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ABSTRACT Robotic manipulation in semi-structured environments require perception, planning and
execution capabilities to be robust to deviations and adaptive to changes, and knowledge representation and
reasoning may play a role in this direction in order to make robots aware of the situations, of the planning
domains and of their own execution structures. This paper proposes an approach aimed at enhancing the
perception capabilities of robotic systems through the integration of various technologies. In particular, the
novelties of the proposed smart perception module include the combination of visual sensor data, object
detection, and pose estimation techniques, leveraging a fiducial markers and deep learning-based methods,
being able to integrate multiple sensors and perception pipelines. In addition, reasoning capabilities are
introduced through the utilization of ontologies. The result is a robust and smart perception system capable
of handling both simulated and real-world scenarios which in turn provides the required functionalities to
allow the robot to understand its surroundings, with a primary focus on robotic manipulation tasks. The
discussion on the tools used and the key implementation details are included, as well as the results in some
simulated and real scenarios that validate the proposal as a module that provides situation awareness to allow
a manipulation framework to adapt the robot actions to uncertain and changing scenarios.

INDEX TERMS Perception, situation awareness, robotic manipulation, reasoning, ontologies.

I. INTRODUCTION
As robotic systems evolve, they are increasingly being
deployed in dynamic, unstructured environments that require
advanced capabilities beyond simple observation and reac-
tion. Today robots are expected to understand, plan, andmake
decisions while adapting to changes in their environment.
This shift has produced a significant growth in the field
of cognitive robotics, which seeks to equip robotic systems
with a higher degree of autonomy and self-configuration
capabilities [1].

Cognitive robotics is about creating systems that can
reason, learn from experience, accumulate knowledge, under-
stand, and even exhibit social behavior to some degree.
In this context, perception is the link connecting the physical
world to the robot’s functionalities and forms the foundation
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of cognitive robotics: providing a smart perception systems
that transcend basic functionalities, will give a deeper
understanding of the world that may enable more intelligent
responses.

The current work proposes a smart and adaptable percep-
tion module that manages data from multiple vision sensors
in order to represent the robotic environment in a manner that
supports making reasoned deductions. This module serves
as a crucial subsystem within a broader autonomous robotic
framework, providing the necessary perceptual capabilities
for higher-level cognitive functions such as planning and
execution. Two distinct pipelines for interpreting environ-
mental data are implemented. The first one is a fiducial-based
pipeline using ArUco markers, that provides a simple yet
efficient mechanism for detecting and estimating the pose
of predefined marker tags. The second estimates 6D poses
from objects using RGB images as input. This is achieved by
combining a Mask R-CNN instance segmentation algorithm
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implemented by leveraging the Detectron2 platform1 and an
Augmented Autoencoder (AE) architecture [2]. In order to
control the robotic hardware, implement the aforementioned
pipelines and efficiently manage data and provide perception-
related functionalities, the module is developed using the
Robot Operating System (ROS) middleware. ROS scalability
complements the modular design of the proposed system,
enabling potential future expansion and enhancements.

Furthermore, a Knowledge Representation and Reasoning
(KR & R) structure is employed to make robots understand
their environment and infer new information from the existing
one. Such new information can be retrieved via specific
queries, enhancing the system decision-making capabilities.
The integration of ontologies into the system is focused on
reasoning over spatial relationships between objects in the
system and their location within symbolic regions of the
perceived environment as a proof of concept of the module
functionality and the reasoning mechanism.

The contributions of the proposal are the following:

• Implementation of a perception module that can flexibly
handle data from various camera sensors, using two
distinct but complementary perception pipelines, pro-
cess the data and provide visualization and data retrieval
capabilities.

• Incorporation of a Knowledge Representation and Rea-
soning capabilities to the perceptionmodule, by utilizing
ontologies (built upon the Autonomous Robotics IEEE
standard ontology) to structure the data and provide a
reasoning layer over the perceived data, allowing the
robot to be aware and understand the current situation
of the environment.

• Implementation of a ROS interface to facilitate the
integration of themodule into larger autonomous robotic
frameworks, showcasing the practical applicability and
scalability of the current work.

• Discussion on the available tools for the implementation
of smart perception projects.

The aim of this work is not to improve the accuracy
performance of existing perception pipelines, rather to
demonstrate how they can be integrated with KR & R
capabilities to endow the system of situation awareness.

