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Hybrid mapping for the assistance of teleoperated
grasping tasks

Luca Colasanto, Raúl Suárez,Member, IEEE,and Jan Rosell,Member, IEEE

Abstract—Teleoperating a robotic hand with the aid of a
sensorized glove presents some particular problems. One such
problem is due to the kinematic differences between the human
hand and the robotic hand, which do not allow a simple direct
mapping of the sensor readings from the glove to the robotic
hand. This problem is addressed with different types of mapping,
but none of them is of general use. This paper proposes two
new mappings within two existing mapping types, as well as
a new hybrid mapping that combines the best features of these
existing mapping types. This hybrid mapping allows intuitive free
space movements (where the gesture is more important than the
precise positions of the fingers) and grasp movements (where
the precise positions of the fingers is more important than the
gesture), despite kinematic differences between the humanhand
and the robotic hand. The approach has been implemented and
some illustrative examples are presented in the paper.

Index Terms—Teleoperation, Grasping, Robotic Hands, Sen-
sorized Gloves, Fuzzy Systems.

I. I NTRODUCTION

T ELEOPERATION of complex devices has advanced sig-
nificantly in the last years, both from the point of view

of technological developments that allows communications
and exchange of information with higher velocity, as well as
from the point of view of algorithm developments to process
such information and properly control the system. A detailed
review of the state of the art in teleoperation together with
a description of the involved problems and the main current
applications can be found in [1]. Nevertheless, despite these
advances, some applications have particular problems that
still need more practical solutions, such as in the case of
teleoperation of anthropomorphic robotic hands.

Teleoperation of an anthropomorphic robotic hand-arm sys-
tem requires the coordinated movement of all hand and arm
joints to perform a given task. Talking only about the hand,
this implies commanding a number of degrees of freedom (dof)
usually ranging from 12 (case of hands with 4 fingers with 3
independentdof each one) to 25 (case of hands with 5 fingers
with 4 independentdof each one plus one additionaldof in the
palm). This means that it is very hard, if not impossible, fora
human being to generate the setpoint of each joint working in
such a high dimensional joint space. Thus the more intuitive
way to do it is by executing the desired movements with the
human hand, capturing this information in some way, and
processing it to command the robotic hand to emulate the
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operator movements. Nevertheless, two particular problems of
this approach are:

• identification of the configurations of the human hand,
• proper imitation of these configurations with the robotic

hand.

The first of these problems has been mainly addressed using
a vision system or a sensorized glove to identify the human
hand configurations. Vision systems are used in applications
were the gesture of the hand transmits relevant information,
as for instance in hand gesture/sign languages, computer inter-
faces and computer games. Representative works in this line
are applied to identify orders for an interactive system, using
motion patterns and Petri nets [2], stereo vision [3], or analyz-
ing the contour of the hand [4]. Hand pose recognition using
vision was also applied to command an industrial robot arm [5]
as well as to command a mechanical hand [6]. Nevertheless,
the use of vision in most of the robotic applications requires
the addition of special marks on the hand to facilitate the pose
identification, and has the disadvantage that visual occlusions
are quite frequent during the hand movements. A sensorized
glove was also used to identify hand signals, for instance using
neural nets and fuzzy rules [7] and a graph matching ap-
proach [8], to identify hand poses using Principal Component
Analysis and discriminant functions [9], to teleoperate robotic
anthropomorphic [10] and non-anthropomorphic [11] hands,
and to extract information about how the humans perform
grasping actions [12] [13]. The problem was also addressed
in the scope of programming by demonstration, for instance
using neural nets [14] or a nearest neighbor algorithm and
some patterns defined by a training session [15]. Another
interesting approach to identify hand postures is based on
the measurements of electromyogram signals (EMG) from the
forearm [16] [17], with the main application of commanding
prosthetic hands.

The second problem does not have yet a general solution.
Even when the anthropomorphic robotic hand has the same
structure of the human hand, an exact copy of the joint
angles of the human hand will result in different relative
positions of the fingertips due to the kinematic differences
between them. This means that it is highly probable that, if
the human operator performs a precision grasp of an object,
the robotic hand would fail to reproduce it in this way. This
problem can be partially reduced by providing the operator
with some visual and/or haptic feedback of the teleoperated
environment, so that he/she can properly modify his/her hand
configuration to properly perform the task. This also requires a
relatively extensive training of the operator. In order to map the
information obtained from the human hand to the mechanical
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hand mounted on the robot arm, the following three mapping
methods were presented in the literature (pionering works [18]
[19] and more recently [20]):

• Joint-to-joint mapping. Each joint of the glove is directly
associated with a joint of the mechanical hand. Advan-
tage: simplicity. Disadvantage: problems due to differ-
ences in the relative positions of the fingers in the human
hand with respect to the mechanical hand, due largely to
the differences in the kinematic parameters. E.g.: [13],
where this mapping is used to obtain a simplified model
of the joint space (13-dimensional) of a 4-fingered robotic
hand for hand motion planning applications.

