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Abstract. Fast and accurate contact estimation during assembly operations is an important

requirement to guarantee successful executions using �ne-motion planners. In this context, learning

methods provide an attractive alternative to complicated analytical approaches. In order to generate

examples of correct contact classi�cations for the learning process, a method has been developed.

Then, starting from a data base of examples, three inductive learning approaches have been followed:

backpropagation nets, radial basis function nets and classi�cation trees. The comparisonbetween the

approaches is made based on the following criteria: accuracy, convergence speed, on-line estimation

speed, compactness of representation, ease of use, and the possibility of interpretation.
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1. INTRODUCTION

Assembly is a typical �eld of robot applications

where contact between the manipulated object

and the environment must be taken into account,

specially due to the geometric uncertainty a�ect-

ing the position of the objects.

A �rst solution to deal with geometric uncer-

tainties in assembly has been the use of passive

compliance [34], successfully applied in industrial

tasks. A second and more general solution is the

use of active compliance, which avoids the lack

in exibility of the passive devices [17]. Never-

theless, the use of active compliance leads to two

other problems which must be properly solved:

� the control of the reaction force/torque be-

sides the position/orientation control of the

gripper.

� the determination of a strategy or plan to use

reaction force/torque information as a guide

to perform the assembly despite geometric

uncertainty.

These two problems are not completely disjoint;

in fact, there exist some approaches (e.g. reactive

control [10] [21] and speci�c compliance matrix

generation [26] [12]) including the strategy in the

controller behaviour level. On the other hand,

several approaches build a plan independently of

the control solution [15] [5] [7] [29], determining
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a proper robot command to proceed the assembly

from any task state. These last approaches must

be able to (�gure 1):

� identify the current task state by using infor-

mation from sensors,

� determine a proper robot command (opera-

tor) to successfully proceed the task from the

current state.

This paper is related to the �rst of these two

points, which is usually treated considering sens-



ing information describing the gripper con�gu-

ration (position and orientation) and the gener-

alized reaction force (force and torque) between

the objects. Task states are de�ned here as the

di�erent contact situations between the objects

to be assembled (i.e. the possible di�erent sets

of basic contacts) [30]. Previous works in this

line are mainly based on the on-line execution

of test movements to disambiguate contact situa-

tions [27] but they may change the task state in an

undesired way, or on geometric reasonings [9] [35]

by considering the models of the objects and the

di�erent sources of uncertainty. A new approach,

including learning techniques, has been presented

in [31], where its advantages and disadvantages in

comparison with an analytical geometric approach

are discussed. As a further step, in this paper, a

comparison of three di�erent learning techniques

applied to the estimation of the current contact

situation between the objects is presented, includ-

ing some experimental results.

The rest of the paper is organized as follows: sec-

tion 2 describes the framework and assumptions;

section 3 presents three learning techniques and

its experimental results; in section 4 a discussion

and comparison of these techniques is presented

and, �nally, section 5 summarizes the conclusions

of the work.

2. FRAMEWORK

The Task

The experiments have been performed over a

problem with three degrees of freedom: the po-

sitioning of a block into a corner. Accepting that

the block can be positioned closed enough to the

corner by gross motion, nine di�erent contact sit-

uations can be reached according to the nominal

models of the objects (�gure 2). The exact con-

�gurations in which each situation can be reached

depend on the deviations of geometric character-

istics: object shape and size, robot positioning,

and undesired slippings of the object in the robot

gripper. The e�ect of these sources of geomet-

ric uncertainty on the contact con�gurations has

been modeled in [2], and the e�ect produced on

the possible reaction forces is analyzed in [28].

From these models, a three degrees of freedom

task simulator has been implemented, with the

capability of showing the task evolution in the

physical, the con�guration and the force spaces

simultaneously, considering uncertainty and fric-

tion forces [20].
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Figure 2 Possible nine nominal states.

Generation of training and test sample sets

The data sets of training and test data have been

generated with the above simulator.

Any parameter subject to uncertainty is consid-

ered to have a uniform probability density func-

tion. In the same way, any random choice is

equiprobable.