This paper is organized into six main sections. Following
this introduction, section II presents the background infor-
mation and related works, covering key concepts such as
perception for manipulation, knowledge representation and
reasoning, and a review of relevant literature. Section III
provides an overview of the general schema of the framework,
focusing on the situation awareness block of the framework
and its proposed architecture. The specifics of the situation
awareness block as a perception module are then detailed
in section IV. Section V presents the results of the work,
including the experimental setup, validation, and a discussion
on the findings and their implications. Finally, section VI

1https://github.com/facebookresearch/detectron2

summarizes the main conclusions, the potential impact of the
project, and the directions for future work.

II. BACKGROUND
This project intersects multiple domains including object
detection, pose estimation, and the integration of ontolo-
gies within robotic systems, each with extensive literature
and related works. This section exposes the theoretical
foundations and essential concepts for each relevant area
in the project, as well as implementation choices and
particularizations.

A. PERCEPTION FOR MANIPULATION
Perception for manipulation is primarily focused on object
detection and pose estimation. The perception mechanisms
are responsible of transforming raw sensor data into a
structured and comprehensible representation of the world.
The output typically comprises a list of identified objects with
attributes such as the object type, position and orientation.
Detection and pose estimation techniques can be divided
into those based on fiducial markers and the learning-based
methods.

Fiducial markers, while simple, efficient and reliable,
are restricted to known tagged objects. Marker-based
approaches, including popular fiducial marker libraries
like ArUco2 and AprilTag,3 have minimal computational
demands and work well in real-time on devices with limited
computational power.

On the other hand, learning-based methods offer greater
adaptability, allowing the identification of a wide range of
objects without prior tagging. However, their deployment
requires higher computational resources and large annotated
training datasets. Notable examples includeMask R-CNN [3]
or YOLO4 for object detection, and EfficientPose [4],
CosyPose [5], Augmented Autoencoders [2], PoseCNN [6],
or Deep Object Pose Estimation (DOPE) [7] for pose
estimation.

In the following subsections, each of the two object
detection and pose estimation pipelines choices are further
developed. Note that the module implementation allows
users to choose the detection methods (marker-based,
learning-based or a combination of both) and its respective
configuration for each active camera in the system. This way,
the hardware management and the perception capabilities can
be customized according to the perceptive needs of the task.

1) ArUco MARKER-BASED OBJECT DETECTION
AND POSE ESTIMATION
ArUco tags are square markers with a binary matrix encoding
an identifier, allowing each tag to be uniquely recognized.
This makes them a popular choice in computer vision and
robotics for their ease of detection and pose estimation, even

2https://www.uco.es/investiga/grupos/ava/portfolio/aruco/
3https://april.eecs.umich.edu/software/apriltag
4https://github.com/ultralytics/ultralytics

VOLUME 12, 2024 53975



O. Ruiz-Celada et al.: Smart Perception for Situation Awareness in Robotic Manipulation Tasks

under variable lighting conditions and with low-resolution
cameras. For the object detection and pose estimation task,
a unique ArUco ID is assigned to each object, enabling the
system to detect, recognize, and determine the position and
orientation of these objects relative to the camera. Note that
this process requires human intervention to physically tag the
objects and associate the corresponding ArUco IDs with each
one, as well as the transformation between the tag reference
frame and the object reference frame for those objects
whose model is known. The proposed pipeline leverages the
aruco_ros5 package for enhanced flexibility to manage any
arbitrary number of different marker sizes. The implemented
module allows to flexibly configure the different tag sizes to
be used, the ArUco ID ranges per size, and also permits to
associate different tags to the same object if required.

2) MASK R-CNN AND AUGMENTED-AUTOENCODER-BASED
OBJECT DETECTION AND POSE ESTIMATION
The chosen approach to learning-based object detection
and pose estimation treats the 2D object detection as a
sub-problem of the 6D object pose estimation task. This
involves initially obtaining a 2D representation of all objects
in an RGB image, while simultaneously determining their
classes. Mask R-CNN is the model selected for this task,
providing the object label, bounding box, and binary mask for
each detected object. This is implemented using Detectron2,6

a library that eases the implementation of state-of-the art
object detection algorithms.

After the 2D detection process, the pipeline determines
the translations and 3D orientations of the objects relative to
the camera sensors. The adopted Augmented Autoencoder
method for this task is trained on synthetic views of the
3D models to estimate object orientation. This approach,
in contrast to other methods, does not require large volumes
of manually pose-labeled object data for training but relies on
synthetic 3D models instead.

Both the Mask R-CNN and Autoencoder architecture have
been adapted so that they can be integrated into the ROS
environment.

B. KNOWLEDGE REPRESENTATION AND REASONING
The knowledge representation and reasoning block is built
taking ontologies as its core. An ontology can be defined as an
explicit, formal description of terms within a specific domain,
along with their relations [8]. Ontologies are an essential part
of the smart section of the perception module, not only as a
mechanism to interpret and structure the data generated by the
object detection and pose estimation components, but also as
a tool to reason and infer new knowledge.