• Pose mapping.A particular pose of the hand is asso-
ciated with a predefined pose of the mechanical hand.
Advantage: the pose of the mechanical hand can be
preprogrammed. Disadvantage: the pose of the human
hand must be properly identified, and the equivalent
pose of the mechanical hand must be properly choosen.
E.g.: [21], where a set of 23 poses of the human and
robotic hands are associated, and from which a linear
transformation is obtained to map other poses (the size
of the set of associate poses is constrained by the number
of joints of the robotic hand and the number of measured
joints in the operator’s hand).

• Point-to-point mapping.The position of a particular point
in each fingertip is replicated by a predefined point
in the corresponding fingertip of the mechanical hand.
Advantage: the relative positions of the mechanical hand
fingertips are more precisely defined. Disadvantage: it
is necessary to solve the inverse kinematics of the me-
chanical hand, which may be a time-consuming opera-
tion. E.g.: [10], where the direct kinematics is used to
determine a point of the operator fingertips based on
the glove information and then the inverse kinematics
is used to obtain the corresponding configuration of an
anthropomorphic robotic hand.

Dealing with these problems, this work proposes an ap-
proach that uses the information obtained from a sensorized
glove to command a four-finger robotic hand. The experimen-
tal hardware is detailed in Section II.

The proposed approach merges the first two types of
mapping to obtain an hybrid mapping that can be used to
command hand movements in the free space as well as for
an assisted guidance to perform a grasp in an intuitive way.
This is valid for power grasps, where stability and securityare
predominant with little or null ability to impart motions with
the fingers (they are distinguished by large areas of contact
between the grasped object and the fingers and palm), as well
as for precision grasps, where sensitivity and dexterity are
predominant (in general the object is held with the tips of the
fingers and thumb) [22], [23].

The new joint-to-joint mapping developed takes into account
the differences between the human hand and the mechanical
hand to try to minimize the disadvantage of this type of
mapping while preserving the mapping simplicity. As it is
not exactly a one-to-one mappings we refer to it asjoint-
space mapping. It is able to reproduce free hand movements
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Id. Name Label
0 thumb base joint J

T

B

1 thumb abduction joint J
T

A

2 thumb proximal-flexion joint J
T

P

3 thumb medium-flexion joint J
T

M

4 index abduction joint J
I

A

5 index proximal-flexion joint J
I

P

6 index medium-flexion joint J
I

M

7 middle abduction joint J
M

A

8 middle proximal-flexion joint J
M

P

9 middle medium-flexion joint J
M

M

10 ring abduction joint J
R

A

11 ring proximal-flexion joint J
R

P

12 ring medium-flexion joint J
R

M

Fig. 1. The anthropomorphic mechanical hand SAH and joint labels,
the supraindices indicate the corresponding fingers (T:Thumb, I=Index,
M=Middle and R=Ring) and subindices the corresponding joints (B=Base,
A=Abduction, P=Proximal and M=Medium).

and power grasps but it is still unprecise and difficult to use
for precision grasps. This mapping is described in detail in
Section III.

The new pose mapping developed uses fuzzy logic [24] to
identify some poses of the human hand, and associates them
with predefined poses of the mechanical hand, allowing preci-
sion grasps to be performed according to the human operator
movements. We refer to it asfuzzy-based pose mapping, and
it is described in detail in Section IV.

The joint-space mapping and the fuzzy-based pose mapping
are then merged into a single system, which we callhybrid
mapping. In this system, joint space mapping is continuously
executed until the fuzzy system identifies a particular grasping
pose of the human hand and the corresponding predefined pose
is executed in the mechanical hand. This mapping is described
in Section V.

In Section VI, some examples are given to illustrate the re-
sults of approach, and finally, in Section VII, some conclusions
and future work are presented.

II. EXPERIMENTAL SET-UP

The experimental set-up used in this work involves: a) an
anthropomorphic mechanical hand, b) an industrial robot, c) a
sensorized glove, d) a wrist tracker, e) a hand/robot simulator
connected with the real elements. The main relevant details
about these elements are:

a) Anthropomorphic mechanical hand.We use the Schunk
Anthropomorphic Hand (SAH) [25], shown in Fig. 1,



3

Fig. 2. Industrial robot Stäubli TX 90 with the mechanical hand SAH.

which is based on the DLR hand [26]. It has four iden-
tical fingers with four joints each one (called abduction,
proximal flexion, medium flexion and distal flexion), and
one of them is prepared to act as the opposing thumb
and it is equipped with an additional joint (called thumb-
base joint), that moves the whole thumb with respect to
the palm. In all the fingers the distal and medium flexion
joints are mechanically coupled, thus there are a total of
17 joints with only 13 independentdof.

b) Industrial robot.The hand is assembled on an industrial
robot Stäubli TX-90, as shown in Fig. 2. It is a general
purpose sixdof robot arm.