A state-sample is composed by three con�guration

data (x

0

, y

0

, �

0

), three force data (fx

0

, fy

0

, �

0

)

and the corresponding task state label number.

Generation of the con�guration

Instances of the deviations of all the parameters

subject to uncertainty are randomly chosen and

the actual C-surfaces for each basic contact are

determined.

For one basic contact: �rst, an orientation �

0

and

then a point (x

0

, y

0

, �

0

) of the segment repre-

senting the section of the C-surface for � = �

0

are

randomly chosen.

For two basic contacts involving di�erent contact

edges: �rst, an orientation �

0

is randomly chosen,

and then the intersection point (x

0

, y

0

, �

0

) of the

two segments representing the sections of the C-

surfaces for � = �

0

is computed.

For two basic contacts involving the same contact

edge: �rst, the orientation �

0

for which the C-

surfaces of both basic contacts intersect is com-

puted and then a point (x

0

, y

0

, �

0

) of the segment



representing this intersection is randomly chosen.

For four basic contacts:

� One of the four possible states of three basic

contacts is randomly chosen (due to devia-

tions the nominal four contact goal state will

rarely appear; instead any non-nominal three

contact state will be considered as goal state).

� One of the two edges of the corner as the

edge involved in two basic contacts is ran-

domly chosen.

� The orientation �

0

that allows two basic con-

tacts involving the edge selected in the previ-

ous step is computed.

� The pair (x

0

, y

0

) for which the con�guration

(x

0

, y

0

, �

0

) corresponds to three basic con-

tacts is computed.

Generation of the reaction force

Once a contact con�guration has been deter-

mined, a random reaction force is equiprobably

selected between all the possible reaction forces

compatible with the contact con�guration. First

the direction (from now direction meaning direc-

tion and sense) of the generalized reaction force is

determined considering unitary module; then the

actual module is randomly chosen within a prede-

�ned range.

For one basic contact:

� The two generalized forces bounding the gen-

eralized friction cone for the actual contact

con�guration are computed.

� A direction within the generalized friction

cone is randomly chosen.

For two or three basic contacts:

� The two generalized reaction forces bounding

the friction cone of each basic contact in the

actual contact con�guration are computed.

� Directions of the generalized force space are

randomly chosen (Appendix A) until one se-

lected direction can be expressed as a linear

combination with positive coe�cients of the

directions computed in step 1.

For more than three basic contacts: A subsets of

three contacts is randomly chosen and the previ-

ous algorithm is applied.
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Figure 3 A backpropagation neural net to

estimate the contact state. The

competitive layer selects the neuron

with the highest output. Each output

neuron represents a contact state.

General Considerations

The main priority of the classi�cation algorithm is

not to confuse non-contiguous states, that is states

such that movement from one to another requires

crossing some other state. The reason is that

the transition operators of contiguous states likely

make the task evolve in a similar way, whereas

two non-contiguous states usually not; therefore,

in the latter case a confusion is much worse than

in the former.

A confusion matrix will be generated to evaluate

the classi�cation results (table 1 shows the conti-

guity of the confusion matrix elements).

3. LEARNING METHODS FOR

CONTACT IDENTIFICATION

Backpropagation Neural Nets

According to the connections among the neurons,

arti�cial neural nets (ANN) are classi�ed into

feedforward nets and recurrent nets. The multi-

layer perceptron (MLP) net is one of the most

important types of the class of feedforward nets.

Since in most cases an MLP is trained using a

1 2 3 4 5 6 7 8 9

1 . c n n n n n c c

2 c . c n n n n n c

3 n c . c n n n n c

4 n n c . c n n n c

5 n n n c . c n n c

6 n n n n c . c n c

7 n n n n n c . c c

8 c n n n n n c . c

9 c c c c c c c c .

Table 1 Contiguity of the confusion matrix

elements. A `c' means the states are

contiguous, a `n' means the states are

non-contiguous.



backpropagation algorithm or its variants, it is

also called a backpropagation net.

