
Automated Depth Dataset Generation with
Integrated Quality Metrics for Robotic Manipulation

Albert Dalmases
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
albert.dalmases@estudiantat.upc.edu

Oriol Ruiz-Celada
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
oriol.ruiz.celada@upc.edu

Jan Rosell
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
jan.rosell@upc.edu

Isiah Zaplana
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
isiah.zaplana@upc.edu

Abstract—This work introduces a fully automatic and adapt-
able pipeline for synthetic depth dataset generation that later
on can be used for the training of deep learning algorithms for
robotic manipulation. From any available set of 3D object model
meshes, the pipeline outputs rendered depth image data with
labeled grasp candidates represented as a set of grasping points
relative to the camera with associated metrics. The proposed
pipeline allows adaptability in various characteristics such as
the input dataset of objects, the sampling method, the gripper
type, or the grasp evaluation metrics to allow the generation
of a more customized, task-oriented collection of labeled grasps
relevant for different robotic applications. The implementation
is done using Blender’s Python API workspace, avoiding the
use of multiple software tools or libraries, reducing the pipeline
complexity, facilitating the extensibility, and providing benefits
in terms of visualization and debugging.

I. INTRODUCTION

Robotic manipulation research relies significantly on the
ability to identify feasible grasping points or grasping poses
from objects in images. Recent studies [1]–[4] suggest deep
learning and the use of depth data for training as the preferred
solution for predicting successful grasps on previously unseen
objects. This is due to the ability of deep learning models to
identify complex patterns within known data to generalize it
to unknown data.

However, the performance of these methods is heavily
dependent on the quality and quantity of training data,
which might not always be readily available or require time-
consuming preparation [5]. Using real-world data is more rep-
resentative but it is costly and laborious to collect. In contrast,
synthetic data can be easily generated but may lack real-world
applicability. To bridge this gap, domain randomization [6] or
domain adaptation [7] are often used.

In this line, this paper contributes with the proposal of
a versatile, automated pipeline for generating synthetic data
that later on can be used for training learning models for
manipulation-oriented grasping, trying to make the pipeline
as adaptable as possible and with ease to be expanded so

This work was supported by the European Commission’s Horizon Europe
Framework Programme with the project SmartHandle (Resilient manufac-
turing lines based on smart handling systems) under Grant Agreement ID
101091792.

it can handle a variety of robotic grippers, objects and ma-
nipulation scenarios. This has great relevance to industries
where robots have a diverse range of applications and require
different grasping strategies for a set of objects and gripper
designs. Lastly, the fact that everything is integrated into a
single workspace simplifies potential modifications, updates
or enhancements.

II. RELATED WORK AND APPROACH OVERVIEW

Some approaches [8] focus on the dataset generation relying
on GraspNet [9] for defining grasps and their associated
quality metrics. This could potentially decrease the diversity of
grasps, as it utilizes a 3-DOF pose representation for parallel
jaw-grippers only. Other approaches employ GraspIt! [10],
which also has limitations in terms of grasp pose diversity
due to its naive search strategy, and its grasping evaluation
is limited to pick-and-place motions. Alternatively, Andries et
al. [11] present a pipeline for generating the object set from
scratch, but the provided analytical quality metrics turned out
to be unreliable.

In an effort to address the aforementioned constraints,
a more versatile and adaptable pipeline is proposed. This
pipeline is capable of accommodating changes in the object
sampling method, gripper type, characteristics, and grasping
metrics. The latter can be used to evaluate and rank grasping
candidates. Representing grasping candidates as a gripper pose
might be adequate for suction cups and parallel-jaw grippers,
but less effective for more complex, multi-fingered grippers.
To better accommodate these, the use of contact point as
grasping candidates is proposed, which should generalize and
scale better for a variety of objects and grasping scenarios.
As part of future work, optimization strategies will be used
not only to determine the optimal gripper pose in relation to
the selected contact points, but also to ensure the feasibility
of this pose with respect to the environment and the gripper’s
own configuration. This is particularly important given that we
do not consider kinematic constraints and potential hardware
collisions during the dataset generation. The reason for this
approach is to prevent the need to manage high-dimensional
configuration spaces typical of these tasks, which would



result in an exponential increase in data, computational costs,
simulation complexity and make the learning process more
difficult.