In practical terms, an ontology is composed of multiple
components like concepts (or classes), which represent
ideas or entities within a domain; relations, acting as
the explicit connections or associations that are declared

5https://github.com/pal-robotics/aruco_ros
6https://github.com/facebookresearch/detectron2

between these entities; and properties, which describe the
unique characteristics, attributes, or features of these entities.
Alongside these components, instances (or individuals) are
added to represent specific manifestations of the concepts
within the domain. When these individuals are integrated
into the ontology, the entire set of entities, their relations,
and properties collectively form what is referred to as a
knowledge base (KB). In essence, a KB is a repository that
contains instances of classes described within the ontology
structure, transforming the abstract constructs of an ontology
into usable information, and can be used to build a World
Model [9].
In the context of robotics, ontologies allow enhancing

data communication, integration, and interoperability across
diverse systems or elements within the same system,
providing a shared and accessible understanding of a domain.
In addition, ontologies facilitate the reuse or extension of
already existing domain knowledge, such as standardized
ontologies or specific ontologies developed by research
groups. This leads to more efficient development processes,
reducing potential errors and avoiding the redefinition of
already defined concepts. Bearing this factors in mind, the
ontology designed for the perception module is built upon the
Autonomous Robotics (AuR) [10] IEEE standard ontology
to avoid redefining terms, ease of future expansion and
compatibility.

A great challenge of ontology usage is found in extracting,
inferring, and manipulating the knowledge encoded within an
ontology. This is where query languages such as SPARQL7

play a key role. SPARQL is a semantic query language
for databases able to retrieve and manipulate data stored
in Resource Description Framework (RDF) format. This
querying mechanism is particularly useful in the context of
ontologies represented using the Web Ontology Language
(OWL), which is often serialized in RDF, since it can navigate
and search in large and complex sets of data.

In addition to SPARQL, rule languages such as Semantic
Web Rule Language (SWRL8) play a key role in the context
of ontology-based robotic systems. This tool essentially adds
an extra layer of expressiveness to ontologies, which are
unable to express rule-based knowledge on their own. In this
context, SWRL allows users to write if-else type of rules
expressed in terms of OWL concepts to provide more pow-
erful deductive reasoning capabilities. For instance, Figure 3
illustrates how SWRL rules are used to express conditions
like: ‘‘If an object has a specific property, like a specific
color, then it is graspable by a robot’’. These rules can
encapsulate more complex implicit knowledge about the
world and can be automatically applied by the inference
engine every time the knowledge base is updated. SWRL
rules can reference named classes, properties, individuals,
and data values from an ontology but also have built-ins for
providing basic arithmetic calculations, string manipulations,

7https://www.w3.org/TR/sparql11-query/
8https://www.w3.org/Submission/SWRL/
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FIGURE 1. Visual representation of an example of perception ontology. The concepts of the domain are represented as classes (PhysicalObject,
SpaceRegion, etc.), their known relationships as object properties (perceives, hasPose, etc.) and specific characteristics of instances as data
properties (cameraID, positionX, etc.). In this example, ‘‘object_1’’ is an instance of the ‘‘DetectedObject’’ class with an associated pose
‘‘object_1_pose’’ that has a certain property ‘‘positionX’’ value. Thanks to this kind of constructions and definitions, the ontological structure
is able to infer new data (shown in red), for instance it can reason if a certain object is at a symbolic region using the ‘‘isAtSymbolicRegion’’
property, given its associated position properties like ‘‘positionX’’, ‘‘positionY’’ and ‘‘positionZ’’.

FIGURE 2. On the left, the structure of a SWRL rule is composed by an
antecedent (the ‘‘if’’ part) and the consequent (the ‘‘then’’ part) linked
with a ‘‘->’’ symbol). On the right, the structure of a typical ‘‘SELECT’’
SPARQL query. SELECT clause specifies the variables we are interested to
retrieve and WHERE specifies the patterns that the data need to match.

and other commonly needed functions. SWRL rules can
be used to infer spatial relationships and combine it with
task-related properties such as if the robot can reach a
location [11], [12]. Finally, as a reasoning engine, the usage
of rule reasoners like Pellet9 are required to reason within the
ontological framework.

Regarding the construction and manipulation of ontolo-
gies, OWL (Web Ontology Language) ontology language is a
good choice since it is built on the foundation of Description
Logic (DL), compatible with globally accepted web protocols
and ensures interoperability with a variety of data formats
like Extensible Markup Language (XML) or Resource
Description Framework (RDF). Furthermore, OWL adopts an
open-world assumption that allows assuming that not only
specifically defined predicates can be true. For example,
if a robot is operating in an unknown environment, and it
does not detect any obstacles, a closed-world assumption
would assume that there are none, whereas an open-world
assumption is open to the fact that there might be some, being
open to new information.

