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Abstract—Software development in robotics is a
complex task due to the existing heterogeneity in
terms of hardware, communications, and programming
languages that are used in current robotic systems. In
this work a general environment for the interaction
between the human operator and different elements

in a robotized cell is presented, such that all the
involved elements can be easily managed from a unique
interface. The aim of the developments is to provide a
common frame that can be ported to different operat-
ing systems and can be easily extended or adapted to
new devices.

I. INTRODUCTION

Human-robot interaction (HRI) is a

multidisciplinary field that includes areas such as

artificial intelligence, human-computer interaction,

robotics or speech recognition, among several others.

Human-computer interaction plays an important

role in the development of HRI systems, researchers

must test extensively the systems developed in

order to put them in the same environment as

humans, therefore providing a set of tools that aim

to facilitate experimentation and interaction with the

hardware components involved is extremely useful.

Experimentation is an important part in research,

simulation and visualization tools allow researchers

to test their work at different stages of development,

therefore this type of tools is an important addition

to any system, as an effort to close the gap between

the advances made in research robotics and the

actual state of industrial applications.

In this work a general environment for the

interaction between the human operator and

different elements in a robotized cell is presented.

The aim of the developments is the easy connection

and interaction with different components through

a common interface, with an intuitive graphical

interaction. The final goal is to facilitate the

interaction with the hardware components used
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Fig. 1: Initial scenario. A set of hardware components are
available but no common interface for interaction.

in the Robotics Laboratory of the IOC. After this

introduction, the rest of this paper is organized as

follows: Section II presents the initial scenario, the

requirements established for development and a brief

description of the different hardware components

involved. Section III describes the used tools and the

developments done in this work. Finally, Section IV

presents a set of tests performed to validate the

functionality of the software developments.

II. PROBLEM STATEMENT

The scenario is composed by the hardware com-

ponents shown in Figure 1:

• A sensorized glove.

• A position tracking system.

• A robot arm.

• A robotic hand.

Currently, there are no general applications that allow

the combined used of the systems mentioned above.

In order to interact with each device, the user must

write his/her own software applications to perform

tasks such as collect the data from the devices or

command the position of the robot arm and hand,

this not only delays the process of experimentation

but, in some cases, obliges the developer to learn a

specific programming language to make this process

feasible.

A. Requirements

The requirements established for this work are:

• The software architecture should be open and

extensible.



• The developed application should provide a

basic set of tools including: data visualization,

combined used of different devices, a network

communications protocol to operate the robotic

hand and manipulator arm from a remote com-

puter and the integration of the data glove with

an existing simulator of the robotic hand.

B. Involved Hardware

The following four different hardware systems

must be operated from the application:

1) Sensorized Glove. This device is a data glove part

of the CyberGlove R© system used to capture the

human hand movements [1]. The particular glove

used in this work has 22 sensors placed at critical

points to measure the posture of the hand as

shown in Figure 2(a). The data glove is connected

to an interface unit, shown in Figure 2(b), that

is in charge of translating the voltage output

received from each sensor into digital values

within the range [0, 255]. The interface unit uses

a serial port to transmit the data collected from

the data glove. The data rate can be up to 90

records/sec. The sensors resolution is 0.5 degrees

and its repeatability is of 3 degrees which is also

the typical standard deviation between different

glove wearings.

2) Tracking System. The tracking system used in this

work is the Flock of Birds [2], a 6 degrees of

freedom measuring device that can be configured

to simultaneously track the position and orienta-

tion of multiple sensors. Figure 3 presents the

different elements that form the tracking system.

The sensor measures the electromagnetic field

produced by the transmitter; the strength of the

received signals is compared to the strength of

the sent pulses to determine the position, and the

received signals are compared to each other to

determine the orientation. The sensor resolution

is 0.5 mm (positional) and 0.1 degrees (angular)

both at 30.5 cm from the transmitter.