c) Sensorized glove.We use a sensorized glove CyberGlove
(shown in Fig. 3). It is a fully instrumented glove
that provides 22 joint-angle measurements using resistive
bendsensing technology, including three flexion sensors
per finger, four abduction sensors between the fingers, a
palm-arc sensor, and two sensors to measure the flexion
and the abduction of the wrist.

d) Tracker.The magnetic wrist tracker with sixdof Flock of
Birds from Ascension Technology Corporation is used to
capture the position and orientation of the user wrist with
respect to a global reference frame, allowing a mapping
of the displacements of the user arm to the robot arm (the
description of this mapping is outside the scope of this
work).

e) Hand and robot simulator.A simulation tool has been
programmed in our lab that allows: planning and sim-
ulation of collision-free paths of the hand-arm system
[27](Fig. 4); control and calibration of input devices
(glove and tracker); commanding of output devices (the
robot and the mechanical hand); on-line graphical visu-
alization of the mechanical hand movements associated
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Id. Name label
a palm arc sensor unused
b Palm sensor unused
c thumb base sensor S

T

B

d thumb-index abduction sensor S
TI

A

e thumb medium-flexion sensor S
T

M

f thumb distal-flexion sensor S
T

D

g index proximal-flexion sensor S
I

P

h index medium-flexion sensor S
I

M

i index distal-flexion sensor S
I

D

j index-middle abduction sensor S
IM

A

k middle proximal-flexion sensor S
M

P

l middle medium-flexion sensor S
M

M

m middle distal-flexion sensor S
M

D

n middle-ring abduction sensor S
MR

A

o ring proximal-flexion sensor S
R

P

p ring medium-flexion sensor S
R

M

q ring distal-flexion sensor S
R

D

r middle-little abduction sensor unused
s little proximal-flexion sensor unused
t little medium-flexion sensor unused
u little distal-flexion sensor unused

Fig. 3. Sensorized glove used to capture the operator hand workspace and
sensor labels, the supraindices indicate the corresponding fingers (T:Thumb,
I=Index, M=Middle, R=Ring and L=Little) and subindices thecorresponding
sensorized joints (B=Base, A=Abduction, P=Proximal and M=Medium).

with the human operator hand movements captured with
the sensorized glove (Fig.5); and on-line visualization
of the robot movements associated to the movements of
the human operator wrist, which are captured using the
tracker.

III. JOINT SPACE MAPPING

The joint space mapping introduced in this work is an
enhanced version of the simple joint-to-joint mapping ap-
proach, designed to minimize the differences in the relative
positions of the fingertips of the human hand and those of
the mechanical hand due to the differences in the kinematic
structure and parameters. The main adjustments introducedare
due to the following reasons:

• The kinematic parameters and joint range of motion of
the human hand and the mechanical hand are different.

• The kinematic structures differ largely in the palm, which
is rigid in the SAH hand, and flexible in the human
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Fig. 4. Hand and robot simulator including the planning environment.

Fig. 5. Human hand with the sensorized glove connected to themechanical
hand simulator used in the data acquisition procedure.

hand. This structural difference mainly affects thumb
movements.

• The sensors of the glove cannot be clearly mapped to
joints in the mechanical hand (there are 22 sensors in the
glove and only 13 independent joints in the mechanical
hand). This discrepancy is particularly important in the
abduction joints, and in the distal and middle flexion
joints that are coupled in the SAH hand.

The following subsections explain how these problems are
treated for the different finger joints, in order to minimize
their effect and obtain a better mapping. The nomenclature
used for the joints of the mechanical hand and for the sensors
of the glove is presented in Fig. 1 and 3, respectively.

A. Joint limits

All dataglove sensor values have a range between 0 and
255. These values are conservative and cover the real motion
of the human hand (i.e. the real ranges obtained when the
user wears the glove are always smaller). For this reason, the
minimum and maximum actual values (xmin andxmax) are
obtained experimentally by capturing the values obtained by
different users performing motions covering the whole hand
workspace. The experimental range of the dataglove sensors
are used to obtain normalized values from real data:

norm(x) = Sat

(

x− xmin

xmax − xmin

)

(1)

Algorithm 1 FlexionMapping
Require: S

∗

P
, S∗

M
, S∗

D

Ensure: J
∗

P
, J∗

M

P = norm(S∗

P
)

M = norm(S∗

M
)

D = norm(S∗

D
)

J
∗

P
= scale(P)

J
∗

M
= scale( (M + D)/2 )

whereSat(x) is a saturation function such thatSat(x) = 0
if x < 0, Sat(x) = 1 if x > 1 andSat(x) = x otherwise.
This normalization permits better use of glove sensors mea-
surement ranges, with the saturation function limiting those
few cases in which the actual sensed value lies outside the
range[xmin, xmax].