Developing an ontology requires careful decision-making
about the proper class structure and the use of classes or data
properties to establish relationships. To develop such task,

9https://github.com/stardog-union/pellet

Protégé,10 an open-source ontology editing platform with a
user-friendly interface, is used. Protégé simplifies the process
of creating complex classes, properties, and relationships, and
includes in-built reasoners and plug-ins supporting SWRL
rules and SPARQL queries. Furthermore, Owlready211 is
chosen as a Python API to manage the data in the ontology,
setting of SWRL rules and the execution of SPARQL queries
on the ontology directly from the ROS environment.

C. RELATED WORKS
Knowledge representation and perception-based semantic
understanding are relevant research areas in intelligent
robotics, with a particular focus on ontology-based knowl-
edge representation. This approach has emerged as an impor-
tant foundation of autonomous robots, allowing these systems
to interact with a multitude of environments, specially those
that are dynamic, unstructured, and partially observable. This
allows robots to perform tasks, make decisions, and adapt to
their surroundings, irrespective of their field of application.
Key contributions in this field are found across various
robotic disciplines, including manipulation [13], [14], [15],
motion planning [11], [12], navigation [16], [17], [18], [19],
[20], human-robot interaction [21], service robotics [22],
social robotics [23], search and rescue operations [24], and
more broad-based industrial applications [25], [26], [27].

More focused on the subject of the current proposal,
it is relevant to further review the significant role that
ontology-based perception plays in enhancing the capabilities
of robotic systems. For example, KnowRob 2.0 [13] offers
a comprehensive knowledge processing system for complex
manipulation tasks. It leverages ontology to bridge the
gap between high-level instructions and the planning and

10https://protege.stanford.edu/
11https://github.com/pwin/owlready2
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FIGURE 3. Example of the steps to reason ‘‘If an object is red, then it is graspable by a robot’’. (a) Definition of the
ontological structure in Protégé and visualized in a graph form. (b) Definition of the SWRL rule to formalize the
reasoning. (c) Definition of SPARQL query used to retrieve the inferred data. (d) Result shown in the terminal after
running the Pellet Reasoner engine in owlready2.

execution stages. The CRAM cognitive architecture [28]
uses KnowRob 2.0 as its Knowledge Representation and
Reasoning framework for everyday manipulation tasks.
As its Perception Executive, it employs RoboSherlock [29],
which offers a symbolic language to specify perception
tasks. It uses logical atoms as annotations to perform
structured queries, using SWI-Prolog as its main reasoning
engine. RoboEarth [18], which is also built upon KnowRob
capabilities, enables robots to rapidly learn and adapt to
complex navigation tasks by using ontology to encode
concepts and relationships in navigation maps. However,
KnowRob-based approaches are not built to be compatible
with the AuR standard [10], limiting their shareability across
different autonomous robotic applications.

The Robot control for Skilled Execution of Tasks
(ROSETTA) ontology [25] focuses on robotic devices and
skills for manufacturing tasks. It introduces an object recog-
nition module that merges perception data with geometric
features in a Knowledge Base. The Smart and Networked
Underwater Robots in Cooperation Meshes (SWARMs)
ontology [17] enables shared understanding among robots in
maritime missions. It also includes a probabilistic ontology,
PR-OWL, for managing uncertainty in sensor information
interpretation. The Perception and Manipulation Knowl-
edge (PMK) [30] ontology and the Robot Task Planning
Ontology (RTPO) [20], facilitate complex task planning for
autonomous robots. PMK extends its knowledge base with
sensor-related knowledge and is based on AuR, while RTPO
focuses on an efficient knowledge representation in robot
task planning, incorporating both continuous and discrete
perceived information. These works focus on representing
Knowledge relevant to their application, but do not focus
on the integration of perception pipelines to incorporate

Knowledge from the world, neither include data-driven
methodologies.

III. APPROACH OVERVIEW
This section provides a high-level overview of the general
robotic manipulation framework, called BE-AWARE [31].
The approach presented here proposes the smart perception
component to achieve Situation Awareness in the framework,
which will be integrated with the rest of the modules.
The various layers of abstraction involved are explained,
focusing on the situation awareness block and its architecture
implemented by the smart perception module proposed here.

