
Knowledge-based Execution Configuration of
Behavior Trees⋆

Oriol Ruiz-Celada[0000−0002−6171−7270], Jan Rosell[0000−0003−4854−2370], and
Raúl Suárez[0000−0002−3853−7095]

Institute of Industrial and Control Engineering, Universitat Politècnica de Catalunya
Barcelona, Spain

{oriol.ruiz.celada,jan.rosell,raul.suarez}@upc.edu

Abstract. Automated planning is commonly used to obtain plans to
solve particular tasks. To execute the plans, Behavior Trees (BTs) have
emerged as a popular execution architecture due to their reactivity and
modularity. Configuring the execution of a plan into a BT requires ex-
panding high level actions into the proper BT structure. For this, the
use of pre-defined rigid templates is common. In this work, in order to
overcome the limitation of these methods, we present a new approach to
describe robotic behaviors using ontologies and to adapt BTs to current
specifications of the task and the world by reasoning on what modifiers
to their base template need to be applied. These modifiers and their
properties are formally defined using ontologies. We present a proof of
concept of these modifiers applied to a base BT of a Pick operation.

Keywords: Execution Configuration · Ontologies · Behavior Trees.

1 Introduction

In this work, we address the challenge of enabling robots to adapt their actions
to dynamic and unstructured environments. While off-the-shelf planners can
generate correct action sequences to solve particular problems, integrating acting
with planning remains of great interest. We refer to Execution Configuration as
a module that translates a high-level task plan into an execution structure that
the robot can perform.

Previous approaches to execution configuration have relied on either implicit
representations or fixed templates for each planned action, limiting adaptabil-
ity [1] [2] [3]. In contrast, we propose a method that offers greater flexibility in
how robotic behaviors can be represented, tailoring the execution to the specific
tasks and environment. Behavior Trees (BTs) offer a natural way of represent-
ing robot behaviors. Control nodes regulate the execution flow by combining

⋆ This work was supported by the European Commission’s Horizon Europe Frame-
work Programme with the project AI-Powered Manipulation System for Advanced
Robotic Service, Manufacturing and Prosthetics (IntelliMan) under Grant Agree-
ment 101070136



2 O. Ruiz-Celada et al.

the outcomes of child nodes, while leaf nodes represent primitive actions. The
modularity of BTs make them a suitable structure for the approach presented
in this work.

To represent domain knowledge, we employ ontologies, facilitating logical
reasoning and inference. We integrate the Planning Domain Definition Lan-
guage (PDDL) and BTs through ontology-based descriptions of robot behav-
iors, enabling richer representations and adaptability in execution configura-
tion than PDDL and BTs can represent on their own. The benefit of utilizing
a knowledge-based methodology allows for versatility and being able to work
across various domains, significantly expediting the development of new robot
functionalities [4]. The contributions of this work are:

• Novel characterization of domain and execution knowledge to define robot
behaviors integrating PDDL, BTs and ontological knowledge.

• Enhanced ontology-based description of robot behaviors, enabling a range of
variations of BT structures and avoiding relying only on predefined templates.

• Knowledge-driven dynamic generation of adaptive BTs for task plan Execution
Configuration, with reasoned incorporation of non-functional actions alongside
planned execution to include adaptive capabilities.

2 Framework Description

This paper contributes to the development of Be-Aware, an ontology-based
adaptive robotic manipulation framework [5]. Be-Aware is designed for dy-
namic environments and utilizes Knowledge Representation and Reasoning to
enable awareness of the surroundings. The framework allows planning actions
based on this awareness, monitoring their execution, and adapting to disruptions.
Be-Aware uses the proposed Execution Configuration module to generate BTs
adapted to the current scenario. These trees include monitoring and recovery
branches to facilitate adaptation to unexpected changes during execution.