3) Industrial Robot. The industrial robot is an ar-

ticulated robot arm with 6 degrees of freedom,

model TX-90 manufactured by Stäubli [3]. The

maximum payload for the manipulator arm is

20Kg. The robot arm system is composed of

the four elements shown in Figure 4. In order

to interact with the robot system, an application

written in specific language (VAL3) [4] must be

loaded into the controller.

4) Robotic Hand. The robotic hand used in this work

is the Schunk Anthropomorphic Hand (SAH),

the hand system is composed of the elements

shown in Figure 5. The robotic hand has four

(a) (b)

Fig. 2: Cyberglove system. (a) Data glove sensor disposi-
tion, (b) Interface unit.

(a) (b)

(c)

Fig. 3: Flock of Birds tracking system. (a) Transmitter, (b)
Sensor, (c) Processing unit.

fingers, each finger has 4 joints and 3 independent

degrees of freedom. The thumb finger base has

an extra degree of freedom for power grasping

and fine manipulation [5]. Instructions are sent to

the robotic hand via the PCI card shown in Fig-

ure 5(b) which is installed in a personal computer

(PC) in the Robotics Lab. The communication

between both devices is done using a point to

point serial communication (PPSeCo) system.

C. Proprietary Software Packages

For each system the manufacturers provide a set

of software tools to facilitate interaction with their

hardware components. However these are limited to

a set of basic features.

• CyberGlove Development library. The develop-

ment library is a set of routines written in C++

programming language, this library allows to

collect the data provided by the data glove and

third party hardware components such as the

electromagnetic field position trackers from the

Ascension Technologies [6] and Polhemus [7].



(a) (b)

(c) (d)

Fig. 4: Stäubli robot system. (a) CS8C controller, (b)
Teach pendant, allows control of the robot locally, (c)
Manipulator arm, (d) Stäubli Studio software workbench.

(a) (b)

(c) (d)

Fig. 5: Robotic hand system. (a) Robotic hand, (b) PCI
card, (c) Mounting base, (d) Power supply.

• Flock of Birds. To collect the readings provided

by the positional tracker, the development li-

brary for the data glove is used.

• SAH Application Programming Interface (API).

This library written in C++ allows to perform

actions such as controlling the angular position

of the 13 joints of the robotic hand, retrieve

the position of the joints and also the torque

readings of the 12 sensors mounted in the hand.

• Stäubli Studio (manipulator arm). This software

workbench is used to develop programs in the

VAL3 language. Other features include a trans-

fer tool to load the created applications into the

CS8C controller in order to be executed by the

robot arm system.

III. DEVELOPED SOLUTION

The developed solution structure is presented in

Figure 6. This structure presents three main indepen-

dent modules devote to communications, simulations

and interaction with the hand, including each of

them a graphical interface. Each of these modules

is describe below in this section. The software de-

velopments done in this work use a set of open

source packages written in C++. The most remark-

able characteristics of this programming language are

object-oriented programming, portability and speed

of execution. The selected packages for development

are Qt, Coin3D and SoQt.

• Qt is a cross-platform, graphical application

development toolkit that enables developers to

compile and run applications on Windows, Mac

OS X, Linux [8].

• Coin3D is an OpenGL based retained mode 3D

graphics rendering library [9].

• SoQt allows a Coin scene graph to be rendered

inside a Qt application [10].

The software packages selected are free of charge.

The programming language is the same for the

selected packages and the software provided by the

manufacturers facilitating the integration process.

Other software packages used in this work are those

mentioned in Subsection II-C: The CyberGlove de-

velopment library used for the data glove and tracker,

Stäubli Studio to create the VAL3 application to

communicate with the TX-90 robot, and the SAH

API to communicate with the robotic hand controller.

A. Integration with the hardware components

In order to use the hardware components

from within a common frame, the developed and

proprietary software packages must be combined.

For the data glove and tracker this process consists

in using three different classes from the CyberGlove

development library, the vhtIOConn class, which

handles the communication with both input devices,

and the vhtCyberGlove and vhtTracker classes,

which provide access the data glove and tracker

features, respectively. For the robotic hand the

CSAHandCtrlApi class (part of the SAH API) is

used in order to access the available features of the

robotic hand. These libraries are written in C++ and

allow local access to the features of the devices,

as shown in Figure 7. The robot arm can not be

accessed as the rest of the devices, however, the

operation of this device is possible through the use

of networking sockets.