III. THE PIPELINE

The proposed pipeline offers an adaptable framework ca-
pable of processing each object mesh individually, treating
them as free-flying objects and generating grasping candidates
across all feasible surfaces. The pipeline supports grippers
such as vacuum, parallel-jaw, and three-fingered grippers, us-
ing known basic geometries to generate the feasible candidates
for the dataset. The main stages of the pipeline include: a
sampling stage where the selected mesh is sampled using
diverse methods, a selection of potential grasping candidates
stage where the sets of points on the object’s surface are
filtered to those that might successfully interact with a specific
type of gripper, an evaluation stage where grasping metrics
are set to the candidates, and the generation of depth images
using domain randomization to provide a more diverse set of
training data. Note that the idea is to process each mesh once
and then generate depth images with different perspectives
to label the visible grasping candidates to each perspective.
This method ensures a diverse set of potential grasps, covering
all possible orientations and angles, thereby extending beyond
these typical scenario of an object placed on a surface. Finally,
all the relevant data from the previous steps are compiled into
a dataset format.

The output labeled data can be represented as a set of sam-
ples. Each sample Si can be expressed as Si = (Yi,gi,mi),
where Yi ∈ RH×W is a matrix representing the point cloud
depth image with height H and width W . The point cloud is
constituted by three-dimensional points expressed with respect
to the camera. In addition, gi is the set of all grasping
point candidates on the image i. Each grasp j of the set
gi can be expressed as gij = (p1), gij = (p1,p2) or
gij = (p1,p2,p3), for a vacuum, a parallel-jaw and a three
fingered grasp, respectively, each pk = (x, y, z) ∈ R3 being
the point location relative to the camera and mi ∈ Rj×n

an array of n quality metrics associated to each grasping
candidate.

Notably, the proposed pipeline leverages existing technolo-
gies, such as BlenderProc1, useful for the rendering and
physics simulation, point-cloud-utils2 and igl3 libraries that
provide functionalities for mesh sampling and other geometric
computations, and blender-plot4 library to simplify the visual-
ization process within blender by providing a matplotlib-like
API.

A. Parameter Setup

The parameter setup of the pipeline provides users with
substantial customization capacity, allowing them to tailor the
pipeline and resulting dataset to their unique requirements.

1https://github.com/DLR-RM/BlenderProc
2https://github.com/fwilliams/point-cloud-utils
3https://github.com/libigl/libigl-python-bindings
4https://github.com/Linusnie/blender-plots

Users can adjust the sampling parameters, which include
the choice of sampling method—random, poisson disk, or
curvature-based sampling—and the desired number of sam-
ples per mesh. The selection of the sampling method has
a significant impact on the distribution and richness of the
generated grasp candidates, with different methods offering
varying trade-offs between computation time and sampling
quality. In addition, the parameter setup also enables users to
control the size and diversity of the dataset through the number
of depth output scenes to be generated per object. Each scene
provides a different perspective of the object and potential
grasping points, increasing the variety of data. Furthermore,
the gripper parameters allows to choose vacuum, parallel-
jaw, or three-fingered grippers, each of which carries specific
additional parameters.

For parallel-jaw grippers, parameters such as the jaw width
and depth can be set, as well as the conditions for generating
the grasping candidates, such as including squeezing and/or
expanding grasps, and set specific geometric criteria through
angle thresholds between the candidate points and gripper.
Such parameters allow the inclusion of a broader range of
scenarios and directly impact the diversity and complexity
of the generated grasps. Similarly, vacuum or three-fingered
grippers include their own tunable parameters.

Lastly, the metrics configuration section allows users to
select from the available set of metrics to evaluate the grasping
candidates. Metrics can substantially influence the criteria for
selecting grasps and the usefulness for a specific grasping task.

B. Mesh Sampling

The mesh sampling process forms the initial step in the
creation of grasping candidates. It involves sampling points on
the mesh surface of the object as a foundation for the stages
that follow.

At the start, the mesh data is loaded including its vertices
and faces. Additional parameters such as the geometric center
of mass, calculated as the average of all vertices, and the
surface normals of the mesh are also determined during this
stage. The algorithm presents several sampling methodologies.
Random sampling samples mesh surface points randomly. The
Poisson Disk sampling method, on the other hand, ensures
a more uniform distribution of points. It provides a better
coverage of the object’s surface, resulting in a distribution
commonly known as “blue noise”. Curvature-based sampling,
selects points based on the curvature of the object. This method
may yield different results depending on the gripper type.
For instance, vacuum grippers may benefit from an intensified
sampling in areas of low curvature, whereas grippers with mul-
tiple fingers may find areas of high curvature more beneficial.

