
Coordination of Several Robots based on Temporal

Synchronization

Andrés Montaño and Raúl Suárez

Institut d’Organizació i Control de Sistemes Industrials (IOC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Abstract

This paper proposes an approach to deal with the problem of coordinating multi-

robot systems, in which each robot executes individually planned tasks in a shared

workspace. The approach is a decoupled method that can coordinate the participating

robots in on-line mode. The coordination is achieved through the adjustment of the

time evolution of each robot along its original planned geometric path according to the

movements of the other robots to assure a collision-free execution of their respective

tasks. To assess the proposed approach different tests were performed in graphical

simulations and real experiments.

Keywords: Multi-Robot Systems, Motion Planning, Temporal Coordination, Motion

Synchronization.

1. Introduction

The efficient coordination of several robot arms in order to avoid collisions while

they carry out some independent given tasks in a common workspace is a frequent

problem of relevance in several robotic fields, both in industrial and service applica-

tions. This work proposes a practical approach to solve this problem modifying the

temporal evolution of the robots along their precomputed geometrical paths, as it was

initially presented in [1].

The problem of coordinating the movements of several robots working in a com-

mon workspace is an important issue in robotics and manufacturing as described in

several recent works [2, 3, 4]. This problem can be solve following two different

strategies, which lead to the centralized and decoupled approaches [5]. In the cen-

tralized approaches multiple robots operating in a shared workspace are considered as

a single multi-body robot operating in a composite configuration space including the

Degrees Of Freedom (DOF) of each robot, and then classical planning algorithms are

applied to simultaneously find coordinated collision-free paths for all the robots. In

the decoupled approaches each robot is treated as a single independent system and the

motion planning process is divided into two phases; in the first phase an independent

search for each robot path is performed considering only static obstacles and ignor-

ing the presence of other robots in the environment, whereas the second phase (either

Robotics and Computer-Integrated Manufacturing, vol. 42, Dec. 2016

off-line or on-line) applies coordination methods to avoid potential collisions when the

robots are executing the movements simultaneously in the shared workspace.

The advantages and drawbacks of the centralized and decoupled approaches are

presented in [5] and a comparative study of both approaches using a PRM planner is

presented in [6]. The conclusion was that in applications that require critical coor-

dinations (small clearances) the use of a centralized planner is more desirable. The

centralized approach is complete but it involves a higher number of DOF and therefore

it is computationally much more expensive than the decoupled approach, which could

then be a valid option from the practical point of view.

Many approaches has been proposed to solve the trajectory coordination problem

for manipulator robots using the decoupled strategy. The use of priorities was one of the

first tools used to search for the robot coordination, by assigning priorities to the robots

and sequentially searching for collision-free paths for the robots in order of priority in

the configuration-time space [7]. Another approach proposed the use of a prioritization

scheme to determine the robots that must adapt their movements in order to avoid

collisions with the other robots using attractive elastic forces and repulsive potential

field forces to modify the robot paths [8]. Prioritization has also been used with control

techniques to coordinate industrial robots [4], in this case task-priorities and sliding

control theories are combined to achieve the robot coordination. The main idea of

this approach is to define constraints for the multirobot system in order to satisfy them

using sliding control and a coordination supervisor, which generates the commanded

joint accelerations for the robots. Priority schemes used in industrial applications are

usually static, but service applications imply scenarios where priorities may change

while the tasks are being executed. The approach proposed here can also use priorities

to select the rules of motion in order to avoid collisions. The coordination is achieved

modifying only the time evolution along the robot paths, while the geometric trajectory

defined by the each robot path is not modified at all. Besides, in service applications

the planned motions are likely executed only once because, in general, service tasks

are always different and if they have to be repeated it is under different conditions,

and the motion planning has to be done on-line; therefore, if there are several robots

in the workspace, in order to avoid collisions their motion coordination has to be done

also on-line. Broadly speaking, in off-line approaches the objective is to plan time or

energy optimal motion trajectories because the computation time is not an important

factor, but, in on-line approaches, this optimization cannot be satisfactorily achieved

because the complete robot plan may be unknown and the computational time of the

motion optimization is usually too large.

An analysis and classification of multiple robot coordination methods was pre-

sented in [9], showing that the motion coordination algorithms can be applied on dif-

ferent representations of the workspace (e.g. physical space, composite configuration

space, composite configuration-time space, path-time space or coordination space). In

all cases, the main goal is to find a coordination curve in the corresponding space that

avoids collisions between the robots [10]. There are different approaches to find this

curve, like for instance adding a precomputed time delay at the beginning of the move-

ment executions guaranteeing the collision avoidance between the robots [11, 12, 13].

On-line approaches has been also proposed. An event-based approach for on-line and

off-line collision-free trajectory planning for dual-arm assembly systems was proposed

2

in [14], the approach is based on a fast geometric collision detection algorithm, but

the robot paths are fully known a priori and the obstacles in the coordination space

are discovered by checking the collision between all the robot configurations. Another

real-time approach has been proposed for a dual-arm system using a heuristic searching

method in the configuration space of the robot [3]. All these methods require a priori

knowledge of the robot paths in order to build an entire representation of the coordi-

nation space, this is a time expensive procedure, and it is valid only if the robot paths

do not change. The approach proposed here does not require a priori analysis of the

coordination space, instead of this, the coordination space is explored while the robots

execute their tasks, this allows to work with partially known paths.