The type of sockets used for communication

with the TX-90 robot are TCP sockets using a
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Fig. 6: Experimental Platform.

client-server model. The same approach has been

used in [11] and [12] which address the problem

of software integration in robotic systems. In order

to use sockets to communicate two applications

using a client-server model a set of steps must be

performed, as shown in Figure 8. For the networking

communication process the QtNetwork module has

been used, the decision of using this module instead

of following a traditional C++ implementation is

that this module makes communications independent

of the OS for the developer. The socket creation and

initialization process is the same and independent of

the OS used. The implementation of a client-server

model has been used not only to communicate with

the robot arm but to provide the user with means

to interact with the other devices from a remote

computer.

B. General layout

The solution presented in this work consists in the

development of three independent modules capable

of communicate and exchange information between

them (Figure 6). A modular development (instead

of a single application that handles all the devices)

presents the following advantages:

• By developing smaller applications, new fea-

tures can be added to each module without

affecting the features already developed.

• Smaller applications are more sustainable, al-

lowing the developer to find and correct errors

faster.

• All modules can be used as stand-alone appli-

cations, making it possible for different users to

work with the devices separately or combined.

The three modules are addressed in this paper as

the communications module, the hand interaction

CyberGlove development library

Input devices Class methods

Glove

Tracker

connect()

connect()

disconnect()

disconnect()
update()
getRawData()

getTranslation()
getRotation()

(a)

SAH Application Programming Interface

Output device Class methods

Hand

handInit()

getPosition()

getPosition()
getTorque()
moveHand()
enableFinger()

setController()

(b)

Fig. 7: C++ object definition. Integration of the devices is
done using the proprietary software libraries as part of the
application, in order to access their features.

module and the hand simulation module. They are

described in the following subsections.

C. Communications Module

The communications module shown in Figure 9

provides communication with the input and output

devices, i.e users can collect data from the input

devices (data glove and tracker) or send movement

commands to the output devices (robot arm and

robotic hand).

1) Input Devices. For the data glove and tracker

the same features are available, the user can



server client

socketsocket

bind

listen

connect

accept

closeclose

close

send/recvsend/recv

shutdownshutdown

Fig. 8: TCP-Based sockets. Actions performed on each
side in order to establish communication between both
applications.

collect the data using two different modes of

operation:

• Time Intervals. This mode allows the user to

establish the period of time in which the ap-

plication will collect the data from the device.

• Sampling Mode. This mode consists on saving

specific hand configurations performed by the

user wearing the glove or to collect the position

and orientation of the tracking sensor.

The user can retrieve the data from the different

input devices separately or simultaneously. The

data collected from each device can be stored to

be used later.

2) Output Devices. For the robot arm and robotic

hand, the features available consist in teleopera-

tion and retrieving the information collected from

each device, positional values for the robot arm

and positional and torque values for the robotic

hand. The communication with each output de-

vice is done as follows:

• Robot arm: In order to communicate with

the TX-90 robot, a template written in VAL3

developed at the IOC Robotics Lab is used.

Using this template inside a VAL3 application

two different actions can be performed: send

movement commands or retrieve the robot po-

sition. Each message is a text string containing

the values of the six robot joints (q0, q1, q2,

q3, q4, q5) or the Cartesian coordinates (x, y, z,

Rx, Ry, Rz) of the robot tool base. Each value is

separated by a space and the string terminator

used is the ‘@’ character to establish the end

of the message.