A. GENERAL SCHEMA
BE-AWARE is a manipulation framework conceived to
enhance the basic functions of perception, planning and exe-
cution by an ontology-based knowledge representation and a
reasoning core. The framework schema, shown in Figure 4,
comprises a threefold structure. The Primary Functions triplet
(in white) correspond to the basic perception, planning and
execution modules. The Awareness triplet (in red) uses
the KR & R core to allow the robot to be: a) aware of
the situation (i.e. of the objects in the environment, their
features and relative locations), aware of the domain (i.e.
of the predicates describing the state and of the actions
and their preconditions and effects), and aware of the
execution (i.e. of the execution structures with associated
monitoring and recovery strategies). Finally, the Adaptation
triplet (in green) use these awareness capabilities to allow the
framework to achieve a robust and reliable adaptive behavior
to successfully performmanipulation tasks in semi-structured
and changing scenarios by being able to: a) automatically set
the planning problem by reasoning on the initial and goal

53978 VOLUME 12, 2024



O. Ruiz-Celada et al.: Smart Perception for Situation Awareness in Robotic Manipulation Tasks

FIGURE 4. General schema of the BE-AWARE framework (taken
from [31]).

situations and on the domain, b) automatically configure the
execution by reasoning on the execution structures and on
the domain actions, and, c) automatically tune the monitoring
procedures by reasoning on the task execution structure and
on the current and desired situations.

B. SITUATION AWARENESS
The proposed perception module serves as the foundation
of the situation awareness block, integrating the principles
of robust software infrastructure and intelligent perception
into the system. The situation awareness will be supported by
an ontology to further understand the environment, objects
within it, the robots themselves, their features and spatial
relations. Incorporating the idea of situational awareness, the
system can go beyond mere data collection and interpret their
meanings and relationships to have an updated knowledge
state of the world at every instant of interest.

The core of the system infrastructure is built based
on the Robot Operating System (ROS). The use of ROS
significantly accelerates the implementation process and
eliminates the need to develop each functionality from
scratch. To complement ROS, the RViz 3D visualization tool
and the Gazebo 3D robotics simulator are used. RViz serves
as a powerful tool for visualizing sensor data and achieving
a more intuitive understanding of the system’s operations.
On the other hand, the Gazebo simulator can emulate a testing
environment including sensors, objects, and other robotic
hardware.

The smart aspect of the current module relies on a custom-
developed ‘‘smart perception ontology’’. This ontology is
designed with its domain centered on the possible require-
ments of robotic manipulation tasks from the perception
point of view. It includes concepts regarding objects in
the workspace, their sensed physical attributes, spatial
relationships between them, and other entities of interest. The
ontology serves as the structure for a dynamic knowledge
base, which is updated based on the processed perceived data

of the module. Finally, the knowledge base is used to reason
about the environment using a set of defined SWRL rules, and
the information can be retrieved through SPARQL queries.

C. SYSTEM ARCHITECTURE
The proposed Perception Module architecture, shown
in Figure 5, consists of multiple functional blocks integrated
as a ROS node structure alongwith theKR&Rpart. Themain
aspects and ideas are explained next, from the initialization of
sensors, the processing of the raw data into useful information
and its assertion on the ontology, to the final retrieval of
reasoned information.

• Sensor Initialization block: The perception module is
initialized by starting the desired set of sensors. So far,
only camera sensors are considered. Its activation is
done using their respective hardware drivers along with
ROS launch files. The block extracts raw camera image
data and publishes it on ROS topics. The implementation
is well structured to be extendable to other type of
sensors; RFID sensors will be considered in the future.

• Perception Nodes block: Once the cameras are active,
this block forms the foundation for object detection and
pose estimation operations. It automatically reads the
user-defined specifications from a configuration file to
launch and set up, for each active camera, the desired
detection pipelines characteristics. The block outputs the
perceived data in a separate ROS topic for each camera
and active detection method in the system.

• Perception Manager block: This block is responsible
for synchronizing all the data contained in the output
ROS topics of the previous block and processes it into
a unified stream of information also broadcasted as a
ROS topic. The treatment process mainly implies fusion
of data from different sensors, merging poses when
necessary, and assigning unique identifiers to every
object. Furthermore, the block also aims to provide
functionalities such as visualization of the perceived
environment and the retrieval of perception data from
the system in the form of ROS services. Up to this point,
the perception module might resemble other traditional
perception systems that do not incorporate any reasoning
capabilities.

• Knowledge Base Manager block: This block bridges
the ROS modules with the ontology-based knowledge
management system. This allows the incorporation
of the perceived data into the ontology, setting up
the SWRL rules, performing reasoning and infer new
information and also retrieve relevant information via
SPARQL queries.