Dynamic programming has been also used to find a coordination curve [15, 16],

in this case, the main goal is the minimization of the execution time of the tasks, con-

sidering the dynamics of the robots and the torque restrictions in the robot joints. The

obtained coordination curve is used to design the velocity profile for each robot so that

collisions are avoided. The robot coordination can be also achieved introducing an

adjustment in the geometric paths identifying the regions of the physical space swept

by the robots and then modifying the paths planned a priori so that the robots do not

occupy these regions simultaneously, if it is not possible to modify the robot paths then

their execution time is modified so that the conflictive regions are occupied by only

one robot at a time [17]. The problem of multirobot coordination in pick-and-place

tasks on a conveyor band has been addressed in [18], presenting an approach based on

non cooperative game theory where each robot uses local observations of the conveyor

band and their neighbor robots to decide its actions. Each robot chooses the actions

that are optimal for it, minimizing a cost function that depends of the relative positions

of the robots and the products on the conveyor band. This approaches are valid for

applications where the task is repetitive and can be optimized off-line. The approach

proposed here intends to be useful for service applications, which are not repetitive

and, besides, the paths to accomplish the tasks may be not completely known a priori,

which does not allow the use of off-line optimization methods.

A method that solves the robot conflicts based on a path modification sequence

was introduced in [2]. The coordination is achieved by re-planning of the paths of the

robots in collision. The paths are ordered in a dynamically computed path modification

sequence, which selects the path that must be re-planned. On the contrary, in our pro-

posed approach the robot paths are not modified at all, and the coordination is achieved

modifying the time evolution along the robot paths, which requires less computation.

The differences between the approach proposed in this paper and other coordination

approaches can be summarized as follows. Most of the coordination methods require

a priori knowledge of the robot paths to build the coordination space (off-line). The

proposed approach just needs knowledge of a limited set of intended movements of the

robots since the coordination space is explored at the same time as the robots execute

their paths (on-line). The coordination is achieved by the modification of the time

evolution along the robot paths, thus, the geometric robot paths are not changed at all.

The proposed approach can use priorities to select the proper set of rules used to decide

the time evolution along each robot path.

The paper is organized as follows. Section 2 presents an overview of the proposed

approach, describing the main features and, specially, the advantages and drawbacks.

3

Section 3 formally describes the proposed approach, it includes a subsection dealing

with the problem modeling and another one describing the coordination procedure it-

self. Section 4 describes the application of the proposed approach to the case of two

robots, including simulated and real experimentation, in such a way that different as-

pects can be illustrated in detail. Section 5.1 discusses the extension to the case of more

than two robots, using simulated examples with three robots to illustrate the concepts.

Finally, Section 6 presents a summary of the proposed approach, a brief discussion

regarding its application, and expected future work.

2. Overview of the Proposed approach

According to the categories describes in previous section, the robot coordination

approach proposed in this paper is a decoupled one that can be applied on-line. Ba-

sically, it is assumed that several robots have to work in a shared workspace and that

their paths have been determined independently of each other (either off-line or on-

line), so each robot path does not have collisions with the objects in the workspace but

nothing can be guarantee with respect to collisions with the other robots. Then, the

coordination is performed by controlling the evolution of the robots along the planned

geometrical paths, without producing any change on their geometry. Since the robot

paths are described as a discretized sequence of robot configurations, it is assumed

that if there are no collisions at two consecutive robot configurations in the sequence

then there are no collisions at any intermediate ones (i.e. the path discretization is fine

enough).

To illustrate the addressed problem consider the two robots shown in Fig. 1, one

of them has to remove the red cans from the table and the other has to remove the

white cans (partially occluded by the red ones in the picture). The motion planning is

independently done for each robot (either because they are real independent systems

or just in order to reduce the complexity and running time of the planning process), so

none of the robots will collide with the table or the cans if it is moved alone, but, if the

two robots work at the same time collisions between them may actually occur. In order

to avoid these potential collisions the proposed approach adjusts the time evolution of

each robot along its path according to the movements of the other robot to assure a

collision-free execution of their tasks, and this is done while the robots are already

executing their movements. Then, the approach requires that each robot knows the

sequence of the expected future configurations of the other robots. This information

can be exchanged when the robots have already planned it, which is the case in our

current implementation, or it could be determined by the mutual observation of their

movement evolution complemented with a prediction of the next positions for a close

future. In the second case there may be some uncertainty in the actual configurations

of the robots which must be considered as a security margin in the collision check.

The main advantages of the proposed approach are: a) being decoupled, the inde-

pendent planning of the robot paths strongly reduce the computational cost of the path

determination; b) the complexity of the coordination is small enough to allow on-line

application. c) the robots can advance in their task while the coordination procedure

is executed. On the other side, the main drawbacks are: a) there may be no solution

to the coordination problem using only time adjustments of the path (like in any other

4

Figure 1: Two robots in a shared workspace. Each robot must grasp and remove from the table cans of

different color. The individually computed paths produce collision between the robots, consequently it is

necessary a motion coordination in order to avoid them.

approach based only on time adjustments), but if this actually happens the proposed

approach can detect it; b) to be of practical application the system must be able to

perform more than one collision check between the robots while the robots advance

one step in their geometric paths (the influence of the number of collision checks for

practical applications is discussed later).

3. Formal Description of the Proposed Approach

3.1. Problem Modeling

Consider n robots Ri, i ∈ {1, ..., n} which have to execute their tasks in a shared

workspace following some assigned geometric paths pathi computed independently,

i.e. pathi is a set of sequential configurations qi to be followed by Ri. The geomet-

ric path for each robot can be expressed using a path parameter that uniquely iden-

tifies the robot configuration along the path as qi = pathi(si), where si denotes the

traveling length along the path, with simax
being the entire path length. The space

defined by the points P = (s1, ..., si, ..., sn), with 0 ≤ si ≤ simax
, is called Coor-

dination Space (CS) [19], i.e. CS is the n-dimensional space determined by the n
path parameters si of the n robots. CS can be discretized considering only a finite

set of points Pk = (s1k , ..., sik , ..., snk
), with 0 ≤ sik ≤ sikmax

, giving as result the

Discretized Coordination Space (DCS). The resolution of DCS is given by the com-

position of the resolution of each pathi, which in practice is determined such that it

guarantees collision-free paths, i.e. the movement of a robot between two consecutive

collision-free configurations is assumed to be also collision-free. Following this ap-

proach, here it is assumed that the movement between two consecutive collision-free

points of DCS is also collision-free. The origin of DCS is the point P0 = (0, ..., 0)
and the point at which the robots complete their tasks is Pend = (s1kmax

, ..., snkmax
).