• Robotic Hand: In order to communicate with

the SAH, the network module implemented

Communications Module GUI

Output Devices

Glove Tracker Hand Arm

Communication with the devices

CG Development Lib

Input devices

TIRoLQt Network

(a)

(b)

Fig. 9: Communications Module. (a) Module structure,
input devices are access through the CyberGlove develop-
ment library and output devices using a client-server based
model, (b) Developed graphical user interface.

within the Qt toolkit is used. The messages

sent to the robotic hand are constructed using

a Data Stream structure. The sent message is

composed of 14 values, the values are the

13 joint angle values and 1 value for the

movement speed. However, independent speed

values can be establish for 12 of the 13 joints,

this is useful to produce a more human-like

movement of the robotic hand.

D. Hand Interaction Module

The hand interaction module shown in Figure 10

allows the user to perform the following tasks:

• Device initialization.

• Move each finger joint independently or per-

form hand configurations by moving all joints

simultaneously.

• Remote connection and operation of the hand

through the communications module.

• Retrieve information such as torque readings

and the joint positions.

• Stop all movements in case of collision.

The hand interaction module is executed under Linux

OS, so far no related work has been found that

uses this robotic hand under Linux, and due to the

possibility of developing cross-platform applications
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Fig. 10: Hand Interaction Module. (a) Module structure,
the hand features are accessed locally through the API
and a client server model is used for remote operation, (b)
Developed graphical user interface.

using Qt, this application could also be executed

under Windows OS, by making some minor mod-

ifications to the source code.

1) Device Initialization. The initialization process

consists of the following steps:

• Establish communication between the robotic

hand and its controller.

• Set the mode of operation on which the robotic

hand will work.

• Enable the hand fingers controllers.

• Revoke the brake signal sent to the fingers

controllers.

For the final user, this procedure simply consists

in clicking a button, all the steps mentioned above

are handled internally.

2) Hand Movement. The hand movement can be

accomplished in different ways, a user can have

control over a single joint or have a predefined set

of configurations, these values can be entered one

by one or read as an input file and then converted

to actual configurations performed by the hand.

3) Collision Detection. In order to detect possible

collisions of the hand with the environment, the

readings provided by the torque sensors are used,

the sensors are placed after the gear-box of each

joint, providing a precise measurement of the

Fig. 11: Example of a simulation environment.

real joint torque. Based on the torque readings

obtained from the device, a routine checks for

possible collisions between fingers, if the value

of a sensor surpasses the limits established, all

pending movements are canceled and a message

is displayed to inform the user. The information

provided by the torque sensors can be used to

detect whether the robotic hand has encountered

an obstacle or it is properly manipulating an

object.

E. Hand Simulation Module

Simulation environments are used in a variety of

fields, one of the advantages of using a simulator

is that the users are not physically dependent of the

device, making it possible to save costs and time. On

the other hand new algorithms can be tested without

the concern of damaging the real devices. Figure 11

shows an example of a simulation environment that is

part of a path planning and collision detection toolkit

developed at the IOC [13]. The hand simulation

module shown in Figure 12 provides two main

characteristics: a virtual representation of the robotic

hand and a mapping implementation to move the

virtual model using the data glove as input device.

1) Virtual Hand Representation. The virtual model

of the robotic hand was created using the Coin3D

library, which uses scene-graph data structures

to provide visualization. A scene-graph consists

of a set of nodes interconnected using a tree

or hierarchical structure. Nodes can be used to

represent groups, geometries or properties. All

levels inside the scene-graph have at least one

associated input file, that contains the information

(geometry, color, texture, etc.) to create the 3D

model of the different parts needed to build the

robotic hand. The two other parameters used are

the position and rotation, the first one is used

to set where the object will be placed inside the
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Fig. 12: Hand Simulation Module. (a) Module structure,
(b) Developed graphical user interface.

scene-graph, and the rotation parameter allows to

associate a rotation axis to this node.