A backpropagation net features a layered struc-

ture and has weighted feedforward connections

only between neurons in the adjacent layers. It

is composed of a layer of input nodes, one up to

several hidden layers of neurons and an output

layer of neurons (�gure 3). Each neuron in the

network takes as input the sum of the weighted

outputs from other neurons connected to it, and

then passes the value through a nonlinear func-

tion. Typical examples for such function are a

sigmoid and a hyperbolic tangent function, which

are also used in our approach.

One of the most important properties of back-

propagation nets relevant to the problems of clas-

si�cation and identi�cation is the so-called uni-

versal approximation [13], which means that with

enough but �nite number of hidden neurons there

always exist a set of weights such that the network

can approximate any nonlinear function to a de-

sired accuracy. Since any classi�cation problem

can be considered as a multi-input multi-output

function approximation problem, this property

virtually provides a theoretical foundation for us-

ing backpropagation nets to solve the problem of

assembly contact estimation.

The backpropagation net is one of the earliest and

most extensively studied networks in the arti�cial

neural network �eld. It has been very successfully

used in applications of nonlinear system identi�ca-

tion and control [18][11], function approximation

and various classi�cation problems [14]. The use

of a backpropagation net for a particular classi-

�cation problem, needs a reasonably large set of

training data which is composed of inputs and the

corresponding desired outputs and a set of test

data which is used to validate the network after

training. It is also necessary to know the relative

complexity of the given problem in order to come

up with a network with an appropriate number

of hidden neurons, while the number of hidden

layers is normally chosen to be one or two. The

number of hidden neurons is very important since

if it is too small, the network will not be power-

ful enough to solve the problem, while if it is too

large, the network will have the so-called gener-

alization or over-�tting problem, i.e., the network

�ts well on the training set but very poor on the

test set. Presently there is no systematic method

to predetermine the number of hidden neurons, so

the trail-and-error method is usually used.

Results for the backpropagation net

For the application mentioned above, the neural

net has 6 inputs (con�guration and force compo-
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Figure 4 Evolution of the classi�cation error

during the learning process of a

backpropagation net on the training

set (full line) and on the test set

(dotted line).

nents) and 9 outputs (one for each state). The

classical backpropagation algorithm was used,

modi�ed with momentum and a variable learning

rate [33]. The networks were initialized with the

Nguyen-Widrow initialization method [19]. Net-

work with various number of hidden neurons were

trained in order to �nd a network with the best

generalization capability. MATLAB's neural tool-

box [8] was used for this part of the experiment.

Best results on the test set were obtained us-

ing a single layer, 15 hidden neurons with hyper-

bolic tangent activation function, and linear out-

put neurons. In this case, the misclassi�cation

rate on an independent test set was 3.2%. Fig-

ure 4 shows the misclassi�cation errors on training

and test set, during the learning process. Table 2

shows the confusion matrix on the independent

test set.

Radial Basis Function Neural Nets

% 1 2 3 4 5 6 7 8 9

1 96.3 0.0 0.0 0.0 1.3 0.0 1.8 0.0 0.0

2 0.0 100.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0

3 0.0 0.0 96.3 0.0 0.0 2.8 0.0 0.0 0.0

4 0.0 0.0 0.0 98.7 1.3 0.0 0.0 0.0 0.0

5 3.7 0.0 0.0 1.2 97.4 0.0 0.0 0.0 1.8

6 0.0 0.0 3.7 0.0 0.0 91.8 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 98.2 0.0 3.5

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 7.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87.7

Table 2 The confusion matrix calculated on a

test set, using a trained

backpropagation net, with 15 hyperbolic

tangent hidden neurons and 9 linear

output neurons. The columns represent

the true states, the rows give the output

of the classi�er. The classi�cations are

reported in percentages.
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Figure 5 The structure of a RBF neural net.

A Radial Basis Function (RBF) net is yet another

feedforward type of neural net and is attracting

more and more attention from researchers for its

unique properties in solving problems like func-

tion approximation, prediction and classi�cation.