The set of points in DCS representing collision configurations of the robots is called

Collision Region (CR). The relative motion between the robots is described by a Co-

ordination Curve (CC) in DCS; a CC may allow robots to move backward, which may

5

Pk

Pend

CR

FCC

s1

250

200

150

100

50

s2
25020015010050O

Figure 2: Discretized Coordination Space DCS and Collision Region CR (in red) for two robots. In a real

problem CR is not known a priori, but here, for illustrative purpose, it was computed making an exhaustive

collision check over all the points in DCS.

be necessary for on-line collision avoidance [14]. If a CC does not pass through CR it

is called a Collision-free Coordination Curve (FCC), i.e. a FCC is a set of sequential

points Pk ∈ DCS such that ∀k Pk /∈ CR. Fig. 2 illustrates the DCS for two robots, a

Collision Region CR and a Collision-free Coordination Curve FCC.

From a point Pk there are different possible movement directions in DCS, each of

them is represented by a Motion Direction (MD). For n robots the number of pos-

sible MDs is Nmd = 3n − 1. Fig. 3 shows a piece of DCS for two robots, at any

generic point Pk there are eight different possible MDs to move to another point Pk+1

in DCS (obviously, with the exception of points with coordinates si0 or sikmax
). In

this 2-dimensional DCS a horizontal or vertical MD in DCS is equivalent to stop one

of the robots while moving the other, i.e. directions (0,+1), (+1,0), (0,-1) and (-1,0).

A diagonal MD indicates that both robots are moved, i.e. directions (+1,+1), (+1,-1),

(-1,+1) and (-1,-1), either forward or backward depending on the sign. In the general

case, the default desired motion direction is (+1, ...,+1), which moves forward all the

robots to Pk+1 = (s1k+1
, ..., snk+1

), maximizing the overall advance of the tasks that

the robots are executing.

The coordination problem can be formulated as: “Given the geometric paths pathi
for n robots, find a FCC ⊂ DCS from the origin P0 of DCS to Pend”, i.e. find a

sequence of pointsPk = (s1k , ..., sik , ..., snk
) fromP0 to Pend without passing through

the Collision Region CR. When pathi is generated on-line Pend may be not explicitly

known a priori and then Pend has to be replaced by the current “final” point known

from each robot path; besides, the Collision Region CR ⊂ DCS has to be discovered

and avoided on-line while the robots are moved along their computed paths.

6

s1

s2

s1k−1

Pk

s1k+1

s2k−1

s2k

s2k+1

s1k

(+1,+1)

(-1,-1)

(+1,0)

(+1,-1)(0,-1)

(0,+1)(-1,+1)

(-1,0)

Figure 3: The eight possible motion directions in a Discretized Coordination Space DCS for two robots.

3.2. Coordination Procedure

In order to find a FCC, starting from a given point Pk the next point in FCC is

selected using a MD and a collision check is performed in order to detect whether it

describes a collision configuration of the robots, i.e. whether it belongs to CR. The

tested points of DCS that do not belong to CR are stored in a sequence describing a

FCC for the robots.

Assuming that a number Ncc > 1 of collision checks can be done while each robot

advances one step on its geometric path (i.e a transition from one point Pk to Pk+1

in DCS), during the coordination process the number of points Pk ahead of the robots

in FCC increases when the tested points belong to the free space of DCS and thus

they can be added to FCC. On the other hand, the number of points Pk ahead of the

robots decreases when the selected points belong to CR, since they cannot be added to

FCC but the robots continue advancing along the already determined portion of FCC.

As it will be discussed later, in critical cases this situation may make the robots stop

when many points of CR are checked while the coordination procedure is looking for

a feasible solution, i.e. new configurations are not added to FCC while the robots are

advancing along it.

Each robot must execute the coordination algorithm to obtain its own trajectory

in the physical space, i.e. the evolution in time of the predefined geometric path. As

mentioned in Section 2, it is assumed that each robot has information about the next

(possible few) movements of the other robots, but there is no general supervisor and

therefore each robot must locally decide its next movement according to some prede-

termined and accepted rules. The algorithms and data used to do this are the same for

all the robots so that the global result will be consistent for all of them. On the other

hand, priority rules must be established before hand in order to guarantee that all the

7

Algorithm 1 Main

Require: path
i
, i = 1, ..., n

1 FCC← ∅, MDk ← (+1, ...,+1), Pk← O

2 while Task is not finished do

3 for i = 1 to Ncc do

4 if Pk+1 6= Pgoal then

5 Determine Pk+1 using MDk

6 if Pk+1 does not imply collision then

7 Add Pk+1 to FCC

8 Pk ← Pk+1

9 else

10 Select a new MDk (using the state diagram)

11 end if

12 else

13 break

14 end if

15 end for

16 Move Ri, i = 1, ..., n from its current position to the next one according to FCC

17 end while

robots take consistent decisions.

Algorithm 1 shows the main procedure of the proposed approach, which must be

executed by each robot Ri. As input it requires information about the next positions

of the robots, information that is included in the geometric paths, pathi, i = 1, ..., n.

Pgoal is the point in DCS at which the coordination process is completed and there are

no more movements to coordinate, this point can be an intermediate point depending

on the information available at a particular time or it can be an absolute final point if the

geometric paths are completely known. In the algorithm there are two main actions, the

coordination of movements and the execution of them. The coordination implies the

exploration of DCS, selecting points Pk, checking them for collisions, and adding them

to a FCC if they are collision-free. Since all the robots are running this algorithm the

execution of the robot movements implies moving the robots from a point Pk to Pk+1

in DCS. Both actions must be executed while the goal of each robot is not reached.

