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ABSTRACT Robotic manipulation in semi-structured and changing environments requires systems with:
a) perception and reasoning capabilities able to capture and understand the state of the environment; b) plan-
ning and replanning capabilities at both symbolic and geometric levels; c) automatic and robust execution
capabilities. To cope with these issues, this paper presents a framework with the following features. First,
it uses perception and ontology-based reasoning procedures to obtain the Planning Description Domain
Language files that describe the manipulation problem at task level. This is used in the planning stage
as well as during task execution in order to adapt to new situations, if required. Second, the proposed
framework is able to plan at both task and motion levels, intertwining them by incorporating geometric
reasoning modules to determine some of the symbolic predicates needed to describe the states. Finally,
the framework automatically generates the behavior trees required to execute the task. The proposal takes
advantage of the ability of behavior trees to be edited during run time, allowing adaptation of the action
plan or of the trajectories according to changes in the state of the environment. The approach allows for
robot manipulation tasks to be automatically planned and robustly executed, contributing to achieve fully
functional service robots.

INDEX TERMS Adaptation, Behaviour Tree, Knowledge-based Reasoning, Manipulation Planning

I. INTRODUCTION

MANY efforts in industrial and service robotics pursue
making mobile manipulators able to act autonomously

in semi-structured human environments. The final aim is
to actually make them able to be robot co-workers at the
factory floor or robot helpers at home. This poses different
challenges at the perception, planning and action levels. At
the perception level, there is the need to capture the state
of the environment, which requires not only the detection of
the objects but also the understanding of the situation. For
this, deep-learning-based approaches can be used to perceive
different sets of objects and to detect their poses from 2D
and 3D images, and ontological-based reasoning procedures
can be used to interpret the situations. At the planning level
the simultaneously combination of task and motion levels is
required to actually obtain geometrically feasible sequences
of actions to perform a manipulation task. At the execu-
tion level, in order to successfully perform manipulation
tasks, robust strategies for grasping and motion execution
are required, as well as adaptive strategies to comply to
sensed changes, or reactive behaviors able to recover from

unforeseen situations by reasoning on failures.
Many advances have been already done in all these lines,

although great efforts are still needed to make robots fully
autonomous. In this direction, the paper contributes with the
proposal of a reasoning-based robotic manipulation frame-
work with robust and adaptive planning and execution capa-
bilities.

A. PREVIOUS WORKS
Task and motion planning (TAMP) is a discipline devoted
to find, for a given task, a complete sequence of actions
along with feasible paths that allows to fulfill it. For robotic
manipulation, this may be challenging since the actions re-
quired to perform the task may be subject to strong geometric
constraints from the environment (lack of space for placing
objects, occlusions) and the robot (reachability of objects,
kinematic constraints of the manipulators). One of the ways
of combining planning levels is to rely on classic task plan-
ning approaches, like the HTAMP [1] approach that is based
on the heuristic-based Fast Forward task planner (FF, [2]),
which has been modified so that its heuristic function takes
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geometric constraints into account through various geometric
reasoning procedures. The HTAMP approach will be used
in this work through ROS services (Robotic Operation Sys-
tem, [3]).

Classical task planning approaches, that assume known
initial values of variables, deterministic actions and a set of
goals defined over the variables [4], are usually modeled us-
ing the Planning Domain Definition Language (PDDL, [5]),
which is an action-centered language that uses pre- and
post-conditions to describe, respectively, the applicability of
actions and their effects. Planning tasks specified in PDDL
are separated into two files, a domain file for predicates and
actions, and a problem file for objects, initial state and goal
specification. The closed-world assumption is intrinsically
present for classical task planning approaches modeled with
PDDL. To handle PDDL this work will use the Universal
PDDL Parser [6], which is a package for parsing planning
problems in PDDL format.