A RBF neural net [4] is a two-layer feedforward

network with the �rst layer of RBF neurons and

the second layer of linear neurons as shown in �g-

ure 5. Adjustable weights among the neurons only

exist from the neurons in the �rst layer to those

in the second layer. The inputs are directly con-

nected to the neurons in the �rst layer via unity

weights.

Referring to �gure 5, the ith RBF neuron in the

�rst layer has the following transfer function

z

i

(x) = r(jjx� p

i

jj=�

i

); (1)

where z

i

(x) is the ith output of the neuron in the

�rst layer. The argument x is the input vector

of the form x = [x

1

x

2

� � � x

q

]

T

; r(�) is a ra-

dial basis function; p

i

, �

i

(a positive scalar

1

) are,

respectively, the center and the width for the ith

RBF neuron. p

i

; �

i

may be di�erent for di�erent

neurons. Finally, the operator jj � jj denotes the

standard vector norm.

Denoting by y

i

the output of the ith linear neuron

in the second layer, and assuming that the number

of RBF neurons is n, its transfer function is simply

the weighted sum of the outputs from the �rst

layer

y

i

=

n

X

j=1

w

ij

z

j

(x);

where y

i

; w

ij

2 IR. The equation above clearly is

a linear operation. For m such linear neurons, the

following matrix expression can be written in

y = Wz(x); (2)

where y = [y

1

y

2

� � � y

m

]

T

2 IR

m

; z(x) =

1

In general, �

i

need not be a scalar. It can be a vector

or even a matrix as in [24] [16].

[z

1

(x) z

2

(x) � � � z

n

(x)]

T

2 IR

n

and W 2 IR

m�n

with w

ij

being the ijth element of W .

For the sake of de�niteness, we shall choose the

RBF function r(�) to be the Gaussian function,

shown in �gure 6 of the form

z

i

(x) = e

�jjx�p

i

jj

2

=�

2

i

; (3)

where the parameters p

i

; �

i

are termed, respec-

tively, the center and the standard deviation of

the Gaussian function. �

i

is also called the spread

parameter.

Using the preceding notations, the universal ap-

proximation property of RBF neural nets can be

stated speci�cally as follows. With an appropri-

ate, but �nite, number of RBF neurons in the

�rst layer and a proper setting of the parameters

p

i

and �

i

, there exists a weight matrix

�

W such

that the neural net with

�

W can approximate, to

an arbitrary precision, any continuous nonlinear

function on a compact set (bounded and closed)

[22]. This property is seen as a justi�cation for

RBF neural nets to be used as a generic model

structure for classi�cation problems. Another im-

portant feature of RBF nets is their linear-in-the-

weights type of structure as shown in (2). This

structural feature allows to separate the setting of

the structural parameters n, p

i

and �

i

from that

of the weight matrix W .

Quite a few learning algorithms exist for the deter-

mination of the structural parameters (n, p

i

and

�

i

) and the weight matrixW , and basically, these

algorithms can be classi�ed into two categories.

One class of algorithms perform the design task

in two steps; �rst determine the structural pa-

rameters in some way (e.g. random selecting from

the data points, using a clustering method, or us-

ing the spatial Fourier transform theory [25]) and

then calculate the weight matrix using, e.g., error

model based method [32]. The other class of algo-

rithms integrates the determination of the struc-

tural parameters and the weight matrix in one

process. Examples of these type of algorithms are

the Orthogonal Least Squares (OLS) learning al-

gorithm [6] and the Resource-Allocating Network

(RAN)[23]. In this work, the OLS learning al-

gorithm (Appendix B) has been adopted for the

RBF net.

Results with RBF nets

The only design parameter as input of the algo-

rithm described above, is the spread parameter �

i

in equation 3. If the spread is chosen too small,

the network will not generalize enough. If the

spread is chosen too large, many RBF neurons

will respond essentially in the same way, which

makes the output less dependent of the input.