In order to determine the next point Pk of a FCC, a state diagram is used with the

nodes representing the MDs and the transitions defined according to whether the re-

sult of using a given MD produces or not a collision configuration. The state diagram

can be designed following different strategies, like, for instance, giving always prior-

ity to one of the robots or trying to optimize the overall advance of the whole set of

robots. Examples of different state diagrams used to select a new MD are presented

and discussed in Sections 4 and 5.1 for the case of two and three robots respectively.

4. Application to the Case of Two Robots

4.1. Particular developments

The approach formulated above for n robots is particularized here for a cell with

two robots R1 and R2. In this case DCS is a 2-dimensional space and, even when

8

the coordination is done on-line, path1 and path2 are computed off-line for the desired

tasks assigned to each robot, thus s1kmax
and s2kmax

are known, and the condition

“Task is not finished” in Algorithm 1 can be formulated as “sik < sikmax
, i = 1, 2”. As

mentioned above, the default desired motion direction MD is (+1,+1), and the starting

point in DCS is P0 = (0, 0). It is assumed that two collision checks are executed per

cycle, i.e. collisions in two points of DCS can be checked during the movements of the

robots between two consecutive points Pk and Pk+1.

In order to select the motion direction MD at each transition, two heuristics were

implemented. The first heuristic is based on the wall follower, the best-known rule for

traversing mazes, also known as either the left- or right-hand rule. The second heuristic

is based on the maximization of the overall advance of the robots in each transition in

DCS. A state diagram representation is used to determine the selection of the motion

directions, where each state represents a MD.

The state diagram in Fig. 4 shows the wall follower heuristic with priority for the

robot R2. The diagram has Nmd = 8 states resulting from Nmd = 3n − 1 for n = 2.

The transitions between states are marked with “C” when the resulting next point is a

collision point and with “F” when it is a collision-free point. The initial state (default)

is always (+1,+1). For instance, if using (+1,+1) the destination point Pk+1 in DCS

belongs to CR the next MD to be checked is (0,+1), indicating that R2 moves for-

ward one position and R1 is stopped. Note that with these conditions when there are

collisions configurations the transitions are counterclockwise in the graphical repre-

sentation of the state diagram; by analogy, if the priority is given to R1 the transitions

would be graphically clockwise. In the state diagram with priority for R2 shown in

Fig. 4, when the state (+1, 0) is reached and the destination is a collision point, a spe-

cial condition must be considered in order to avoid a closed loop in the graph state.

This special condition is marked as the transition C∗ in the state diagram, meaning that

if the state (+1,+1) is reached through C∗ and this MD leads to a collision-free point

the next state is determined by F∗ instead of F.

The state diagram in Fig. 5 shows the overall impact heuristic with priority for the

robot R2. In this case the eight states are grouped according to the overall impact

of motion: the state (+1,+1) has an impact of +2, since both robots move forward

one position according to their plans, the states (0,+1) and (+1, 0) have a impact of

+1, etc. The state with the minimum impact is (−1,−1), whose impact is −2, in

which both robots move back one position. The transitions between states go from

the maximum overall impact to the minimum overall impact, selecting first the states

that favours the robot with highest priority. When a collision-free point is reached

(marked with a F transition in the states diagram), the next state to be checked is always

the state (+1,+1). In this strategy, the points already added to FCC are considered

for further explorations as collision points in order to avoid oscillations between two

consecutive points in FCC, but as a consequence the system returns an error when the

only movement option is coming back to the previous point in FCC (this happens when

the flow in the state diagram arrives to the state (−1,−1) and it produces a collision

transition; if desired, a specific strategy could be implemented for this case).

The robot priorities can be selected applying different criteria. In the current imple-

mentation, the robot with the highest number of intermediate configurations in pathi
has the priority (i.e that with largest sikmax

). Nevertheless, this criterion is an arbitrary

9

(+1,+1)(0, +1)(-1, +1)

(+1, 0)(-1, 0)

(+1, -1)(0, -1)(-1, -1)

CC

C

C∗

CC

C

CF

F

F

F∗

F

F
F

F

F

Figure 4: State diagram representing the wall follower heuristic with priority for the robot R2. The transi-

tions between states are marked with “C” when the resulting next point in DCS is a collision point and “F”

when it is a collision-free point.

(+1,+1)

(-1, +1)

(0, +1) (+1, 0)

(-1, 0)

(+1, -1)

(0, -1)

(-1, -1)

C

C

C

C

C

C

C

F F

F

F F

F

F

+2

+1

0

-1

-2

Overall Impact

C
Error

F

Figure 5: State diagram representing the overall impact heuristic with priority for the robot R2. The states

are ordered by the overall impact of motion, from the highest impact state (+1,+1) to lowest impact state

(−1,−1).

10

choice and since the collision region is unknown it does not assure an optimal solution.

In order to illustrate how the proposed approach works, Fig. 6 shows a simple

example of the algorithm generating a FCC and discovering the CR for two robots

using the overall impact strategy with priority for R2. Fig. 6a show the initial situa-

tion with the robots in their initial configurations represented by the point P0 = (0, 0).
Fig. 6b shows the results of the first step, two points of DCS were explored, they were

collision-free and therefore added to FCC (both explorations following the default MD

(+1,+1)). Fig. 6c shows the results of the second step, the robots moved forward one

position along FCC while two new points of DCS were explored and, being collision-

free, added to FCC, again using the default MD. In Fig. 6d the robots moved forward

another position along FCC while two new points of DCS were explored and, in this

case, the first checked position using (+1,+1) belongs to CR and therefore the second

exploration was done using (+1, 0). In Fig. 6e the same has happened, the robots ad-

vanced one position, the first checked position using (+1,+1) belongs to CR and then

the second exploration was done using (+1, 0). In Fig. 6f while the robots advanced

one step two explorations were done along (+1,+1) without finding collisions and the

FCC has surrounded the obstacle. Following this procedure and assuming no more

collisions were found, Fig. 6g shows the step in which FCC was completely defined,

i.e. FCC reached Pend. From this step, it is not necessary to do more explorations and

the robots just advance following FCC until reaching Pend, as shown in Fig. 6h.