C. Grasping Candidates Selection

In the selection stage, grasping candidates are filtered based
on conditions specific to each gripper type. This process
highlights the flexibility of the candidate selection process
for various robotic manipulation scenarios. Notice that, when
different filter steps are applied, the order in which they are

https://github.com/DLR-RM/BlenderProc
https://github.com/fwilliams/point-cloud-utils
https://github.com/libigl/libigl-python-bindings
https://github.com/Linusnie/blender-plots


Fig. 1. Schematic representation of the stages - setup, sampling, selection, evaluation, rendering and generation - of the dataset generation pipeline.

applied is based on their computational speed, i.e., faster steps
are prioritized so that it minimizes the number of candidates
for subsequent steps that might require more computational
effort. However, when implementing these filter steps, an early
stop is included so that unfeasible candidates are discarded as
soon as possible.

For vacuum grippers, grasping candidates are assessed for
their compatibility with the suction cone, which is used to
secure the object. The primary condition for a valid grasp
is the availability of an adequate number of mesh points
within the perimeter of the suction cone. To quantify this, the
intersection points between the vacuum cone and the object
mesh in the direction of the candidate surface normal is first
computed. This essentially gives a subset of mesh points that
should be in direct contact with the vacuum cone’s perimeter.
Then, an average plane is fit to these points ensuring that the
distance from these and the average plane is below a user-
defined threshold. This condition ensure that the grasp can be
tight and secure. Furthermore, the angle between the average
plane normal and the grasping candidate normal should also
be below a threshold. Otherwise it might be an indicator of a
potential irregular surface that could lead to an unstable grasp.
Both aforementioned thresholds are defined according to the
vacuum cone flexibility.

For parallel grippers several conditions have to be verified
for a grasp to be valid. The first step focuses on geometric
compatibility. This consists on verifying that the angles be-
tween the grasping points axes and their normals fall within a
user-defined threshold. Additionally, the directionality of the
normals is also checked to determine if grasps are squeezing
or expanding. A squeezing grasp involves the robotic gripper
applying inward pressure to securely hold an object, while
an expanding grasp occurs when the gripper applies outward
pressure, expanding to secure the object. Then the gripper
physical width and depth constraints are evaluated. Firstly,
the Euclidean distance between the pair of contact points
is measured and checked against the gripper jaw width to
ensure the grasp is physically achievable. Secondly, the depth

is assessed by first defining the axis along the line connecting
the two grasp points and generating a series of points along
a circle in the plane perpendicular to this axis at a distance
equivalent to the gripper’s jaw depth. Then, by performing a
ray-mesh intersection operation from the generated points in
a direction tangent to the grasping axis, we can determine if
the gripper would collide with the object’s mesh. Furthermore
it is also determined if it exists at least one approach direction
at the maximum gripper width that would not collide with the
object mesh. The final step verifies the force closure condition
as specified in [12], considering a friction coefficient of 0.5.

For three-fingered grippers, conditions to ensure successful
grasping are to be developed.

D. Grasping Candidates Evaluation

The evaluation of candidates is a key part of the whole
pipeline since it has the greatest room for enhancements. The
goal of this stage is to numerically evaluate each possible
grasp considering specific metrics of interest. The current
work is focused on the evaluation of parallel-jaw grippers,
for which a simulated success ratio metric within Blender
physics environment is implemented as follows. An initial
arbitrary orientation of the object is considered. Then, for
each candidate (p1,p2), small grasping cubes that simulate
the gripper fingertips are created at p1 and p2 and used
to simulate the force applied by the gripper by moving the
cubes along the axis p1p2. If after some time the object
has not significantly moved, the grasp is successful, i.e. it is
able to compensate for the gravity. The process is repeated
for different gravity directions, and the final success ratio is
computed as the proportion of successful grasps.

E. Rendering and Dataset Generation

This stage generates depth images of the objects and pro-
cesses all the relevant data from the previous steps. The first
part involves domain randomization, which randomizes the
camera position inside a sphere around the object and facing
towards the object, to generate depth images. In the previous



Fig. 2. Preliminary results of the synthetic depth dataset generation pipeline
using three basic mesh shapes - sphere, cylinder, cube - to represent varying
complexities and potential grasping scenarios for parallel-jaw grippers.

stages, a full set of potential grasps are identified. However,
not all of these potential points will be visible in every image
or scene due to changes in perspective and therefore, only
the grasp positions that are actually visible in that scene
are included. Furthermore, candidates are transformed from
global to camera coordinates, retaining the grasping metrics
associated with them from the evaluation stage.

Finally, in terms of data export, the depth images and their
associated data are packaged into a usable format for deep
learning training applications. Each depth image is saved in a
standard image format like PNG or EXR, ensuring compatibil-
ity with common image processing tools and libraries. Finally
a single JSON file is created containing all grasp candidates
associated to the generated images and their metrics.