IV. THE SMART PERCEPTION MODULE
After introducing the general system architecture, this section
aims to provide more detail on the working aspects of the
perception nodes block, the perception manager block, the
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FIGURE 5. Proposed architecture of the perception module. Each gray box is a separated subsystem on the module, where the blue boxes
correspond to different ROS nodes in charge of implementing the desired functionalities within the block. The blue arrows, connecting the blocks
correspond to the interchange of information between the nodes via ROS topics. Note that the ‘‘knowledge base manager’’ block lies between all
the ROS infrastructure and the KR & R section as a link between the two.

knowlege-base manager block, as well as an overview of the
proposed perception ontology.

A. PERCEPTION NODES
The Perception Nodes are responsible for object detection
and pose estimation. The configuration and initiation of the
various publishing nodes are set by a configuration file in
consideration of the available sensors in the system. The
configuration file is responsible for setting various initializa-
tion aspects, for example, the launching of the ArUco-based
publisher node, the encoder-based publisher node or both, for
each camera; and it is also in charge of configuring each of
the perception publishing node characteristics like the sizes of
ArUcomarkers to be recognized by the system or the learning
models to be loaded, among others. This, altogether, provides
a flexible system for managing various cameras and detection
mechanisms.

When the system activates ArUco detection for a certain
camera, it recognizes ArUco markers within the environment
and discerns their spatial location and orientation in relation
to both the camera and the global coordinate frame. If a
detected marker is registered in a user-defined ArUco object
database, additional data regarding the detected object can be
published, like the object’s name, category, or the pose of the
reference frame of the object with respect to both the camera
and the global reference frames.

On the other hand, the encoder-based method consists of
two main components: the unit for object detection, and the
unit for object pose estimation. The object detection unit
uses the Mask R-CNN model to return detected classes,
confidence scores, bounding boxes, and segmentation masks
for all detected objects. The Detectron2 library is leveraged
to implement the object detection. It is responsible for

automatically configuring the detection model, its weights,
and the detection thresholds set by the user.

The pose estimation unit uses an Augmented Autoencoder
architecture [2] to estimate the 6D pose of each detected
object within the bounding boxes produced from the detection
stage. The orientation is estimated by feeding the bounding
box crop into a trained encoder to convert it into a
lower-dimensional representation known as latent space.
Then, by finding the closest match to a previously generated
codebook of latent spaces, the orientation can be estimated.
Note that the codebook is generated offline using the 3D
model of an object and associates each latent space to a
known orientation. Finally, the translation is obtained using
the pinhole camera model. When the system activates an
encoder based detection for a certain camera, its node is also
equipped with mechanisms to estimate the color and possible
occlusions between objects. The TensorFlow12 library is used
to implement the encoder model.

B. THE PERCEPTION MANAGER
The perception module is powered by a central processing
unit that synchronizes and processes data from all active
sensors in the robotic system. This central node collects,
filters, and integrates sensor data into a unified information
stream that is published as a custom ROS message type on a
single ROS topic. This is done by automatically subscribing
to sensor perception data topics (either ArUco or encoder,
or both) for each active camera. Then data consistency and
synchronization is ensured using a flagging system. This
mechanism allows the publication of full perception data only
when all expected sensor data has been successfully received,
and it contains the most recent data from all sensors.

12https://www.tensorflow.org/
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The data treatment process includes tasks such as renaming
and assigning a unique identifier to every object in the system,
updating the number of cameras that detect a specific object,
and updating the IDs of occluded objects. It particularly
focuses on fusing pose data from different sensors, especially
in those cases when multiple cameras detect the same object.
The system iterates over all cameras and their respective
object detections. For each new processed object, it is
checked if its position and orientation match a previously
processed object within set thresholds. If a match is identified
within these tolerances, the position and orientation data are
merged with existing data in the dictionary, averaging the
positions and using spherical linear interpolation (SLERP)
for orientations. If no match is found within the thresholds,
the object is considered a new detection.

Finally, a separate node from this block has access to
the latest processed perception data and is responsible for
broadcasting all object transformations for visualization
purposes and provide data retrieving functionalities in the
form of ROS services.

The rate at which the perception messages are published is
controlled to ensure the system has enough time to process
the data. Currently, a conservative estimation of one second
has been chosen.

C. THE KNOWLEDGE BASE MANAGER
The system features a unit that acts as a bridge between
the ROS modules and the ontology-based knowledge man-
agement system. This node also retrieves the most recent
perception information from the system and asserts the
data onto the ontology. This involves creating necessary
individuals and associating them with appropriate data and
object properties.

The ontology management unit safeguards the original
ontology’s integrity by operating on a temporary copy during
initialization.When shutting down, the temporary ontology is
erased. However, the system provides an option to record the
active ontology’s state in a separate file for future reference
or troubleshooting.

