
Software package for efficient use of a robotic
anthropomorphic hand

Marina Pujol-Closa
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
marina.pujol.closa@upc.edu

Leopold Palomo-Avellaneda
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
leopold.palomo@upc.edu

Raúl Suárez
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
raul.suarez@upc.edu

Abstract—The aim of this work is the development of a
complete software package to exploit a robotic anthropomorphic
hand, such as the Allegro Robotic Hand, allowing to easily
perform accurate grasps. It includes the Inverse and the Forward
Kinematics and allows storing different configurations as well
as to perform and store predefined grasps while controlling the
movement speed. The software presented in this document allows
the easy use of the Allegro Robotic Hand, enhancing its capabili-
ties and allowing further research on grasp theory by facilitating
the experimental implementation. The software is designed to
work with all the Allegro Hand versions despite their differences.
It is an improved alternative to the manufacturer’s version,
offering a powerful framework for grasping. Besides, it has been
designed to easily adapt to other robotic anthropomorphic hands.

Index Terms—Robotics hands, Allegro Hand, ROS.

I. INTRODUCTION

Anthropomorphic robotic hands are essential tools in ad-
vanced robotics, offering high dexterity and versatility for a
wide range of applications [1]. The synergy between hardware
and software is crucial for their optimal performance and us-
ability [2]. The focus of this work is the development of a soft-
ware package for the efficient use of robotic anthropomorphic
hands, specifically the Allegro Hand (AH) by Wonik Robotics,
although it is designed to easily adapt with other robotic
anthropomorphic hands. The official AH software manages
communications, has a Gravity Compensator, a Proportional-
Derivative (PD) controller and four predefined grasps.

Additionally, it provides through partial Forward Kinematics
the position of the fingertips (but not the orientation). How-
ever, the proprietary nature of the BHand library, which is
distributed only in a binary format, limits the user capability
to fully customize and enhance the system.

This paper introduces a new open-source C++ software that
addresses these limitations, offering a solution that enables
communication and control of all the Allegro Hand versions.
It includes full implementation of both Forward and Inverse
Kinematics (FK and IK), allowing users to move the fin-
gertips to precise positions and orientations. It also supports
predefined and customizable hand configurations and grasp
motions. Additionally, it contains different control modes,

This work was partially supported by the Project PID2020-114819GB-I00
funded by MICIU/AEI/10.13039/501100011033.

such as Torque, Gravity Compensator, PD and Proportional-
Integral-Derivative (PID). This work is the result of an effort
to provide useful and open tools to facilitate the research on
grasping and manipulation.

By providing a comprehensive and adaptable software pack-
age, this contribution significantly enhances the application
of the AH while simplifying its usability. It facilitates more
accurate and versatile grasping capabilities, enables the stor-
age and execution of predefined configurations and supports
research in grasp theory by simplifying the implementation of
theoretical models. Moreover, the software has been designed
to be easily adapted to other robotic anthropomorphic hands,
making it a versatile tool for advanced robotic manipulation
research and applications. To enhance integration with other
robots and sensors, a ROS Noetic and Humble packages have
also been developed. All the developed software is available
at https://sir.upc.edu/projects/allegro hand/.

II. THE ALLEGRO HAND

A. The Allegro Hand hardware

The Allegro Hand, illustrated in Fig. 1, has four fingers,
each with four independent current-controlled joints; abduc-
tion (joint 0), proximal (joint 1), middle (joint 2), and distal
(joint 3), totaling 16 Degrees of Freedom (DoF). The main
differences compared to a human hand are:

• The distal and middle joints are not coupled, they can be
flexed independently, providing a better range of action.

• The abduction joint rotates along an axis aligned with the
extended finger, whereas the abduction of a human hand
rotates along an axis orthogonal to the palm.

B. The Allegro Hand communication protocols

The AH is commanded by sending a message with the joint
torques of each finger and reading another message with the
values of the finger joint positions. Thus, acquiring/setting the
configuration of the whole hand requires four messages. The
communication is periodic and each received/sent message
contains the information of the four joints of a finger. Each
message has an identifier indicating the related finger and the
messages are always sent in the same order: Index, Middle,
Annular and Thumb.

Fig. 1. Schematic of the Allegro Hand showing the labeled joints and their
rotation axes.