4.2. Experimental Results

The proposed approach has been fully implemented for the case of a real cell with

two robots. The code implementation is based on ROS [20] for the communications

layer, which is in charge of exchanging the information about the planned movements

of each robot, Qt libraries [21] for the user interface, Coin3D for the graphical ren-

dering and PQP [22] for the collision detection. The path planning is computed us-

ing the home-developed path planning framework called the Kautham Project [23].

This framework provides the developer with several tools needed for the development

of planners, like, for instance, direct and inverse kinematic models of the robots and

hands, random and deterministic sampling methods [24], metrics to evaluate the per-

formance of planners (number of generated samples, collision check callings, number

of nodes in the graph solution, connected components) and simulation tools. For the

graphical simulations the robots were modeled using triangular meshes. The robots

in the cell are two Stäubli TX-90 with 6 DOF equipped with a Schunk Anthropomor-

phic Hand (SAH) [25] with 13 DOF, and a Schunk Dexterous Hand (SDH2) [26] with

7 DOF. A PRM planner [27] has been used to obtain the geometric path for each robot,

the samples for the path planning are generated in a cloud around the direct linear path

in the physical space from the initial to the final configuration.

The synchronization of the real robots is achieved applying event-based control,

monitoring the current robot configurations and waiting until each robot reaches its

commanded configuration. A simple example of this event-based synchronization

scheme is the following: when a robot Ri starts a movement from the current con-

figuration qik = pathi(sik) toward the next one in the path qik+1
= pathi(sik+1

), a

signal WAITi is activated, and it is active until Ri reaches qik+1
. In order for the robots

11

0

0

5

5

10 15

10

15

20

Current configuration of the robots FCC CR

0

0

5

5

10 15

10

15

20

a) b)

0

0

5

5

10 15

10

15

20 0

0

5

5

10 15

10

15

20

c) d)

0

0

5

5

10 15

10

15

20 0

0

5

5

10 15

10

15

20

e) f)

0

0

5

5

10 15

10

15

20 0

0

5

5

10 15

10

15

20

g) h)

s1

s1

s1

s1

s1

s1

s1

s1

s2s2

s2 s2

s2 s2

s2 s2

Figure 6: Example of time evolution of the robots along their paths following the overall impact strategy

with priority for R1 as it is shown in the state diagram in Fig. 5.

12

R1

R2

a) Setup for Example 1. b) Collision without coordination.

Figure 7: a) Setup for Example 1. The robot R1 is in charge of remove the red can and R2 is in charge of

the yellow one; b) Collision configuration during a simulated execution without coordination.

to proceed to a new desired configuration qik+2
, both signals WAIT1 and WAIT2 must

be off.

The following two examples illustrate the ability of the proposed approach to coor-

dinate the independently computed paths for the robots.

Fig. 7a shows the setup for the first example, the robot R1 is in charge of taking off

the red can from the table and R2 the yellow one. Fig. 7b shows a snapshot where the

robots are in collision during a task simulation without coordination. The computed

paths for R1 and R2 have, respectively, s1kmax
= 114 and s2kmax

= 133 configura-

tions. Fig. 8a and 8b show the FCC found using the wall follower heuristic and giving

priority to R1 and to R2, respectively. In the case of priority given to R1, the search

of the FCC required 329 collision checks, the whole FCC has 237 steps and was com-

pletely defined when the robots were executing the step 165, R1 needed 126 steps to

finish its task and R2 needed 237. When the priority was given to R2 the search of

the FCC required 358 collision checks, FCC has 236 steps and it was completed when

the robots were executing the step 178, R1 needed 236 steps to finish its task and R2

needed 141. In both cases the robot with priority completes the task before the other

(which can not be always guaranteed since it depends on the shape of CR). Fig. 9

shows the complete CR computed only for illustrative purpose; in order to find the

complete CR it was necessary to execute s1kmax
× s2kmax

= 114 × 133 = 15, 162
collision checks.

Fig. 10 shows the setup for the second example. The robot R1 is in charge of

removing the red cans, C1 and C3, and R2 is in charge of the yellow ones, C2 and

C4. The computed path for R1 has s1kmax
= 426 configurations, and the path for

R2 has s2kmax
= 289, thus the priority was given to R1. The search of a FCC in the

coordination process required 728 collision checks using the wall follower heuristic,

13

s1

s2

50

50

100

100O

a) FCC with priority for R1.

s1

s2

50

50

100

100O

b) FCC with priority for R2.

Figure 8: DCSs for the two robot problem in Fig. 7. a) FCC using priority for robot R1; b) FCC using

priority for robot R2. In both cases, the robot with priority reaches the simax
before the other one.

s1

s2

50

50

100

100O

Figure 9: DCS for the two robot problem in Fig. 7 and the complete CR computed for illustrative purpose.

14

R1

R2

C1

C2

C3

C4

Figure 10: Setup for Example 2. The robot R1 is in charge of removing the red cans C1 and C3, and R2

is in charge of the yellow cans C2 and C4. The square in the bottom-right corner shows a top view of the

table.

FCC has 506 steps and was completed when the robots were executing the step 364.

R1 and R2 needed, respectively, 440 and 506 steps to finish their tasks. Fig. 11a

shows the computed FCC (in blue) and the checked points of CR (in red). Fig. 11b

shows, only for illustrative purpose, the FCC (in blue) and the complete CR (in red).

In order to find the complete CR it was necessary to execute s1kmax
× s2kmax

= 426×
270 = 115, 020 collision checks. The execution of this example using the real robots is

illustrated in Fig. 12 by snapshots of the coordinated movements to perform the tasks

of each robot without collisions among them, and a video showing the complete real

execution is available following the link in [28]; besides, another video showing the

application to a different setup with different robot arms is available following the link

in [29], which shows that the approach can be applied to different robotic systems. All

the coordination information is the exactly that mentioned in the simulation case, and

the total time required in the real execution was 149,2 s. using robot velocities and

accelerations of 10% of the maximum one.

