (in red). a) Using priority
for robot R1; b) Using priority for robot R2.

proposed approach to coordinate the independently com-
puted paths for the robots. In the examples, the robots
have to grasp and remove several cans that lie on a table.

In the first example the robot R1 is in charge of remov-
ing a red can, and the R2 is in charge of remove a yellow
one. Fig. 6 shows the setup for this example (Fig. 6a)
and a snapshot where the robots are in collision during a
task simulation without coordination (Fig. 6b). The com-
puted robot paths have 133 and 114 configurations for R1

and R2 respectively. Fig. 7 shows the FCCs found using
priority for robot R1 (Fig. 7a) and priority for robot R2

(Fig. 7b). In both executions the robot with priority com-
pletes the task before the other.

Fig. 8 shows the setup for the second example. The
robot R1 is in charge of removing the red cans, C1 and
C3, and R2 is in charge of the yellow ones, C2 and C4.
The computed path for R1 has 426 configurations, and
the path for R2 has 270 configurations, thus the priority
was given to R1. The coordination process, i.e. the search
of a FCC, required 728 collision checks, and the FCC was
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Figure 8. Setup for Example 2. The robot
R1 is in charge of removing the red cans C1

and C3, and R2 is in charge of removing the
yellow cans C2 and C4.
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(a) DCS and FCC for Example 2.
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(b) Complete CR.

Figure 9. DCSs for the two robots in Fig. 8.
a) FCC (in blue) and explored CR (in red)
using priority for robot R1; b) FCC and
complete CR computed for illustrative pur-
poses.

fully determined when the robots were executing the move
364. The robot R1 needed 440 moves in order to finish its
task, meanwhile R2 needed 506 moves. Fig. 9a shows
the computed FCC (in blue) and the founded points which
belong to CR (in red). Fig. 9b, for illustrative purposes,
shows the FCC (in blue) and the complete CR (in red).

In order to find the complete CR it was necessary to exe-
cute s1kmax

×s2kmax
= 115, 020 collision checks, a larger

number than the 728 collision checks used in the coordi-
nation process. The real execution is illustrated in Fig. 10,
where snapshots of the coordinated moves are shown.

6 Summary and Future Work

This paper has proposed a new on-line method for
temporal coordination of multiple robots in a shared
workspace with paths computed independently. The ap-
proach is based on the on-line exploration of the dis-
cretized coordination space (DCS) in order to find a colli-
sion free coordination curve (FCC). Following this FCC
the robots are moved in a coordinated way avoiding colli-
sions between them. The approach has been implemented
and successfully applied, in simulations and real execu-
tions, for a two-robot system.

As it was shown in the examples, the computation of
the complete collision region CR in DCS in order to find a
FCC is an expensive procedure, in terms of collision check
tests, compared with the on-line search just checking the
points determined by the motion directions MDs.

An extension of the implemented work is to develop
new sequences of states used to select the MDs and to
explore the DCS. Furthermore, a local optimization of
the found FCC exploiting the difference between points
added to FCC and the current point being executed by the
robots could be performed. This difference grows when
the explored sample belongs to the free space of DCS and
it decreases when the sample belongs to CR, increasing or
reducing, respectively, the available time for the optimiza-
tion while the robots proceed with their tasks. This opti-
mization could help to avoid the chattering due to the con-
tinuous move/wait actions used in the event-based control
for the synchronization. Finally, another future work is the
implementation of the proposed approach for more than
two robots, which implies determining new state diagrams
for the MDs with a larger number of states, which, as state
above, is given by 3n − 1 and therefore grows exponen-
tially with the number n of robots. The scalability of the
approach to n > 2 robots depends on the capability of the
system to perform the appropriate number of collision test
during the robot movements.
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