IV. RESULTS

This section includes initial tests of the pipeline for parallel
jaw grippers with the simulated success ratio. The sampling
type used is set to Poisson with a target of approximately
1000 samples per object, and the number of depth output
scenes per object is set to 10. Regarding the gripper, a parallel
gripper is used with maximum jaw width set to 0.07 meters
and maximum jaw depth set to 0.05 meters, allowing only
squeezing grasps in the dataset. The maximum angle between
the normal vectors of the candidates, as well as the maximum
angle between each normal and the axis joining the points, is
set to 15 degrees.

For the test dataset, three basic mesh shapes are included:
a cylinder, a cube, and a sphere. These three shapes represent
a range of different complexities and offer a wide array of
grasping possibilities for parallel jaw grippers. As the prelim-
inary results are based on these configurations, it is essential
to note that they may differ when applied to different shapes,
gripper types, or varying parameters within the pipeline.

At this stage, satisfactory initial results are observed, with
the pipeline successfully identifying viable grasp points, as-
sociating metrics and effectively generating diverse depth
images.

V. CONCLUSIONS

This work introduces an automated pipeline for generating
datasets that can be used for the training of learning models
for robotic manipulation capable of handling different types

of grippers. Initial results showed promising results in the key
stages of grasp candidate selection, evaluation, and dataset
generation. Future work will focus on enhancing the pipeline
with additional features and optimizing it for efficiency, with
the ultimate goal of facilitating the development and training
of deep learning models for manipulation-oriented grasping,
potentially through the use of hardware acceleration or parallel
processing techniques.

In terms of the pipeline specific stages, new selection
criteria and evaluation metrics tailored to the different types of
grippers will be introduced. Such metrics should be innovative
and effective to consider aspects such as grasping adaptability
or grasp orientation.

Future research will also focus on implementing the suitable
neural network architectures compatible with the generated
datasets, where the utilization of grasping quality measures
might be explored in three different possible contexts - used
to preprocess the dataset before training, learned during the
training, or incorporated on the training algorithm through a
multi-loss function approach.

REFERENCES

[1] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
graspnet: Efficient 6-DOF grasp generation in cluttered scenes,” CoRR,
vol. abs/2103.14127, 2021.

[2] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[3] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics,” in Robotics: Science
and Systems (RSS), 2017.

[4] A. I. Károly and P. Galambos, “Task-specific grasp planning for robotic
assembly by fine-tuning gqcnns on automatically generated synthetic
data,” Applied Sciences, vol. 13, no. 1, 2023.

[5] J. Ruiz-del-Solar, P. Loncomilla, and N. Soto, “A survey on deep
learning methods for robot vision,” CoRR, vol. abs/1803.10862, 2018.
[Online]. Available: http://arxiv.org/abs/1803.10862

[6] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar,
B. McGrew, A. Ray, J. Schneider, P. Welinder, W. Zaremba, and
P. Abbeel, “Domain randomization and generative models for robotic
grasping,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 3482–3489.

[7] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[8] D. Morrison, P. Corke, and J. Leitner, “EGAD! an evolved grasping anal-
ysis dataset for diversity and reproducibility in robotic manipulation,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4368–4375,
2020.

[9] A. Mousavian, C. Eppner, and D. Fox, “6-DOF graspnet: Variational
grasp generation for object manipulation,” CoRR, vol. abs/1905.10520,
2019. [Online]. Available: http://arxiv.org/abs/1905.10520

[10] A. Miller and P. Allen, “Graspit! a versatile simulator for robotic
grasping,” Robotics Automation Magazine, IEEE, vol. 11, no. 4, pp.
110 – 122, dec. 2004.

[11] M. Andries, Y. Fleytoux, S. Ivaldi, and J.-B. Mouret, “AGOD-Grasp:
an Automatically Generated Object Dataset for benchmarking and
training robotic grasping algorithms,” Mar. 2023, working paper or
preprint. [Online]. Available: https://inria.hal.science/hal-03983079

[12] I.-M. Chen and J. Burdick, “Finding antipodal point grasps on irregularly
shaped objects,” Robotics and Automation, IEEE Transactions on, vol. 9,
pp. 507 – 512, 09 1993.

http://arxiv.org/abs/1803.10862
http://arxiv.org/abs/1905.10520
https://inria.hal.science/hal-03983079

	Introduction
	Related Work And Approach Overview
	The Pipeline
	Parameter Setup
	Mesh Sampling
	Grasping Candidates Selection
	Grasping Candidates Evaluation
	Rendering and Dataset Generation

	Results
	Conclusions
	References