There exist four different versions of the AH, all sharing
the same physical dimensions and kinematics. The primary
differences among these versions lie on the communication
protocols and on the characteristics of the servos. Up to version
3, the communication protocol is almost the same, while in
version 4 it is different. The basic difference is the message
length. Each message has an Identifier and the Data, that until
version 3 are:

• Message Identifier: 4 bytes (26 bits: Command Identifier,
3 bits: Source Identifier and 3 bits: Destination Identifier).

• Data: 8 bytes (the messages related to reading joint states
and sending the desired torques assign 16 bits per joint).

whereas the structure of version 4 messages is:
• Arbitration identifier: 11 bits (9 bits: Message Identifier

and 2 bits: Device Identifier)
• Data: up to 8 bytes, with the length depending on the

type of messages; those related to reading joint states
and sending the desired torques assign 16 bits per joint.

The reduction of the message length is an improvement,
but the process of creating and reading the messages is also
different depending on the version. For each version, the
manufacturer provides a different way to convert the current
of the servos into torques. In versions 1, 2 and 3 there exists
an encoder offset, an encoder direction and a motor direction.
These values are different for each of the 16 joints and for
each manufactured hand, the relationship between the angles
and the received data being:

joint[rad] = (encDirection · data − 32768.0− encOffset)·

·
(

333.3

65536.0

)
·
(π

180.0

)
(1)

whereas in version 4 there is no encoder offset and all the
encoder directions and motor directions are well adjusted to 1
for all the manufactured hands, the relationship being:

joint[rad] = data ·
(

333.3

65536.0

)
·
(π

180.0

)
(2)

Another significant difference is that the empirically read
values of the joint limits are not the same for all the versions,
nor for all the hands within a version, except for version 4, in

which the values are consistent. Furthermore, the read limits
are not consistent with the limits of the Unified Robot Descrip-
tion Format (URDF) model provided by the manufacturer. This
issue has been solved in the developed software, to ensure the
same performance and compatibility across all versions and
hands, using the real full available range.

C. The official Allegro Hand software

The official AH software distributed by Wonik Robotics [3]
consists of several packages: a shared library called BHand
and one version-specific package for GNU/Linux and for Win-
dows. Additionally, a ROS 1 (Kinetic) package for GNU/Linux
is provided. The BHand library is distributed only in binary
format, with the necessary header files but not the full source
code. It offers two controllers: the Gravity Compensator (with-
out considering the hand orientation) and the PD, and it also
has partial Forward Kinematics (without orientation). It also
embeds four types of grasps: using 3 fingers, using 4 fingers,
pinch with index and thumb and pinch with middle and thumb.

The version-specific package has an instance of the BHand
library, manages communications and includes some prede-
fined configurations. A unique thread continuously reads the
messages received from the hand. Upon receiving a message
with the current joint positions, the desired torque is calculated
using the BHand library; first it updates the current and desired
joint positions and, then, executes the control algorithm to
obtain the desired torques.

The choice of the control algorithm significantly impacts the
hand performance. While the official BHand library utilizes a
PD controller, other controllers like PID offer several advan-
tages, such as correcting steady-state errors more effectively,
and are better suited for grasping objects and holding a
position.

Although the manufacturer allows to read the current finger-
tip positions through the FK, it does not provide the fingertip
orientation. The full FK is crucial to work with the hand in
Cartesian coordinates. Moreover, there is no built-in support
for IK, which is a useful tool to control the hand by sending
fingertip positions (X, Y, Z coordinates) and orientations
(Euler angles), instead of joint torques. This gap is addressed
in the developed software.

III. THE DEVELOPED SOFTWARE PACKAGE

The official software is useful but it lacks many important
features that limits the ability to fully customize and enhance
the system, thus, a new open-source and more complete
package is proposed here.

The presented Allegro Hand Library implemented in
C++ has been developed to simplify the use of the hand,
while enhancing its functionalities. It handles communications,
complete FK and IK, several control modes and has both
predefined and customizable configurations and grasp modes.
It allows decoupling the drivers (communications and control)
and the framework, easing the integration with other frame-
works (e.g. ROS 1, ROS 2, Orocos, Matlab).

Fig. 2. Structure of the classes of the developed software package.

A. Classes and functions

The code structure is divided into five classes (see Fig. 2):
1) CAN AH: It enables communication with the AH. It

allows to start and stop communications, generates messages
to send torques and parses the received messages to get the
current configuration.