2) Joint-to-Joint Mapping. Movement of the virtual

model of the robotic hand is accomplished with

the integration of the data glove. The input values

received from the data glove are transformed

into values inside the range of movement of the

robotic hand. This transformation process is done

using a joint-to-joint mapping. For each joint

the information provided by a single sensor is

used making it a one-to-one transformation. This

method has been chosen due to its simplicity,

however, the application allows the user to de-

velop its own algorithms and integrate them into

the simulation module. The mapped values are

computed using the following parameters:

• Sensor gain, G(i). Scale factor used to establish

the relationship between the deformation of the

sensors and the angle value for the joint i on

the robotic hand,

G(i) =
qUL(i)− qLL(i)

sensorUL(i)− sensorLL(i)

where qUL(i) and qLL(i) represent the up-

per and lower limits from each joint of the

robotic hand listed in Table I, sensorUL(i)
and sensorLL(i) represent the upper and lower

limits in the range of movement accepted from

Joint Thumb Index Middle Ring

Pmin -4 -4 -4 -4

Pmax 75 75 75 75

M-Dmin 0 0 0 0

M-Dmax 75 75 75 75

Amin -15 -15 -15 -15

Amax 15 15 15 15

TRmin 0 – – –

TRmax 90 – – –

TABLE I: Range of movement for the robotic hand joints.
P= Proximal, M-D= Middle-Distal, A= Abduction and
TR= Thumb Roll.

Joint Thumb Index Middle Ring

Innermin 81.09 103.90 76.57 100.0

Innermax 186.80 199.90 142.90 193.0

Middlemin 25.36 48.39 69.48 63.18

Middlemax 178.70 198.20 157.90 162.40

Abdmin 139.20 93.96 – 75.24

Abdmax 189.95 177.80 – 152.70

TABLE II: Upper and lower limits accepted from the
data glove sensors. The abduction of the middle finger
is measured using the abduction sensors of the index and
ring fingers.

each sensor in the glove as listed in Table II.

• Position offset, Offset(i). To establish the off-

set parameter for each sensor, the “zero” or

“home” position of the robotic hand is used

as reference; the same pose is performed by

the user wearing the data glove. The readings

obtained from each sensor are then collected

and used as the offset between the sensor lower

accepted input values from the data glove

according to the “zero” position established.

Offset(i) = sensor(i)–joint(i)

where sensor(i) are the data glove readings and
joint(i) are the corresponding joint values of

the hand.

After gain and offset parameters have been deter-

mined, the following equation is used to compute

the mapped values,

qmapped(i) = G(i) ∗ (sensorraw(i)− Offset(i))

where qmapped(i) represents the computed value

for joint i of the robotic hand and sensorraw(i)
parameter is the corresponding sensor value as

read directly from the serial port.

IV. EXPERIMENTAL VALIDATION

In order to validate the features of each mod-

ule, a set of tests have been performed. The tests

include the mapping between the glove values and

the robotic shown in Figure 13, teleoperation of the

robotic hand using the data glove as input device

shown in Figure 14 and Figure 15 shows a pick
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Fig. 13: Mapping results. (a) and (b) correspond to the
fingers flexion movement, (c) and (d) correspond to the
fingers abduction movement.

(a) (b) (c)

Fig. 14: Poses performed wearing the data glove and then
sent to the robotic hand.

and place task that uses the robot arm and hand

simultaneously.

V. CONCLUSIONS AND FUTURE WORK

The current implementation is being used actively

in the Robotics Laboratory of the IOC to collect

data from the input devices that is later used in

grasping research. The simulation module is of

great aid in order to test mapping algorithms for

dexterous robotics hands. The combined used of

the communication module and the hand interaction

module provide a simple interface to command the

movement of the robot arm together with the robotic

hand. The modular design of this work facilitates

the integration of different hardware components,

since each module can be expanded separately

without affecting the features already developed.

The developed applications allow a simple use of

the different hardware components by providing a

multi-platform experimentation environment.

Short term future work consists in the expansion

of the communications module by integrating

(a) (b) (c)

(d) (e) (f)

Fig. 15: Pick and place task performed by sending move-
ment commands to both devices.

an exoskeleton to provide the user with a force

feedback functionality. This device is intended to

respond to the torque readings provided by the

robotic hand through the Hand Interaction Module

and by the Hand Simulation Module in order to

determine whether a virtual object is being properly

manipulated.
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