The SAH hand has divergences between the minimum and
maximum joint values provided by the manufacturer and the
actual values obtained experimentally (ymin and ymax), that
result in a smaller range. Therefore the measured values are
the limits used to obtain scaled values from normalized data:

scale(y) = ymin + y(ymax − ymin) 0 ≤ y ≤ 1

The functionsnorm andscale are used in the mapping
algorithms detailed in the following subsections.

B. Flexion joints

The distal and medium joints of the SAH hand are me-
chanically coupled. This fact does not imply a loss of hand
anthropomorphism, as these phalangeal joints are also often
coupled in the human hand. Many people are unable to move
the distal joint independently from the medium joint in absence
of constraints.

Algorithm 1 takes this into account when mapping the
flexion joint values from the glove to the joints of the SAH
hand. The character “*” used in the variables of the Algorithm
stands for any of the letters I, M or R that refer, respectively,
to the index, the middle and the ring fingers. The thumb is
treated separately in Section III-D.

C. Abduction joints

The dataglove does not give an absolute abduction measure-
ment, but merely the angle between two consecutive fingers.
This is considered in Algorithm 2, based on experimental
observation of the human hand when performing abduction
movements and corresponding sensor readings. Its main fea-
tures are the weighted distribution of the sensor values between
the abduction joints (illustrated in Fig. 6), and the saturation
introduced to avoid collisions. This saturation is implemented
using a thresholdµ that limits the amount that the index and
ring fingers can move depending on the position of the middle
finger.

D. Thumb finger

The thumb and the other fingers of the SAH hand are
identical, which is not the case in the human hand. For this
reason, the thumb must be treated in a different way, as has
been done in the mappings proposed for the thumb detailed
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Fig. 6. Abduction mapping (ωi = θ1, ωm = 0.5 + (θ2 − θ1)/2 and
ωr = 1− θ2).

Algorithm 2 AbductionMapping
Require: S

IM

A
, SMR

A

µ: threshold value
Ensure: J

I

A
, JM

A
, JR

A

θ1 = norm(SIM

A
)

θ2 = norm(SMR

A
)

ωi = θ1
ωm = 0.5 + (θ2 − θ1)/2
ωr = 1− θ2
if ωi < ωm + µ then

ωi = ωm + µ
end if
if ωr > ωm − µ then

ωr = ωm − µ
end if
J

I

A
= scale(ωi)

J
M

A
= scale(ωm)

J
R

A
= scale( ωr)

in Algorithms 3 and 4. In these mappings the data from the
abduction sensor between the thumb and the indexS

TI

A
are

used for the thumb proximal-flexion jointJT

P
of the SAH hand,

the data from the distal and medium flexion sensorsS
T

D
and

S
T

M
are used for the thumb medium-flexion jointJ

T

M
, and the

thumb base sensorST

B
is used for both the abduction and base

joints J
T

A
andJ

T

B
.

The thumb base movement of the SAH hand is very
different from the movement of the human hand. This is
tackled in Algorithm 4 where the abduction joint of the thumb
and the thumb-base joint are set in a coupled way. In this
algorithm the functionminLimitJointValue(JT

B
) returns

the minimum value of the range ofJT

B
.

IV. FUZZY-BASED POSE MAPPING

The aim of this mapping is to ensure that a desired grasp
movement of the mechanical SAH hand is executed when a
particular type of grasp is executed by the operator. In this
work we consider nine types of particular grasps, described
below in Subsection IV-A.

Executing a precision grasp needs high precision finger
coordination, including the determination of collision free
paths. One way to ensure the observance of these features,

Algorithm 3 ThumbFlexionMapping
Require: S

T

M
, ST

D
, STI

A

Ensure: J
T

P
, JT

M

M = norm(ST

M
)

D = norm(ST

D
)

A = norm(STI

A
)

J
T

P
= scale(A)

J
T

M
= scale( (M + D)/2 )

Algorithm 4 ThumbBaseAbductionMapping
Require: S

T

B

Ensure: J
T

B
, JTI

A

T = norm(ST

B
)

if T < 0.5 then
J

T

B
= minLimitJointValue(JT

B
)

else
J

T

B
= scale((T-0.5)/0.5)

end if
J

TI

A
= scale(T)

is to establish a predefined relation between the grasp being
executed by the operator (measured with the sensorized glove)
and the mechanical hand, i.e. a pose mapping, as described
in paper introduction. One of the main difficulties in a pose
mapping is related with the variability of the user hand poses,
on one side, due to the differences between users, and on
another due to the variance between different executions of
the same task. Therefore, it is necessary to develop a system
flexible enough to deal with this variability while ensuring
a robust grasp identification. In this work we propose a new
approach based on afuzzy logic controller(FLC) [28]. A block
schema of this mapping is shown in Fig. 7.

A. Selection of the particular types of grasp

In general, an object can be grasped using a large number of
different hand poses. Selection of the appropriate pose depends
on such factors as:

• The task to be performed (e.g. the grasp has to compen-
sate large reaction forces or be able to produce fine object
movements).