2) AllegroHandController: The software has five different
control modes: Torque, Gravity Compensator, PD, PID and
Fake controller. (each controller being a subclass of the
AllegroHandController class):

• Torque. Sets and maintains the desired torques.
• GravityCompensator. Calculates the needed torques to

counteract the effects of gravity using the Kinematics and
Dynamics Library (KDL).

• JointPositionPD. Uses a PD control to achieve desired
joint positions, considering gravity effects.

• JointPositionPID. Uses a PID control to achieve desired
joint positions, considering gravity effects.

• Fake. Used only for simulation, computes the gravity
compensation torques and updates the virtual hand state.

3) AllegroFinger: It has two child classes, one for the
Index, Middle and Annular (IMA) fingers and another for
the Thumb. The IMA fingers structure is the same, whereas
the Thumb kinematics is different. This class contains the
implementation of FK and a closed form of the IK of the
IMA and Thumb fingers. The implementation allows to move
the fingertips to the desired positions (X, Y, Z coordinates)
and orientations (Euler angles) through the use of the IK and
read the current poses of each fingertip through FK.

4) AllegroHandDriver: It is a basic driver to communicate
with the hand. It reads the hand configuration file and allows
reading the current joint positions and setting specific torques.
It contains an instance of the CAN AH class.

5) AllegroHand: The AllegroHand class is the most crucial,
since it is a derived class from the AllegroHandDriver and
embeds instances of the other classes. When initialized it
reads a configuration file, the URDF and predefined joint
configurations and grasp modes (see Fig. 3). It can run both,
a real Allegro Hand or a simulated one. It instantiates a
AllegroController class (Torque or Fake for real or simulated,
respectively) and four instances of the kinematic classes (one
per finger). In both cases it contains a thread executing the
main -and only- loop, controlLoop or controlLoopFake. When
working with a physical hand, it initializes an instance of

Fig. 3. Structure of the AllegroHand class.

Fig. 4. Main control loop for the real and the simulation case.

the CAN AH class for communication and finds the available
controllers. The controlLoop reads current joint configurations,
executes the current controller and sends the desired torques
to the Allegro Hand. The controlLoopFake executes the fake
controller, ensuring the desired torques are within the limits
of the simulated hand (see Fig. 4).

The AllegroHand key functions include:
• Control algorithms. It allows users to obtain a list of

the available controllers, set the desired controller, get
the current controller and obtain joint position errors.
It can also get and set the hand gravity vector, used to
calculate the necessary torque to compensate the gravity
effect, considering the hand orientation. This feature is
important when the hand is installed on a robot arm
whose movement affects the hand gravity vector. When
switching the controller, the previous controller instance
is deleted, ensuring efficient memory management.

• Hand configuration. It allows to obtain the current joint
positions and set the desired ones. It can read YAML
files with predefined configurations, list all saved config-
urations, temporarily add and delete configurations from
the list, permanently store a configuration into the desired
YAML file and move the hand to a new or a predefined
configuration, among other functionalities.

• Grasps modes. It allows to move the hand to a predefined
grasp configuration along a given trajectory. Additionally,

it can read and store trajectories to perform different grasp
types from YAML files.

• Forward and Inverse Kinematics. These functions com-
pute the FK and the IK of the hand. Moreover, there is a
function to obtain the Jacobian, which uses the kinematic
chain built from the URDF model using the KDL library.

• Joint limits. A program, calculate joint limits, has been
developed to store in a YAML file the read minimum
and maximum real joint values. The problem of the
discrepancies in the joint limits between the manufactured
hands and the official URDF limit values has been
solved by changing the URDF limits using the empirical
read values from version 4, which exhibit consistency
across manufactured hands. For earlier AH versions, the
program can also adjust the encoderOffset values in the
hand configuration file to minimize limit differences and
center the range. The developed software accounts for
both the URDF limits and the real limits from the YAML
file, including a safety margin. Functions are provided to
obtain joint limits, set a safety margin (by a general value,
percentage, or specific value for each joint), and choose
whether to apply the safety margin.