In the current implementation, the average execution time of a collision check for

two robots was 501.2 µs with a standard deviation of 0.38 µs (this time strongly de-

pends on the particular software implementation and the complexity of the used robot

models). Table 1 summarizes the relevant information for the two coordination exam-

ples.

5. Discussion

5.1. Application to more than two robots

In this section we discuss the application of the approach to more than two robots,

showing examples with three robot arms to illustrate the concepts. The approach pre-

sented in a generic way in Section 3 and described in detail for two robots in Section 4

can be applied to any number of robots, although, as it is expected, the collision check

requires more time and the number of possible movements in DCS increases producing

the effect described below.

15

50 100 150 200 250 300 350 400

s1

50

100

150

200

250

s2

O

a) DCS and FCC for Example 2.

50 100 150 200 250 300 350 400

s1

50

100

150

200

250

s2

O

b) Complete CR.

Figure 11: DCSs for the problem presented in Fig. 10. a) FCC and explored CR using priority for robot R1;

b) FCC and complete CR computed for illustrative purpose.

Table 1: Results for the two coordination examples.

s1kmax
s2kmax

CC FCC steps TS-R1 TS-R2

Example 1

Priority R1

114 133 329 165 126 237

Example 1

Priority R2

114 133 358 178 236 141

Example 2

Priority R1

426 289 728 364 440 506

sikmax
: Number of points in the geometric path for robot Ri.

CC: Number of collision checks done during the computation of FCC.

FCC Steps: Number of steps executed by the robots when FCC is completely defined.

TS-Ri: Total number of steps finally done by Ri.

16

C1

C2

C3

C4

a) Initial configuration.

b) R1 taking C1. c) R2 taking C2.

d) R1 taking C3. e) R2 taking C4.

f) Final configuration.

Figure 12: Snapshots of the real execution of the second example.

17

The computational cost for the case of n robots is a direct function of the dimen-

sionality n of DCS, which, as has been previously stated, means a number of possible

motion directions Nmd = 3n − 1 (i.e. the number of states in the state diagram). Nmd

is then an upper bound for the number of collision checks necessary to decide the next

movement in a FCC (it could be reached in very tight relative configurations of the

robots). Then, if tight relative configurations of the robots appear frequently during the

execution of the tasks, it may happen that the robots advance steps along their paths

faster than the generation of new steps in the FCC, and the robots may have to stop

at some point and wait for the system to find and add new points to FCC, making the

whole system having a poor efficiency. The evident solution to this problem is the in-

creasing of the number of collision checks Ncc that the system is able to perform during

the evolution of the robots along one step in their paths (see Step 3 of Algorithm 1).

Of course the largest Ncc the better, but assuring a high value of Ncc may impose con-

straints on the robot velocities, limiting them. On the other side, the complexity of the

Collision Region CR depends on the particular tasks and paths assigned to the robots

so the required number of points of DCS to be explored is unknown, although it could

be really low in many practical cases and therefore increasing Ncc may just produce

slower robot movements, being then useless.

In order to illustrate the effect of Ncc on the coordination procedure we applied the

proposed approach to the case of a simulated cell with three industrial robots working in

a common workspace (shown in Fig. 13a) using different values of Nccand the overall

impact heuristic. We present here the results of one particular example that clearly

illustrates the concept. As in the examples for two robots, each of the three robots is in

charge of grasping a can of a specific color and take it off from the workspace, R1 is

going for the red can, R2 is going for the blue can and R3 is going for the yellow can.

If the robots execute their respective paths without any synchronization there will be

collisions among them (see Fig. 13b). The coordination procedure was applied in this

example considering the overall impact heuristic, which for three robots is represented

by the state diagram shown in Fig. 14. The independent robot paths have 206, 170

and 102 configurations for R1, R2 and R3 respectively. 1,324 collision checks were

required to solve the coordination problem under these conditions. R1 needed 544

steps to finish its task, R2 needed 371 steps, and R3 needed 197. The number of times

that each node of the graph state was visited during the search of the FCC is given in

the histogram shown in Fig. 15 (it must be remarked that this histogram depends on

the geometric paths assigned to the robots and it is independent of Ncc). The search of

a complete FCC was done using Ncc = 2, Ncc = 4 and Ncc = 8. Fig. 16 shows the

number of coordinate points already determined in FCC ahead of the point describing

the current position of the robots for the three different values of Ncc (i.e. the number

of steps that the robots can still advance with guaranty of no collision). For Ncc = 2
this number is zero during a significant part of the activity of the robots, meaning that

all the robots have to stop and wait for the system to find the next collision-free point

in FCC. Under this condition, the FCC was completed when the robots were executing

the step 449 and 757 steps were necessary for the three robots finishing their respective

tasks (544 steps from the largest coordinated robot path for R1 plus 213 steps while

the robots were stopped). In the case of Ncc = 4 the three robots still have to stop and

wait but only in a reduced number of cases, FCC is completely defined when the robot

18

Table 2: Results for the three-robot coordination example.

Ncc CC FCC steps R1 STC R2 STC R3 STC TSTC

2

1324

449

544 371 197

757

4 317 558

8 166 544

sikmax
: Number of points in the geometric path for robot Ri.

CC: Number of collision checks done during the computation of FCC.

FCC Steps: Number of steps executed by the robots when FCC is completely defined.

TS-Ri: Total number of steps finally done by Ri.

TTS: Number total of steps executed to complete all tasks.

were in the step 317 and all the robots finished their tasks after 558 steps (544 steps

from the largest coordinated robot path plus 14 steps while the robots were stopped).