Figure 6 A typical activation function for a

radial basis function net: the Gauss

function z

i

(x) = e

�jjx�p

i

jj

2

=�

2

i

for

x = [x

1

; x

2

]

T

state average distance minimum distance

1 0.38 0.088

2 0.36 0.089

3 0.31 0.080

4 0.47 0.106

5 0.48 0.099

6 0.45 0.085

7 0.46 0.093

8 0.45 0.091

9 1.61 0.207

Table 3 Average and minimum distance between

points of a same state. At this stage

the numbers are considered to be

dimensionless.

This will result in a poor approximation of the

training data.

We can choose an initial value for the spread pa-

rameter in the following way. The spread pa-

rameter must be larger than the minimum dis-

tance between any arbitrary pair of data points

in the input space, belonging to the same state

(see table 3). The spread parameter should also

be of the same order of magnitude than the aver-

age distance between any two points of the input

space, belonging to the same state. The spread

parameter should be much smaller than the max-

imum distance between any two data points. The

maximum distance between two data points is 5.

If other units are used for force or con�guration

space, the network must be retrained, and the

spread parameter will have to be optimized again.

Having obtained a rough value for the spread in

this way, we further optimized this parameter in

an experimental way as shown in table 4 and in

�gure 7 that report the classi�cation results. The

minimum misclassi�cation error on the test set is

2.8%. Table 5 shows the confusion matrix.

spread

class. error

train. set

class. error

test set

no epochs

total

epoch min

test set

0.1 0.0030 0.073 478 300

0.3 0.0030 0.034 449 100

0.5 0.0020 0.029 562 90

0.9 0.0020 0.028 635 100

1.1 0.0020 0.028 653 120

1.3 0.0020 0.035 655 110

1.5 0.0020 0.0389 699 90

Table 4 Spread parameter (column 1), the

classi�cation error (column 2) on the

training set after the number of epochs

(column 4), the smallest classi�cation

error on the test set (column 3) that

occurred after the number of training

epochs listed (column 5).
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Figure 7 Classi�cation error on the test set as a

function of the spread design

parameter.

Figures 8 and 9 show that typically the sum-

squared error and the misclassi�cation error on

the training set can continuously be reduced,

whereas the errors on the test set have a clear

minimum.

Classi�cation Trees

A classi�cation (decision) tree is another interest-

ing approach to the problem of contact estimation.

Figure 10 shows an example of a simple classi�-

cation tree. It represents a deterministic mapping

Y = T (X) from a set of feature vectors X to a set

of classes Y . This classi�cation tree is a binary

tree but not necessarily balanced. A test, based

on a single feature vector, is associated to every

non-terminal node. This test is also called the

split criterion. Each terminal node is associated

with a target class.

Algorithms to build the trees from data are de-

scribed in [3] which solve the following problems:

(1) how to �nd good splits, (2) when to stop split-

ting and (3) how to assign a class to a termi-

nal node. A tree is built by repeated splitting

of a data set into subtrees. A criticism to this
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approach is that the split criteria are optimized

at every step; but the splits are not overall op-

timal. However, by continuously splitting a tree,

it is very easy to obtain accurate results on the

training set; but generalization is not straightfor-

ward. In order to solve this problem, a pruning

phase is introduced after the building phase. In

the pruning phase, the tree is explored bottom

up, and every inner node is eliminated if the error

on independent data set doesn't increase. For a

fair comparison, the training set used for the ANN

approach must still be split up into a training set

and a pruning set for the tree approach. Refer to

[3] and [1] for details on the algorithms used.

Results with classi�cation trees

Using the classi�cation tree approach, (without

any tuning of parameters), an accuracy of 98% is

obtained on the training set, and an accuracy of

84% on the test set. The trees has typical 400

nodes, with the longest path of 21. Table 6 shows

an example of a confusion matrix obtained with

classi�cation trees.

4. COMPARISON

The nature of the three learning approaches dis-

cussed in section 3 has important di�erences:

the activation functions of RBF nets act locally,

whereas the activation functions of backpropaga-

tion nets are not localized (i.e. they are `open').