The process to obtain the BT to execute to achieve a goal, called Output BT,
is illustrated in Figure 1. The Planning Design module automatically generates
the PDDL files to solve the task using the knowledge in the Knowledge Base.
An off-the-shelf PDDL planner is used to obtain a high-level Task Plan, e.g.
pick(rob1,can1,table1)→place(rob1,can1,table2). The Execution Con-
figuration module, detailed in the next section, acts as a bridge between task
planning and execution by producing the Output BT, relying on the Knowledge
Base to adapt BT templates to the current situation. The Output BT is executed
by a BT executor. This process can be repeated during execution, modifying the
PDDL files and generating a new Output BT in cases where disturbances require
replanning the current execution.

The Knowledge Base Manager, illustrated in Figure 1, governs the Knowl-
edge Base, essential for the framework’s functionality. It contains two types of
knowledge: Ontological Knowledge and Other Knowledge. A framework-specific
Be-Aware Ontology contains the definitions of the concepts required for Exe-
cution Configuration and the other modules in the framework. The user has to



Knowledge-based Execution Configuration of Behavior Trees 3

Planning
Design Task Planner Execution

Configuration BT ExecutorGoal PDDL
Files

Task
Plan

Output
BT

BE-AWARE Ontology

Knowledge Base Manager

Application Ontology Define the
 semantics

Instances and relations

BT Template
Library

PDDL
Domain

Other Knowledge Periodic
reasoning

Ontological Knowledge

Ontologies

Fig. 1: Top, Pipeline to obtain a configured Output BT using the Knowledge
Base. Bottom, Knowledge Base Manager and its knowledge.

define their own Application Ontology for the concepts and relations specific to
their scenario, allowing for different sources of knowledge tailored to the specific
scenario to be used for reasoning. A reasoner is used to continuously infer new
facts and relations. The Other Knowledge contains non-ontological data, like the
PDDL files for planning and the BT Template Library.

3 Execution Configuration Module

The Execution Configuration introduced in this work leverages semantic infor-
mation and reasoning to dynamically configure BT structures based on current
knowledge. For example, when executing a Pick action, the system may need to
assess whether an object can be grasped in its current position or needs to be
repositioned first. Numerous adjustments can be made to a Base Template of
a BT to better fit a specific problem instance, but the modifiers must be for-
mally specified and implemented. These modifiers are named “Flavors”, and are
formed by the following components:

• FlavorTargets: Parts of the Base Template affected by the Flavor, including
branches, nodes or parameter values.

• Trigger: Condition that determines whether the Flavor must be applied. For
instance, a Flavor that modifies the execution velocity may be applied if the
picked object belongs to the DangerousObject subclass. They are checked
through SPARQL queries to the Knowledge Base.

• Keyword: Type of the Flavor. Examples include IgnoreA for eliminating
behavior A, and DelayAUntilAfterB for sequencing A after B.

The Flavor approach allows adding flexibility and generality to the descrip-
tion of the behaviors that the robot can perform. Moreover, flavors can be used
to enable reasoned integration of monitoring and replanning branches into the
execution BT.

The Execution Configuration process is illustrated in Figure 2. It begins by
parsing each part of the Task Plan into a Seed, a structure formed by the behavior



4 O. Ruiz-Celada et al.

to be configured, (such as pick) and the parameters for the current plan (such as
rob1, can1, table1). The corresponding BT Base template is loaded. Then,
the flavors of the behavior are applied, modifying the final structure of the BT.
The parameters in the seed are instances of concepts in the Knowledge Base,
with a series of properties, and thus allowing the system to check if the flavor
triggers are active or not. After all the flavors have been applied, there may be
remaining Subtree calls that need to be expanded. New seeds are parsed, and
this process is repeated until all the leaves in the BT are BT Action Nodes.

B: Go To Pregrasp

B: Go To Grasp 

P: Open

P: Close

B: Lift Object

Pick

B: Select Tool
Primitive

Behavior

← Move

Place

...

←

Task Plan
Sequence

←

?

B: Object Clear?

B: Clear Object

P: Calc. Pregrasp Pose

P: Find Motion Plan

P: Execute Motion

? ←

B: Recovery

...

...

...

...

...

...

...

Task
Plan

... Omitted
Expansion

Create Task
Plan Sequence Parse Seeds Parse Seeds Parse Seedsgrow_subtree grow_subtree ...