• The grasped object (e.g. the shape, the slipperiness, and
the fragility of parts of the object constrain the regions
where fingers should be placed).

• The hand kinematics and strength (e.g. the maximum
grasp force and maximum opening of the fingers also
impose conditions on the proper grasp).

Considering all these aspects together is not an easy task, and
frequently the grasp problem is solved as a set of independent
sequential problems, leading to far from optimal solutions.

The study of human grasping capabilities has been also an
area of interest in other fields such as, for instance, hand

mapping
sensorized robotic

S
∗

∗ J
∗

∗

glove hand

recognition

pose

grasp

Fig. 7. General diagram of the fuzzy-based pose mapping.
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a) b)

Fig. 8. Examples of: a) prismatic grasp, b) circular grasp.

surgery, design of prosthetic devices, and quantification of
disability in individuals with congenital defects or injuries. As
a result, there is a substantial and empirical medical literature
related to grasping, from which six types of grasp were
identified [29]: cylindrical, fingertip, hook, palmar, spherical,
and lateral. Additionally, another classification [22] suggests a
scheme that divides grasps into two categories: power grasps
and precision grasps (as they were defined in Section I).

Based on these classifications, Cutkosky [23] developed a
hierarchical tree of grasps. The grasp-root is broken up into
the two main branches: power and precision grasps. Precision
grasps are divided into prismatic grasps and circular grasps,
which are distinguished by the fingertip positions. In prismatic
grasps, fingertips are aligned defining a segment and the thumb
tip is moved along the bisector of this segment (Fig. 8a). In
circular grasps the tips of the fingers and the thumb are all
placed along a circumference (Fig. 8b).

Following the Cutkosky’s taxonomy, the nine types of
precision grasps covering the common grasp poses have been
selected here as candidates for the pose mapping (i.e to
be executed with preprogrammed movements). These grasps
include:

• Six prismatic grasps distinguished by the set of involved
fingers and whether they are flexed or extended (Fig. 9):
GTIe: grasp with the Thumb and Index finger, ex-

tended.
GTIMe: grasp with the Thumb, Index and Middle fingers,

extended.
GTIMRe: grasp with the Thumb, Index, Middle and Ring

fingers, extended.
GTIf: grasp with the Thumb and Index finger, flexed.
GTIMf: grasp with the Thumb, Index and Middle fingers,

flexed.
GTIMRf: grasp with the Thumb, Index, Middle and Ring

fingers, flexed.
• Three circular grasp distinguished by relative positions of

the fingertips (Fig. 10):
Gtripod: grasp with the Thumb, Index and Middle finger.
Gdisk: grasp with the Thumb, Index, Middle and Ring

fingers, extended.
Gsphere: grasp with the Thumb, Index, Middle and Ring

fingers, flexed.

Extended (GTIe) and flexed (GTIf) Thumb-Index grasp

Extended (GTIMe) and flexed (GTIMf) Thumb-Index-Middle grasp

Extended (GTIMRe) and flexed (GTIMRf) Thumb-Index-Middle-Ring grasp

Fig. 9. Examples of the six types of considered prismatic grasps.

Tripod Disk

Sphere

Fig. 10. Examples of the three types of considered circular grasps.

B. Recognition of the type of grasp

The grasp recognition module receives the data from the
sensorized glove, processes them with the FLC, and returns a
code identifying the most likely configuration of the human
operator.

The data from the sensorized glove is processed to obtain
the following seven variables normalized between 0 and 1,
that constitute the input to the FLC:

• V
T

R
: rotation of thumb across the palm;

• V
IM

A
: abduction angle between index and middle;

• V
MR

A
: abduction angle between middle and ring;

• V
T

F
: flexion of the thumb;

• V
I

F
: flexion of the index;

• V
M

F
: flexion of the middle;

• V
R

F
: flexion of the ring.
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V
I

F
= 0 V

I

F
= 0.50

V
I

F
= 0.85 V

I

F
= 1

Fig. 11. Values ofV I

F
for different extensions of the index finger.

These variables are computed as,

V
T

R
= norm(ST

B
) (2)

V
∗

A
= norm(S∗

A
) (3)

V
∗

F
= Sat (a1 norm(S∗

D
) + a2 norm(S∗

M
)

+ a3 e−20(1−norm(S∗

P
))
)

(4)

whereSat(x) is the saturation function introduced in Eq. 1
anda1, a2 anda3 are non-negative weight constants.