This unit is also responsible for establishing user-defined
SWRL rules to extend the system’s inferencing abilities or
query the information using predefined SPARQL queries.
The SWRL rules include spatial relationships and region
properties formalization, which provide the system with
ways to derive objects relative positions to each other or
to predefined symbolic regions in the environment. For
example, the SWRL rule depicted in Figure 6 determines
if one object is on top of another in a 3D space illustrating
how SWRL rules can infer spatial relationships. On the other
hand, the SPARQL query, shown in Figure 7, is another
powerful example on how to extract data about the inferred
relationships in the system. It uses the ‘‘isOnTopOf’’
relationship to retrieve data about all the objects involved in
this spatial relationship.

FIGURE 6. SWRL rule to determine the ‘‘isOnTopOf’’ spatial relationship
between two objects in a 3D environment.

FIGURE 7. SPARQL query to retrieve all ‘‘isOnTopOf’’ spatial relationships
in the system.

D. THE PERCEPTION ONTOLOGY
As previously introduced, the ‘‘smart perception’’ ontology
is built upon the Autonomous Robotics Ontology (AuR),
incorporating the required aspects in the current perception
domain, such as pose management and object qualities.
The graphical structure of classes and properties is shown
in Figure 8. The various classes added to organize and
categorize entities within the domain branch from the
AuR PhysicalObject, PhysicalAttribute and
SpaceRegion classes.

Regarding the object properties defined, they are
categorized into perception-related properties like, for
instance, perceives/ isPerceivedBy, hasPose/
isPoseOf, isOccludedBy/ isOccluding, etc.; spa-
tial relationship properties like isOnTopOf/ isBelowOf,
isInFrontOf/isBehindOf, etc.; and properties related
to symbolic regions like isAtSymbolicRegion/
isSymbolicRegionOf.

On the other hand, data properties assign specific data
values or attributes to the individuals of a class. Some
examples include attributes like arucoID, cameraType,
detectionConfidence, encoderObjectClass,
encoderObjectID, positionX, positionY, and
positionZ, orientationW, orientationX,
orientationY, and orientationZ, timeStamp,
regionID, etc.

V. RESULTS
In this section, the experimental results are presented, includ-
ing details on the experimental setup like the workspace,
hardware and software used, as well as the steps for setting
up the whole system.
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FIGURE 8. Full diagram of the smart perception ontology classes and object properties visualized in Protégé editor.

FIGURE 9. IOC manipulation workspace, including the camera
infrastructure as well as the symbolic regions considered.

A. EXPERIMENTAL SETUP
The experiments were conducted at the Institute of Industrial
and Control Engineering (IOC) robotics lab. As shown in
Figure 9 the lab hosts two separate table-stations for manip-
ulation tasks, each equipped with a camera infrastructure for
perception. The perception system currently consists of three
cameras: two Microsoft Kinect v2 and one Intel RealSense
SR300, and up to four differentiated symbolic regions are
considered. Additionally, all deep learning and inference
operations are executed on a GeForce RTX 3080 Ti GPU,
which delivers the computational power necessary to process
complex learning models, thus ensuring the efficiency and
effectiveness of the module.

To effectively deploy the module in real-world scenarios,
a setup stage is required. For marker-based perception,
specific objects are chosen and tagged with markers. Concur-
rently, a database is created, allowing the association of each
distinctive marker ID to a known object. This can also be used
to manually establish a transformation between the ArUco
marker’s placement on an object and another point of interest,
such as where the object should optimally be grasped.
On the other hand, for learning-based perception, both the 2D
detector and autoencoder are trained using the desired image
data and 3D models respectively, to generate the desired
deployment models. For instance, simulation scenarios are
tested with the YCB13 benchmarking dataset, but due to
the lack of exact object matches on the laboratory, real-
world applications are tested using a can. Finally, the desired
perception module configuration is meticulously set in the
configuration file aforementioned. Moreover, the various
symbolic regions of interest are measured and cataloged in a
system-usable file. To enhance the system’s reasoning skills,
SWRL rules and SPARQL queries are also set in dedicated
files, ready to be used and interpreted by the system when
required.

B. EXPERIMENTAL VALIDATION
Upon activating the perception module, the object and pose
detection systems are launched and processed to convert the
raw camera sensor data into a unique source of processed data
accessible via a single ROS topic. The bash terminal can be
used to visualize the results of all the data packed in the topic.

13https://www.ycbbenchmarks.com/
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FIGURE 10. On the left, a sample test set up the IOC robotics lab manipulation section to detect objects using both ArUco-based and
encoder-based pipelines. On the right, a sample of the processed environment visualized on RViz.