With respect to this point, classi�cation trees are

closer to backpropagation nets. It is not imme-

diately clear which approach could be the best

for this application. Therefore, a comparison has

been made using the following criteria: (1) the

accuracy on the test set, (2) the speed of con-

vergence, (3) the on-line estimation time, (4) the

compactness of representation, (5) the ease of use,

(6) the possibilities of interpreting the classi�er

% 1 2 3 4 5 6 7 8 9

1 97.5 0.0 0.0 0.0 1.3 0.0 1.8 0.0 0.0

2 0.0 98.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 96.2 0.0 0.0 5.6 0.0 0.0 0.0

4 0.0 0.0 0.0 98.7 0.0 0.0 0.0 0.0 0.0

5 1.3 0.0 0.0 1.3 98.7 0.0 0.0 0.0 3.4

6 0.0 1.3 2.5 0.0 0.0 94.4 0.0 0.0 0.0

7 1.2 0.0 0.0 0.0 0.0 0.0 98.2 0.0 1.8

8 0.0 0.0 1.3 0.0 0.0 0.0 0.0 98.4 8.8

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 86.0

Table 5 The confusion matrix calculated on a

test set using a trained RBF network

(with as spread parameter 0.9). The

columns represent the true states, the

rows give the output of the classi�er.

The classi�cations are reported in

percentages.



% 1 2 3 4 5 6 7 8 9

1 93.8 1.8 0.0 0.0 0.0 0.0 1.2 14.3 0.0

2 2.5 90.9 13.8 0.0 0.0 0.0 0.0 1.3 0.0

3 0.0 1.8 65.0 9.6 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 21.2 71.2 8.8 1.6 0.0 0.0 1.8

5 0.0 0.0 0.0 19.2 86.2 4.8 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 5.0 84.1 5.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 92.5 3.9 0.0

8 3.8 0.0 0.0 0.0 0.0 0.0 1.2 76.6 7.0

9 0.0 5.5 0.0 0.0 0.0 9.5 0.0 3.9 91.2

Table 6 Confusion matrix calculated on a test

set using classi�cation trees: the

columns represent the true states, the

rows give the classi�cation that the

classi�er makes. The classi�cations are

reported in percentages.

and (7) the extendability to more complex tasks.

The results are summarized in table 7.

The training set contained 1000 examples. RBF

nets gives the best classi�cation accuracy (97.2%),

calculated on an independent test set of 600 ex-

amples, closely followed by backpropagation nets

(96.8%). The classi�cation trees perform worst

(84%).

RBF nets generally require a smaller number of

training epochs than backpropagation nets do.

However, the particular algorithm used here for

training RBF nets is very slow, because the op-

timization strategy to determine the clusters cen-

ters described in appendix B is very time consum-

ing. Using an HP-9000 workstation, the average

convergence times were 8 hours for a backpropa-

gation net, 18 hours for a RBF-net, and 1/3 hour

for a classi�cation tree. The trees were imple-

mented in C, and they work remarkably fast and

are therefore very handy to experiment with for

various data sets.

As the trained classi�ers are used on-line, it is

also important to compare the estimation time,

i.e., the time necessary to determine the contact

state, given the con�guration and the generalized

force. The following comparison is valid assuming

software implementation of all classi�ers. Classi-

�cation trees are the fastest as they need to eval-

uate a maximum of 20 inequalities. RBF nets

require more time than backpropagation nets, be-

cause they have more neurons (120 versus 15). All

these learning approaches have better estimation

times than the analytical approach [31]. This real-

time aspect is also related to the compactness of

representation. As memory requirement is not a

problem for the application, the compactness of

representation is only important with respect to

the generalization capability.