V
T

R
andV

∗

A
are straightforward, whileV ∗

F
was designed such

that V
∗

F
≃ 0 for the maximum extension of the finger and

V
∗

F
= 1 for the maximum flexion.S∗

D
and S

∗

M
have different

weightsa1 anda2 in the computation ofV ∗

F
due to the different

influence of the distal and middle joints on the total finger
flexion (note that intuitively when the distal joint is completely
flexed the finger is not considered significantly flexed, while
when the middle joint is completely flexed the finger is
intuitively considerably flexed).a3 weights an exponential
contribution of the proximal joint to the finger flexion, thisis
because it is necessary that this joint has a small contribution
during most of its range and a rapidly growth for large flexion
values.a3 is set to zero for the thumb, because it has only 2
joints and the exponential contribution is not necessary.a1, a2
anda3 are empirically fixed taking into account this reasoning
(the used values are given in Section VI).

The value ofV ∗

F
is quite relevant for the fuzzy controller

since it changes significantly between different types of grasps
and changes just a little for hand configurations of the same
type of grasp. Fig. 11 illustrates the variation ofV

I

F
for different

extensions of the index finger.
The seven variablesV ∗

∗
are the inputs to the FLC, which

determines the degree of belonging of each hand pose to each
of the appropriate fuzzy sets.

All the variablesV ∗

∗
except the thumb-rollV T

R
are fuzzified

with three membership functions, namely A, B and C, such
that (see Fig. 12a):

A: include the lowest values;
B: include middle values;
C: include the highest values.

Regarding the variableV T

R
, it is fuzzified with only two

membership functions, A and B for low and high values
respectively (see Fig. 12b). The defuzzification is performed
with the output membership function shown in Fig. 13.
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Fig. 12. Input membership functions: a) for the general caseV
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.
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Fig. 13. Output membership function.

The used FLC implements a complete fuzzy interface sys-
tem [30], using 12 fuzzy rules with the same structure:

IF (V1 = X1) and (V2 = X2) and ... and(Vi = Xi)

THEN return(G∗) (5)

where:

Vi is an input variable to the FLC, i.e.Vi = V
∗

∗
.

Xi is one of the corresponding membership functions
(i.e. Xi ∈ {A, B, C} for the general caseV ∗

∗
6= V

T

R

or Xi ∈ {A, B} for V
T

R
).

G∗ is the identifier of each of the nine types of
grasps (Section IV-A).

Fig. 14 shows all the implemented fuzzy rules. The fuzzy
operator of the antecedent is the AND computed with the
minimum method, the consequent is computed using the min-
imal implication method, and when the same output variable
appears in different rules the maximum aggregation method
has been used [30].

The output of the FLC is a vector,α, with 9 elementsα∗

representing the membership level of the actual configuration
of user hand to each of the considered grasping typesG∗, i.e.,

α =
(

αTIe, αTIf, αTIMe, αTIMf, αTIMRe, αTIMRf, αtripod, αsphere, αdisk

)

(6)
Finally, α is processed to obtain an integer variableGT

that indicates the result of the grasp type identification, i.e.
GT ∈ {0, 1, ..., 9} such thatGT = 0 means that the grasp
was not identified as belonging to any of the nine considered
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rule # V
T

R
V

T

F
V

I

F
V

M

F
V

R

F
V

IM

A
V

MR

A
THEN

1 B A A C C - - GTIe

2 B B B C C - - GTIf

3 B A A A C C - GTIMe

4 B B B B C B - GTIMf

5 B A A A A C C GTIMRe

6 B B B B B B B GTIMRf

7 B B B B B C C GTIMRf

8 B A A A C A - Gtripod

9 B A A A C B - Gtripod

10 B B B B B A A Gsphere

11 B A A A A A A Gdisk

12 B A A A A B B Gdisk

Fig. 14. Implemented fuzzy rules. There is one rule for each type of prismatic
grasp (rules 1 to 6), with the exception of theGTIMRf that needs another rule
(rule 7) to include larger abduction ranges. Regarding the circular grasps, due
to the larger abduction ranges there are again 2 rules for Tripod grasps (rules
8 and 9) and 2 for Disk grasps (rules 11 and 12), while for the Sphere grasps
just 1 rule was enough (rule 10).

types, andGT = 1, ..., 9 indicates the identified type of grasp
G∗ according to a predefined order.

C. Mapping the identified type of grasp

Once the hand pose of the operator has been recognized and
represented with a valueGT 6= 0, it is used together with the
glove information (set of sensor valuesS

∗

∗
) to compute a new

grasp mapping of the user hand pose to the mechanical hand.
From the observation of the movements that a human

performs to grasp an object with a precision grasp, it can
be noted that, quite often, during the movement the distal
and middle joints of the fingers do not change significantly,
while the proximal joints do it (see an example in Fig. 15).
Thus, the distances between the thumb tip and the other
fingertips depend mainly on the proximal joints. Based on this
observation the mechanical hand movement can be simplified
significantly. In fact, from a practical point of view, for a
number of grasp actions the fingers move only the proximal
and abduction joints in a correlated way, and therefore the hand
behaves like a device with only onedof. This consideration
is used to simplify the commands to the mechanical hand
based on the information obtained from the hand of the human
operator.