The software allows to test the AH driver and the AH library
through a set of example files located in the examples folder.
To initialize the AH, it is required the hand configuration file,
located in the conf folder among other useful YAML files that
contain information of the controller parameters, the URDFs,
a set of predefined joint positions and predefined grasps and
the actual joint limits of each tested hand.

B. Poses and Configurations

The developed software allows to move the hand to a desired
configuration and to store the current configuration. During the
hand movement, it checks whether the Gravity Compensator
or the Torque controller are being used, if so, it switches to
a PID controller. Additionally, users can manually adjust the
hand to a desired configuration and store it using the Gravity
Compensator controller.

The analogous physical configurations for the right and the
left hands do not correspond to the same joint values due to
differences in joints 0 of the IMA fingers. These discrepancies
are accounted for, and, upon saving a hand configuration,
the corresponding appropriated configuration for the opposite
hand is calculated and stored.

C. Grasping Modes

Several grasping types are pre-programmed as list of con-
figurations in a YAML file. Whenever a hand trajectory is
saved, the analogous trajectory for the opposite hand is also
stored. Grasps can be stored in two ways. The first way
is as follows, the software allows to move the hand to a
configuration at a desired speed, ensuring all fingers reach
the final position simultaneously. It calculates the difference
between current and final desired joint values, using the largest
difference to determine the number of intervals needed to reach
the final hand configuration at the desired speed, considering

the sample period. Then it computes the differential values
for each joint, creating a list of interpolated configurations
between the initial and final configurations. The second way
to generated a grasp is by recording the positions of hand
being manually manipulated.

A selection of grasps that allow in-hand manipulation,
specifically all types of prismatic precision grasp [4], have
been already implemented.

D. Validation
The C++ software, the ROS Noetic and the ROS Humble

packages have been tested with various Allegro Hands, in-
cluding models R283 and R284 from version 4, as well as
SAH020AL011 and SAH020BR014 from version 2. Videos il-
lustrating the use of the developed C++ and ROS Humble pack-
ages are available in https://sir.upc.edu/projects/allegro hand.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents the implementation of a fully devel-
oped C++ software package to improve and facilitate the use
of robotics hands, and in particular, the AH. It provides
crucial functionalities and simplifies integration with other
frameworks, laying a solid foundation for future work in
grasping research. It also facilitates the addition of new
functionalities within the software, such as an specialized
controller to enhance grasping capabilities, which is currently
under development. Furthermore, the software is designed
to be easily integrated with packages containing customized
controllers, thus eliminating the need to allocate the controller
within the package.

To promote integration with other manipulator robots and
sensors, packages in ROS 1 (Noetic) and ROS 2 (Humble),
that use the C++ software, have been created. Currently, the
integration of the AH with robots, like MADAR [5], is
being developed using the ROS framework. Additionally, a
C++ driver for the Weiss tactile sensors and its ROS framework
is also being developed.

Future work consists in connecting the arms and the sensors
with the AH in order to implement force-controlled grasps,
thereby fully exploiting the hand functionalities. Additionally,
the software is designed to be compatible with other robotic
hands with similar configurations, such as the LeapHand [6].

REFERENCES

[1] I. Llop-Harillo, J. Iserte, and A. Pérez-González, “Benchmarking anthro-
pomorphic hands through grasping simulations,” 02 2022.

[2] R. Suárez and P. Grosch, “Dexterous robotic hand ma-i, sofware and
hardware architecture,” in Intelligent Manipulation and Grasping Inter-
national Conference, IMG’04, Jul 2004, pp. 91–96.

[3] W. Robotics. Programming guides — allegro hand. [Online]. Available:
https://www.allegrohand.com/programming-guides

[4] M. Cutkosky, “On grasp choice, grasp models, and the design of hands
for manufacturing tasks,” Robotics and Automation, IEEE Transactions
on, vol. 5, pp. 269 – 279, 07 1989.

[5] R. Suárez, L. Palomo-Avellaneda, J. Martı́nez, D. Clos, and N. Garcı́a,
“Manipulador móvil, bibrazo y diestro con nuevas ruedas omnidirec-
cionales,” Revista Iberoamericana de Automática e Informática industrial,
vol. 17, no. 1, pp. 10–21, 2020.

[6] K. Shaw, A. Agarwal, and D. Pathak, “Leap hand: Low-cost, efficient,
and anthropomorphic hand for robot learning,” Robotics: Science and
Systems (RSS), 2023.