FIGURE 11. Instances asserted on the ontology, creating a knowledge base, visualized in Protégé.

Within the ROS framework, the perception module offers
various functionalities as ROS services, specially to retrieve
potential information of interest like the objects detected by a
specific camera or specific object properties. Figure 10 show
a possible object setup on the environment as well as the
graphical visualization of pose data in RViz.

The ability to reason is a key component of ontology
integration, as it allows the system to deduce information
that goes beyond the raw perceptual data. For this reason, the
module fuses the information acquired through the perception
module into an ontology by collecting the processed data and
asserting it, either automatically or on demand. This creates
a knowledge base about objects in the environment and their
characteristics. Figure 11 shows a sample of the assertion of
instances on the ontology. Finally, the perception module can
be used to generate new information about the environment,
such as existing spatial relationship or symbolic regions of

objects, as well as retrieve the reasoned information through
queries.

This process illustrates the effective functioning and
interaction of the perception module with its components and
the environment, from reading raw sensor data to retrieve
new information, confirming its potential to enhance robotic
manipulation tasks in real-world scenarios.

C. DISCUSSION
The implementation of a smart perception module has shown
its potential in advancing situation awareness in robotic
manipulation tasks. The integration of the perception using
techniques for object detection and pose estimation, and the
inclusion of an ontology-based approach, has successfully
enhanced the understanding of the environment of the robot.
The inclusion of the ontology-based layer allows having
awareness of the environment from the geometric knowledge
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of each particular object. The smart perception module
structures this raw perception data into an organized and
interconnected form, by following the ontology. Awareness is
thus achieved by allowing the system to easily navigate and
infer new relations between the knowledge of each individual
object.

For example, the system revealed insights about the
environment that were not immediately apparent even for
a human, specially those regarding relative poses between
objects or their location in predefined symbolic regions.
Everything by employing the combination of SWRL rules,
SPARQL queries, and the Pellet reasoner.

Through the use of SWRL rules, the module was able to
derive specific relationships between entities, enabling the
system to better understand varied scenarios. For instance,
it could determine if one object was above another, or if they
were adjacent, based on the data provided by the perception
system. This level of spatial awareness is essential for
tasks requiring delicate manipulations or spatial reasoning.
Furthermore, with SPARQL queries, the system could
retrieve, filter, and present data from the ontology, allowing
the robotic system to get a more refined and targeted view
of its environment on demand. The Pellet reasoner was
indispensable in this process. As a robust ontology reasoner,
it ensured the consistency of the knowledge base, validated
inferred relations, and proved instrumental in deriving new
relationships from the provided data.

It is worth mentioning that the results achieved were
consistent and accurate, which underscores the module’s
robustness and readiness for deployment in various real-
world scenarios. The collaboration between the proposed
perception techniques and advanced reasoning tools has set
a new path for what is possible in the domain of robotic
cognition. Situation awareness, as reflected through the
perception module ability to identify objects, estimate their
pose, andmake smart reasoning about the environment, forms
the foundation of effective and autonomous robotic manipu-
lation enabling robots to reason about its environment, and
potentially react to changes or plan its actions accordingly.

VI. CONCLUSION
This paper highlights the advancements made in robotic
situation awareness through the design and deployment of a
smart perception module. Its key success is the integration
of object detection, pose estimation, and ontology-based
reasoning, to enrich perception and cognition in robotic
systems.

A notable strength of this module lies in its ability to
adeptly merge learning-based and marker-based methods
for both object detection and pose estimation. This duality
ensures its versatility and adaptability across varied contexts.
Benefiting immensely from the modularity and interoperabil-
ity of ROS, the presented perception module can be easily
integrated in the proposed general robotic framework BE-
AWARE [31]. The union of the perception module with
an ontology-based approach has opened the capabilities of

using ontologies not only in terms of perception but wider
robot reasoning aptitudes such as planning and execution.
Future work will test the integration of the module within the
framework working on complex manipulation scenarios.

Technological improvements on the object detection
accuracy of the existing perception methods could be
implemented into the smart perception module, enhancing
the performance. While the present focus was on spatial rela-
tionships and symbolic regions for situation awareness, the
true potential extends beyond these parameters. An evolved
situation awareness could include dynamic environmental
factors, understanding patterns of change over time, and
recognizing common system conditions or constraints. This
would allow robots to not only recognize their immediate
surroundings but also to anticipate potential changes, hazards,
or opportunities in their environment. Also, social and even
self-awareness skills would equip robots to interpret human
behaviors, and self-evaluate their own operational states for a
better task execution.
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