For each type of grasp two vectorsLmin and Lmax of
dimension1× 13 are determined, containing the joint values
when the hand is totally closed and totally open, respectively
(see Fig. 16 for some examples), i.e. the distance between
the thumb tip and the remaining fingertips is minimal and
maximal at the hand configuration defined, respectively, by
Lmin and Lmax. All the intermediate configurations of the
human hand are reproduced on the robotic hand by linear
interpolation between the configurations defined by these two
limit vectors. This solution ensures collision free movements
when a particular type of grasp is performed.

Algorithm 5 implements the pose mapping corresponding
to GTIMRe. It starts normalizing the values of the proximal
sensor of each finger that takes part in the grasp (in this
case the auxiliary variables I, M and R corresponding to the

Fig. 15. Example of the finger movements doing a precision grasp.

Algorithm 5 GTIMRe Pose algorithm
Require: S

I

P
,SM

P
,SR

P

I = norm(SI

P
)

M = norm(SM

P
)

R = norm(SR

P
)

k = mean(I,M,R)
pose =Lmin + k (Lmax − Lmin)
MOVE SAH to pose

index, middle and ring fingers respectively); then, it computes
the averagek of these values that is used to interpolate the
position of the hand between the limitsLmin andLmax of the
corresponding type of grasp. Finally, the SAH hand is moved
to the interpolated pose.

For the types of grasp that do not use the middle and ring
finger (i.e.GTIe andGTIf) or do not use just the ring finger
(i.e.GTIMe, GTIMf andGtripod), Algorithm 5 is simply modified
by removing the computation of the auxiliary variables M
and R, or just R, respectively, and removing them from the
computation of the averagek. It must be also reminded that
the limitsLmin andLmax are different for each type of grasp,
and thus they must be properly selected in each case.

V. HYBRID MAPPING

The joint space mapping and the fuzzy-based pose mapping
described in the previous two sections are now merged into
a single hybrid mapping that acts as an assistance guide for
teleoperated grasping tasks. Basically, the system monitors
the information from the sensorized glove and computes the
variable GT that results from the identification process of
the grasp type (Subsection IV-B), ifGT = 0 then a default
mapping is executed (the joint space mapping described in
Section III), and if GT 6= 0 then a particular predefined
mapping is executed according to the value ofGT (the
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GTI

Gtripod

Gsphere

Fig. 16. Illustration of the fully open and fully closed configurations for
different types of grasp.

fuzzy-based pose mapping described in Subsection IV-C).
Fig. 17 illustrates how the hybrid mapping works based on the
information from the sensorized glove and the variableGT .

VI. EXPERIMENTAL VALIDATION

To perform the experimental validation, the setup described
in Section II is controlled with two workstations:

• The local workstation receives the information of the
dataglove (which is connected through the USB port) and
executes the mapping, which is implemented in Matlab-
Simulink, obtaining the setpoints for the SAH hand.

• The remote workstation controls the SAH hand through
the API functions using the setpoints received from the
local workstation. The hand is mounted on the Stäubli
TX-90 robot.

The communication between the workstations is done
through Ethernet with a client-server architecture implemented
in C++, with the server running on the remote workstation and
the client on the local one [31].

After setting up the system, different tests have been per-
formed to fine-tune the algorithm parameters and to check the

sensorized robotic

GT

GT=0

GT=1

GT=i

GT=9

S
∗

∗ J
∗

∗

glove hand
mapping 1

mappingi

mapping 9

mapping

mapping

mapping
pose

joint-to-joint

joint-space

grasp type
identification

Fig. 17. Operating schema of the hybrid mapping, merging thejoint space
mapping and the fuzzy-based pose mapping.

V
∗

F
V

T

F
V

I

F
V

M

F
V

R

F

a1 0.7 0.3 0.25 0.15
a2 0.3 0.6 0.75 0.6
a3 0 1 0.3 1

TABLE I
VALUES OFa1 , a2 AND a3 USED FOR EACH FUNCTIONV ∗

F

level of correspondence reached between the human hand and
the mechanical hand by the hybrid mapping. The values finally
selected in the implementation wereµ = π/15 (6 degrees) in
Algorithm 2, and the values shown in Table I for the variables
a1, a2 anda3 of Eq. 4. The used input membership functions
(IMF) are describe in the Appendix.

The transition between the different mappings may produce
small discontinuities in the set points of the hand joints. This
happens during free space movements and therefore was not
a problem. Nevertheless controlling these transitions to obtain
completely smooth movements of the hand could still improve
the system performance. In the implemented approach, the
pose mapping has priority over the joint-to-joint mapping.As
a result, it is easy to command the hand to perform a grasp
(use the pose mapping) but the reduction ofdof implies a loss
of dexterity and, if for some reason it is necessary, it is not
intuitive to recover it (return to the joint-to-joint mapping). The
only intuitive action for this is to open the hand significantly.
This is a point for future work.

Fig. 18 illustrates the results of applying the joint space
mapping, it can be seen that the correspondence between the
finger configurations of the glove and of the SAH hand is
satisfactory.