1 2 3 2 23

Fig. 2: Execution Configuration pipeline (above), accompanied by an example
(below) of a configured Output BT (the BT has been simplified and not fully
expanded due to space constraints).

A library of Flavors has been developed to serve as a proof of concept and
illustrates the variety of possibilities of the proposed approach, and it can be
extended. Figure 3 shows an example of some of the flavors implemented mod-
ifying the template of the pick behavior. The approach allows for new Flavor
keywords to be added with relative ease, expanding the adaptation possibilities.

4 Conclusions and Future Work

Through this proposed method, it becomes possible to configure the execution
of plans encompassing manipulation, perception, navigation, monitoring, and
recovery within a BT. This adaptation to different scenarios is achieved through
reasoning and the application of Flavors to base templates. Our approach offers
the following advantages over existing ones:

• Consistency: Flavors ensure consistent application of modifications to BT
base templates.

• Scalability: Flavors allow for scalability in the amount of modifications ap-
plied to BT templates. Designing scenarios for modifications can become cum-
bersome with traditional methods, but flavors enable quicker and easier cre-
ation and assignment of modifications.



Knowledge-based Execution Configuration of Behavior Trees 5

B: Go To Pregrasp

B: Go To Grasp 

P: Open

P: Close

B: Lift Object

Pick

B: Select Tool
Primitive

Behavior

←

...

...

... Omitted
Expansion

replace selected_tool
=tiago gripper

reduce velocity -30%

1

3

2

4

kinematic 
restriction

object orientation
=upright

5
Dual-arm Pick
6

replace

Blackboard Operation

...

Flavor Description

1.If the robot has a hand, Delay Open until
after GoToPregrasp

2.If the object is small, Ignore
GoToPregrasp

3.If the robot only has one possible tool,
Replace SelectTool by directly setting
the tool in the BT

4.If the object is dangerous, Reduce veloc-
ity by 30%

5.If the object is a glass with liquid, add the
Kinematic restriction to be kept upright

6.If the object is heavy, Replace Pick by
Dual-arm Pick

Fig. 3: Flavors modifying an original Pick template, indicating the modifications
in red. The flavors would only be applied in case that their triggers are true.

• Generality: The approach enhances generality in behavior descriptions. Ba-
sic BT templates can be reused across different heterogeneous domains, with
adaptations made only through the design of different assortments of flavors.

Further research will focus on expanding available flavor keywords and en-
hancing their application, particularly in how multiple flavors interact. There
is also potential in using optimizing algorithms after applying the flavors to re-
fine the BT further. Additionally, the development of behaviors and flavors for
monitoring and recovery is planned, integrating them into BTs for robust task
execution. A current limitation is the reliance on available knowledge for trigger
checks, which may only be known during behavior execution. Future efforts will
explore reasoning techniques to detect triggers needing verification within the
BT itself and how flavors can be utilized in such cases. This work is currently
being implement to be validated in simulation and real-world scenarios.

References

1. Ruiz-Celada, O., Verma, P., Diab, M., Rosell, J.: Automating adaptive execution
behaviors for robot manipulation. IEEE Access, vol. 10, pp. 123 489–123 497, 2022.

2. Rovida, F. et al.: SkiROS—A skill-based robot control platform on top of ROS. Stud-
ies in Computational Intelligence. pp. 121-160 (2017). 10.1007/978-3-319-54927-9 4.

3. Beetz, M., Kazhoyan, G., Vernon, D., Member, S.: The CRAM Cognitive Architec-
ture for Robot Manipulation in Everyday Activities. April 2023. [Online]. Available:
https://arxiv.org/abs/2304.14119v1

4. Olivares-Alarcos, A. et al.: A review and comparison of ontology-based approaches
to robot autonomy. The Knowledge Engineering Review, vol. 34, 2019.

5. Ruiz-Celada, O., Dalmases, A., Suárez, R., Rosell, J.: BE-AWARE: an ontology-
based adaptive robotic manipulation framework. IEEE 28th International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), pp. 1–4 (2023)