Finally, using Ncc = 8 the number of coordinate points in FCC ahead of the current

position of the robots does never fall to zero, even more, it grows monotonically and

FCC was completed when the robots were in the step 166, meaning that the three

robots were never blocked, and they finished all the tasks in only 544 steps. After

executing a number of experiments, we see that in the described experimental setup

with three industrial robots manipulating objects in the same workspace, Ncc = 8
is enough to avoid the robots arriving to a halt, which is significantly smaller than

Nmd = 26. Nevertheless, this may be not always true and there is no rule to determine

the minimum value of Ncc that avoids the robot halt. Reducing the velocity of the robots

to allow an increasing of Ncc may help in avoiding the stopping of the robots, but in

general it will increase the total time required to finish their tasks. Table 2 summarizes

the relevant information for the three-robot coordination examples.

One additional advantage of a large enough Ncc is that once the whole FCC was

already determined (or even before it), it is possible to do additional explorations in

DCS looking for an optimization of the FCC ahead of the robots, avoiding backward

robot movements and reducing the total time needed by the robots to finish their tasks.

5.2. Optimization of FCC

The FCC can be optimized to prevent that the robots move backward while they

follow the FCC. The number of points in the portion of FCC between the last added

point to FCC Pk and the point representing the current position of the robots is called

Explored Window EW. The FCC can be optimized exploiting the size of EW. Since

the size of EW limits the number of points in DCS that can be analyzed in the optimiza-

tion process before the robots reach the first point Pinter in the portion of FCC being

optimized. The size of EW increases when the explored point belongs to the free space

of DCS and it decreases when the point belongs to CR, and this size also depends on

the number of Ncc per movement of the robots, as illustrated in the examples in Fig. 16.

Therefore, the available time for the optimization also changes in function of EW. A

first propose for this optimization was already presented in [30].

The point Pk in which one or more robots must perform a backward movement

is determined looking the current motion direction MD. Once a point Pk involving a

backward movement of a robot Ri is added to FCC, it is necessary to determine the

19

R1

R2

R3

a) b)

Figure 13: a) Cell with three robots, each of them has to remove a particular can from the workspace

following independently planned paths; b) Collision configuration when the robots follow their paths without

coordination.

set of points OPT that contains possible new points of FCC that would replace some

points in the current FCC. OPT is composed by the points in DCS linking Pk with a

point Pinter ∈ FCC that do not imply a movement of Ri (yellow points in Fig. 17).

Pinter is selected to avoid the backward movement of the robot with higher priority, in

case that more than one robot move backward. Then, it is necessary to check whether

the current robot configuration in FCC has not exceed Pinter , if this condition is true

the optimization can be done, otherwise the optimization of this portion of FCC is not

feasible.

The optimization begins from the point Popt ∈ OPT closest to Pinter , if Popt /∈ CR

then it is added to FCC replacing the point Pcheck that follows Pinter in the original

FCC (see Fig. 17). The process is repeated until OPT was completely included in FCC

or the robots reach the current Pinter .

6. Conclusions

This paper has proposed a method for the on-line temporal coordination of multiple

robots in a shared workspace whose paths were computed independently. The approach

is based on the on-line exploration of the Discretized Coordination Space (DCS) that

represents the relative positions of the robots along their corresponding paths in order

to find a Collision-free Coordination Curve (FCC). Following this FCC the robots are

moved in a coordinated way avoiding collisions between them. The approach has been

implemented and successfully applied, in simulations for two and three robots and in

real executions for the case two robots.

The approach can be applied to any type of robots, being the only requirements that

each robot must able to know the future positions of the other robots (not necessarily the

20

+1,+1,+1

0,+1,+1 +1,0,+1 +1,+1,0

+1,0,0 0,+1,0 0,0,+1 +1,+1,-1 +1,-1,+1 -1,+1,+1

-1,+1,0 -1,0,+1 0,-1,+1 +1,-1,0 +1,0,-1 0,+1,-1

0,0,-1 0,-1,0 -1,0,0 +1,-1,-1 -1,+1,-1 -1,-1,+1

0,-1,-1 -1,0,-1 -1,-1,0

-1,-1,-1

*

*

*

*

*

* * *

* *

*

*

*

* *

**

*

*

*

*

*

*

*

*

*

C C C C C

C C

C

C C C C C

C C C C C

C C

C

F

C

C

C

C

F

F

F

F

F

F

F

F

FF

FF

F F

F
F

F
F

F
F

F

F

F

F

F

Figure 14: State diagram for three robots using the overall impact strategy.

21

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

900

States

N
u

m
b

er
o

f
v

is
it

s

Figure 15: Histogram showing the number of times that each node of the graph state was visited during the

search of a complete FCC for the example given in Fig. 13. The axis of abscissa indicates the first 18 states

starting from (+1,+1,+1) in the state graph in Fig. 14. and going left to right and top to bottom.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600
0

50

100

150

200

250

a) b)

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

c)

Figure 16: Number of coordinate points in FCC ahead of the point describing the current position of the

robots during the whole execution from P0 to Pend for: a) Ncc = 2; b) Ncc = 4; c) Ncc = 8.

22

OPT FCC CR

a) b)

s1s1

s2s2

Pcheck

Popt

Pinter

Pk

Figure 17: Elements involved in the optimization process in DCS. a) FCC without optimization; b) FCC

already optimized.

whole path, but at least a set of next configurations) and that the robots must advance

one step along FCC in a synchronized way, i.e. once the coordinate evolution along

their paths has been fixed in the FCC they have to be able to follow their paths with the

fixed time evolution.

7. Acknowledgment

This work was partially supported by the Spanish Government through projects

DPI2013-40882-P and DPI2014-57757-R. The authors would like to thank to Carlos

Rodriguez for his contributions in the implementation of the examples and the opti-

mization procedure.

References

[1] A. Montaño, R. Suárez, An On-Line Coordination Algorithm for Multi-Robot

Systems, in: 18th Proc. IEEE Int. Conf. Emerging Technologies and Factory Au-

tomation, ETFA, 2013, pp. 0 – 6.

[2] S. S. Chiddarwar, N. Ramesh Babu, Conflict free coordinated path planning for

multiple robots using a dynamic path modification sequence, Robot. Auton. Syst.