Fig. 19 illustrates the results of applying the fuzzy-based
pose mapping for two types of grasps, a small prisms is
grasped withGTIe and a medium size sphere is grasped with



10

Gdisk. Different grasp types have been tested with objects with
different shapes and dimensions, leading to similar qualitative
results that allow the mapping validation.

The experiments have been performed by different members
of the Robotics Lab using only visual feedback, i.e. without
any haptic device. The goal in the experiments was being able
to do gestures with the mechanical hand and grasping objects
to lift them, without any quantitative measure of grasp quality.
The experiments show that, even with some background on
robot manipulation, commanding grasping actions with a 13
dof mechanical hand requires specific training to become
familiar with a system that has two non-identical kinematics
(even being both anthropomorphic). The reduction from 13
dof to only onedof significantly helps the user in grasping
actions because the operator only needs to focus the attention
on the global position of the hand assuming that the fingers
are closed to the desired pose. In any case, it must be note that
any task could always be solved using only the joint-to-joint
mapping.

VII. C ONCLUSIONS AND DISCUSSION

The paper has presented a new approach for the mapping of
the movements of a human hand to a robotic anthropomorphic
hand. The contributions of the work are the development
of a joint space mapping (belonging to the joint-to-joint
mapping type) and a fuzzy-based pose mapping (belonging
to the pose mapping type) and the combination of them to
produce a hybrid mapping that allows both intuitive free space
movements (where the gesture is more important than the
precise positions of the fingers) and grasp movements (where
the precise positions of the fingers is more important than the
gesture), always despite the kinematic differences between the
human hand and the robotic hand.

The hybrid approach has been implemented and some
illustrative execution examples are presented in the paper.
The experiments have been done by members of robotics
laboratory and therefore with knowledge and some training
in robotics manipulation. The easy of use comments and the
advantages of one mapping compared with another are based
on the experiences of these persons, which agree with the
expected results that justified the realization of the work.The
system was not tested with people without any experience in
order to obtain quantitative results on the dexterity reached
with the different mappings.

Future work has two lines of activities. One is improvement
of the individual mappings. Joint space mapping could be
improved by using a non linear correspondence between the
glove sensor values and the robotic hand joints. This would re-
quires a complex experimental analysis of the desired relation
between the hands to establish the improved correspondence.
The fuzzy-based pose mapping could be improved using the
synergies between human finger joints in order to determine
in a simpler way more complex robotic hand movements. The
second line of research is related to commutation between
the mappings. In current implementation, pose mapping has
priority over joint-to-joint mapping, but it would be interesting
to be able to change the priority, either by an operator decision

V
∗

∗
IMF A IMF B IMF C

V
T

R
0.20 0.30 0.15 0.30 - -

V
IM

A
0.50 0.60 0.40 0.60 0.75 0.95 0.70 0.80

V
MR

A
0.50 0.60 0.40 0.60 0.75 0.95 0.70 0.80

V
T

F
0.30 0.40 0.30 0.40 0.70 0.80 0.70 0.80

V
I

F
0.22 0.35 0.22 0.35 0.55 0.65 0.55 0.65

V
M

F
0.25 0.35 0.25 0.35 0.70 0.75 0.70 0.75

V
R

F
0.26 0.35 0.26 0.35 0.75 0.83 0.75 0.83

Fig. 20. Values defining the rising and falling edges of the membership
function A, B and C for each variableV ∗

∗
(see also Fig. 12). Function A has

only two values that define its falling edge, function C has also two values
defining its raising edge, and function B has two values defining the raising
edge forV T

R
and four values for the rest of the cases defining the raising

edge and the falling edge respectively.

or, even better, automatically according to the task to be
performed.

APPENDIX: INPUT MEMBERSHIP FUNCTIONS

The transitions from 1 to 0 of the input membership
functions are defined by two values,a andb, that represent the
initial and final point of the transition; the input membership
function IMF is defined as:















1 for x ≤ a

1− 2 ((x− a)/(b− a))
2 for a < x ≤ (a+ b)/2

2 ((b− x)/(b − a))
2 for (a+ b)/2 < x ≤ b

0 for x ≥ b
(7)

The transitions from 0 to 1 of the input membership functions
are analogously defined. The actual values defining the edges
of the membership functions are given in Fig. 20.

REFERENCES
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[31] J. Fortı́n and R. Suárez, “General environment for human interaction
with a robot hand-arm system and associate elements,” inProc. of the
15th IEEE Int. Conf. on Emerging Technologies and Factory Automation,
2010, pp. 34–39.

Luca Colasantoobtained the bachelor degree (with
honors) and the master degree (with honors) in
Control Systems Engineering from the Politecnico
di Bari, Italy, in 2007 and 2010 respectively. During
his master he was at the Institute of Industrial
and Control Engineering (IOC) at the ‘Universitat
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