The design of a RBF net is easier than the de-

Comparison BP-ANN RBF-ANN TREE

accuracy 2 1 3

convergence speed 2 3 1

estimation speed 2 3 1

compactness 1 3 2

interpretability 3 1 2

ease in use 3 2 1

extendability 3 2 1

Table 7 The three classi�cation methods are

compared: an entry `1' corresponds to

the best method.

sign of a backpropagation net. Using the meth-

ods described above, only the value of the spread

parameter must be optimized. A rough value for

this parameter can even be estimated from the

training data. For a backpropagation net more

trials are necessary to determine an appropriate

network topology. For some topologies, the learn-

ing algorithm didn't even converge. The easiest

and most robust method clearly is the classi�ca-

tion tree approach. The user only needs to choose

non critical values concerning the desired accu-

racy, maximumtree dimension and one of the pos-

sible alternative algorithms. Even the �rst trial is

successful.

For tasks involving more tasks states (more out-

puts) or more degrees of freedom (more inputs),

the dimension of the problem increases, and so

the complexity of the classi�er also increases. The

classi�cation tree seems the approach more easily

extendable to higher dimensionality.

A �nal aspect of comparison is the possibility of

interpreting the resulting classi�er. With RBF

nets it is possible to interpret the cluster centers

as characteristic points in the feature space. The

decision trees can be displayed graphically. Inter-

pretation of the split criteria (as shown in �gure

10) is possible. The weights of a backpropagation

net are almost impossible to interpret.

5. CONCLUSIONS

The execution of �ne-motion plans requires the

estimation of the current contact state in order

to determine the robot commands to apply. The

learning approach has shown as an e�cient way

to contact estimation. A procedure has been de-

veloped to gather, in an automated way, a set

of examples to learn from. Three learning ap-

proaches for this application has been compared:

backpropagation nets, RBF nets and classi�cation

trees. RBF nets are more accurate in contact es-

timation, and are easier to design than backprop-



agation nets. However, RBF nets require most

computing time for real-time contact estimation.

Classi�cation trees are even easier to use and more

robust in convergence than RBF nets. Classi�ca-

tion trees are additionally very fast for real-time

estimation. However, their generalization capabil-

ities are bad in comparison with neural nets. If the

accuracy is enough for the application, classi�ca-

tion trees seem to be the more promising approach

for the integration of the classi�er into a �ne-

motion planner because of its estimation speed,

robustness, ease of use and extendability.

*

APPENDIX A: EQUI-PROBABLE GENERA-

TION OF A 3D DIRECTION The problem of

randomly generating with a uniform probability

density function a direction of the generalized

force space is equivalent to the equiprobable se-

lection of a point s = (�; �) on the unit sphere,

which can be described as:

x = sin(�)cos(�) 0 � � < 2�

y = sin(�)sin(�) 0 � � � �

z = cos(�)

The probability density function of the spheric co-

ordinates, p(�) and p(�), to be used for selecting

the point, can be obtained from the uniform prob-

ability density function p(s) desired for the sphere

surface.

Let ds = sin(�)d�d� be a di�erential of surface.

Since

R R

sphere

p(s)ds = 1, then p(s) =

1

4�

and

p(s)ds =

1

4�

sin(�)d�d�.

p(�)d� and p(�)d� can be obtained by integrating

p(S)dS over a curve of constant � and constant �,

respectively:

p(�)d� =

R

2�

0

(

1

4�

sin(�)d�)d� =

1

2

sin(�)d�

p(�)d� =

R

�

0

(

1

4�

sin(�)d�)d� =

1

2�

d�

Therefore to uniformly select a point on the unit

sphere, it is necessary to select the spheric co-

ordinates � and � with probability density func-

tions p(�) =

1

2�

and p(�) =

1

2

sin(�) in the ranges

0 < � < 2� and 0 < � < �.

*

APPENDIX B: OLS LEARNING ALGORITHM

The Orthogonal Least Squares learning algorithm

integrates the determination of the structural pa-

rameters and the weight matrix in one process [6].