59 (7-8) (2011) 508–518.

[3] Y. Fei, D. Fuqiang, Z. Xifang, Collision-free motion planning of dual-arm recon-

figurable robots, Robotics and Computer-Integrated Manufacturing 20 (4) (2004)

351 – 357.

[4] L. Gracia, A. Sala, F. Garelli, Robot coordination using task-priority and sliding-

mode techniques, Robotics and Computer-Integrated Manufacturing 30 (1)

(2014) 74 – 89.

[5] J.-C. Latombe, Robot motion planning, Kluwer Academic Publishers, 1991.

23

[6] G. Sanchez, J.-C. Latombe, Using a PRM planner to compare centralized and

decoupled planning for multi-robot systems, in: Proc. IEEE Int. Conf. Robotics

and Automation, Vol. 2, 2002, pp. 2112 – 2119.

[7] M. Erdmann, T. Lozano-Perez, On multiple moving objects, in: IEEE Int. Conf.

on Robotics and Automation, Vol. 3, 1986, pp. 1419–1424.

[8] K. NakYong, S. DongJin, R. Simmons, Collision-free motion coordination of

heterogeneous robots, Journal of Mechanical Science and Technology 22 (11)

(2008) 2090–2098.

[9] E. Todt, G. Rausch, R. Suárez, Analysis and classification of multiple robot co-

ordination methods, in: Proc. IEEE Int. Conf. Robotics and Automation, Vol. 4,

2000, pp. 3158–3163.

[10] P. O’Donnell, T. Lozano-Peréz, Deadlock-free and collision-free coordination of

two robot manipulators, in: Proc. IEEE Int. Conf. Robotics and Automation,

Vol. 1, 1989, pp. 484 – 489.

[11] K. Shin, Z. Zheng, Minimum-time collision-free trajectory planning for dual-

robot systems, IEEE J. Robotics and Automation 8 (5) (1992) 641–644.

[12] Z. Bien, J. Lee, A minimum-time trajectory planning method for two robots, IEEE

Trans. on Robotics and Automation 8 (3) (1992) 414–418.

[13] C. Chang, M.-J. Chung, B. H. Lee, Collision avoidance of two general robot

manipulators by minimum delay time, IEEE Trans. on Systems, Man and Cyber-

netics 24 (3) (1994) 517–522.

[14] S. Lee, H. Moradi, C. Y., A real-time dual-arm collision avoidance algorithm for

assembly, in: Proc. IEEE Int. Symp. on Assembly and Task Planning, 1997, pp.

7–12.

[15] A. Mohri, M. Yamamoto, S. Marushima, Collision-free trajectory planning for

two manipulators using virtual coordination space, in: Proc. IEEE Int. Conf.

Robotics and Automation, Vol. 2, 1993, pp. 674 –679.

[16] J. Lee, H. S. Nam, J. Lyou, A practical collision-free trajectory planning for two

robot systems, in: Proc. IEEE Int. Conf. Robotics and Automation, Vol. 3, 1995,

pp. 2439–2444.

[17] X. Cheng, On-line collision-free path planning for service and assembly tasks

by a two-arm robot, in: Proc. IEEE Int. Conf. Robotics and Automation, Vol. 2,

1995, pp. 1523 –1528.

[18] H. I. Bozma, M. Kalalolu, Multirobot coordination in pick-and-place tasks on

a moving conveyor, Robotics and Computer-Integrated Manufacturing 28 (4)

(2012) 530 – 538.

[19] Y. Shin, Z. Bien, Collisionfree trajectory planning for two robot arms, Robotica 7

(1989) 205–212.

24

[20] M. Quigley, B. Gekey, K. Cnley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, A. Ng, Ros: an open-source robot operating system, in: Workshop

on Open Source Robotics in IEEE Intl. Conf. on Robotics and Automation, 2009,

pp. 0 – 6.

[21] J. Blanchette, M. Summerfield, C++ GUI Programming with Qt 4, Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2006.

[22] E. Larsen, S. Gottschalk, M. C. Lin, D. Manocha, Fast proximity queries with

swept sphere volumes, in: Proc. of Int. Conf. on Robotics and Automation, 2000,

pp. 3719–3726.

[23] J. Rosell, A. Pérez, A. Akbari, Muhayyuddin, L. Palomo, N. Garcı́a, The Kau-

tham Project: A teaching and research tool for robot motion planning, in: 19th

Proc. IEEE Int. Conf. Emerging Technologies and Factory Automation, ETFA,

2014, pp. 0 – 6.

[24] J. Rosell, M. Roa, A. Pérez, F. Garcı́a, A general deterministic sequence for sam-

pling d-dimensional configuration spaces, J. of Intelligent and Robotic Systems

50 (4) (2007) 361–373.

[25] J. Butterfass, M. Fischer, M. Grebenstein, S. Haidacher, G. Hirzinger, Design

and experiences with DLR hand II, in: Proc. of the World Automation Congress,

Vol. 15, 2004, pp. 105–110.

[26] Schunk, SCHUNK GmbH & Co. KG – Shunck Dexterous Hand - SDH2, Site:

www.schunk.com (Sep 2011).

[27] J. Rosell, R. Suárez, C. Rosales, A. Pérez, Autonomous motion planning of

a hand-arm robotic system based on captured human-like hand postures, Au-

tonomous Robots 31 (2011) 87–102.

[28] IOC, On-line Coordination of two Staubli robots based on temporal synchroniza-

tion. (2014). URL https://goo.gl/y7JQi2

[29] IOC, On-line Coordination of two UR5 robots based on temporal synchroniza-

tion. (2016). URL https://goo.gl/Sf8Fxr

[30] C. Rodrı́guez, A. Montaño, R. Suárez, Optimization of robot coordination using

temporal synchronization, in: 19th Proc. IEEE Int. Conf. Emerging Technologies

and Factory Automation, ETFA, 2014, pp. 0 – 6.

25