It is �rst assumed that out of N given data, a

number of M inputs have been selected as the

centers for the RBF net and all the centers have

a known constant as their widths, then we have

d = P�+E; (4)

where d = [d(1) � � �d(N )]

T

, P = [p

1

� � �p

M

],

p

j

= [p

j

(1) � � �p

j

(N )]

T

, � = [�

1

� � ��

M

]

T

, E =

[�(1) � � ��(N )]

T

, in which d(i) is the desired out-

put of the ith training sample (suppose there is

only one output neuron), p

j

(i) is the output of the

jth RBF neuron when the input of the network

is the ith sample, �

j

is the weight from the jth

RBF neuron to the output neuron, �

i

is the mod-

eling error for the ith sample, and i = 1; 2; � � � ; N ,

j = 1; 2; � � � ;M .

With these notations, it can be immediately seen

that the Least Squares solution

^

� to (4) is the pro-

jection of d onto the space spanned by the vectors

p

1

� � �p

M

. Since these vectors fp

i

g are generally

correlated, it is not clear how an individual vector

contributes to the �nal solution.

The OLS method proceeds by performing the fol-

lowing transformation to the matrix P

P =WA; (5)

where A is an M �M triangular matrix with 1's

on the diagonal and 0's below the diagonal andW

is an N �M matrix with orthogonal columns w

i

such that

W

T

W = H; (6)

where H is diagonal with elements h

i

.

The space spanned by the set of orthogonal basis

vectors w

i

is the same space spanned by the set

of p

i

, and (4) can be rewritten as

d = Wg +E: (7)

Then the orthogonal LS solution ĝ is given by

ĝ = H

�1

W

T

d (8)

or

ĝ

i

= w

T

i

d=(w

T

i

w

i

); 1 � i �M: (9)

Vectors ĝ and

^

� satisfy the triangular system

A

^

� = ĝ:

As stated earlier, this orthogonal LS solution de-

pends on the predetermined set of M centers out

of the N training samples, which is not necessarily

the best one. In the following a recursive method

for picking up the M optimal centers is described.

To proceed, from (7),

d

T

d =

M

X

i=1

g

2

i

w

T

i

w

i

+ E

T

E: (10)



Thus g

2

i

w

T

i

w

i

is the increment to the desired out-

put introduced by w

i

, and an error reduction ratio

due to w

i

can be de�ned as

[err]

i

= g

2

i

w

T

i

w

i

=(d

T

d); 1 � i � M: (11)

Since this ratio o�ers a simple and e�ective means

of seeking a subset of signi�cant samples as cen-

ters, the algorithm is as follows:

� At the �rst step, for 1 � i � M , compute

8

>

>

<

>

>

:

w

(i)

1

= p

i

g

1

(i) = (w

(i)

1

)

T

d=((w

(i)

1

)

T

w

(i)

1

)

[err]

(i)

1

= (g

(i)

1

)

2

(w

(i)

1

)

T

w

(i)

1

=(d

t

d)

:

Find

[err]

(i

1

)

1

= max

1�i�M

f[err]

(i)

1

g

and select

w

1

= w

(i

1

)

1

= p

i

1

:

� At the kth step where k � 2, for 1 � i � M;

i 6= i

1

; � � � ; i 6= i

k�1

; compute

8

>

>

>

>

<

>

>

>

>

:

�

(i)

jk

= w

T

j

p

i

=(w

T

j

w

j

); 1 � j < k

w

(i)

k

= p

i

�

P

k�1

j=1

�

(i)

jk

w

j

g

k

(i) = (w

(i)

k

)

T

d=((w

(i)

k

)

T

w

(i)

k

)

[err]

(i)

k

= (g

(i)

k

)

2

(w

(i)

k

)

T

w

(i)

k

=(d

t

d)

:

Find

[err]

(i

k

)

k

= max

1�i�M;i 6=i

1

;���;i 6=i

k�1

f[err]

(i)

k

g

and select

w

k

= w

(i

k

)

k

= p

i

k

�

k�1

X

j=1

�

jk

w

j

;

where �

jk

= �

(i

k

)

jk

; 1 � j < k:

� The procedure is terminated at theM

s

th step

when

1�

M

s

X

j=1

[err]

j

< �;

where 0 < � < 1 is a chosen tolerance. This

gives rise to a subset model containing M

s

signi�cant centers.
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