When executing the planning tasks, difficulties may arise
if the states encountered differ from the ones expected. To
deal with this, a recent work [7] interleaves the symbolic and
geometric search processes by calling a motion planner at
every step of the symbolic search and by tentatively assigning
geometric parameters to the current symbolic state before
advancing to the next action. The resulting plan remains
valid even if the objects are moving and can be executed by
reactive controllers that adapt to the environmental changes.
Nevertheless, this adaptation is done at the action execution
level (i.e., controller adaptation), not at a plan generation
level (i.e., adding actions to the plan). The adaptation at
a plan generation level requires of a reasoning mechanism
to infer the actions to be added to recover from the cur-
rent unexpected situation. In this line, this work will intro-
duce a methodology towards automating adaptive behaviors,
demonstrating its ability to adapt to changing environments
both in simulation and real experiments.

Also, knowledge plays a significant role in enhancing the
capabilities of the robots and make them able to comply with
the actual situations encountered, like e.g. the hierarchical
representation composed of geometric and symbolic scene
graphs used in [8] as a structured, object-centric abstraction
of manipulation scenes that can be quickly processed by
graph neural networks to plan the task. However, in order to
structure knowledge for reasoning purposes, ontologies arise
as hierarchical structures expressing the universe of discourse
based on relations, such as is-a and has-a, between concepts
and instances of classes, being these concepts, instances, and
relations expressed in formal languages. Many studies have
investigated the use of knowledge in planning using ontolo-
gies [9], like KnowRob [10] or PMK [11]. This work will
extend the PMK ontology to reason on the required actions
to solve a task, thus breaking the closed-world assumption
by flexibly configuring the task planning PDDL domain and
problem files.

A TAMP framework was proposed in [12] that used FF
and The Kautham Project (TKP, [13]), a motion planning

tool based on the Open Motion Planning Library suite of
sampling-based motion planners (OMPL, [14]) that offers
motion planning and geometric reasoning ROS services. The
framework basically defines an interface layer as an XML file
where to include the geometric description of each symbolic
action, and implements a TAMP manager as a ROS client
that calls the task and motion planning services. This TAMP
framework has been updated with the use of HTAMP instead
of FF, allowing to always obtain sequences of actions that are
feasible (although for simple manipulation tasks where the
task and motion planning levels are not very tightly coupled,
the use of FF may be enough).

Looking for the real execution of the sequence of mo-
tions required to fulfill a manipulation task, a preliminary
work [15] introduced the idea of extending this TAMP
framework by making the TAMP manager to automatically
write an output XML file that represents the Behavior Tree
(BT, [16]) that may allow to execute the task with a real robot
using a BT executor. Behavior Trees are a good alternative
to Finite State Machines (FSMs, [17]), or to more ad hoc
methods like the automatic generation and parameterization
of skill primitives for maintenance automation tasks [18].
Since BTs can be represented in an XML format, to execute
the TAMP problems in a real robot, the framework simply
needs to generate the behavior tree XML file once the TAMP
problem is solved and prior to the real execution. Moreover,
the ability of BTs to be edited during run time and the fact
that one can design reactive systems with BTs, makes BT
executor a robust execution manager.

Other studies have also investigated the use of BTs with
an adaptive perspective at different levels, like a semi-
autonomous BT framework for the automation of sorting-
based industrial applications [19], a reactive mobile manip-
ulation system [20] where the adaptability comes from a
proposed robust and reactive motion controller allowing the
robots to achieve a desired end-effector pose taking into
account several constraints, or as an efficient general reactive
planning tool to adapt to dynamic environments [21]. Also,
with the aim of further increasing the adaptability, a recent
approach [22] proposed the combination of planning and
learning techniques to generate BTs. In a similar direction,
the combination of planning with AI techniques is proposed
here, using reasoning instead of learning.

B. PROBLEM STATEMENT AND SOLUTION OVERVIEW
Let us consider a working scenario with: a) one or more
robots able to perform some predefined (possibly big) set of
manipulation actions like Move, Pick, Place, Stack or Unstack;
b) a set of objects to be manipulated with known geometric
models and grasping transforms; c) a set of locations (defined
by some geometry and symbolic name) where robots or
objects can be placed; d) a perception system able to identify
and locate the pose of the objects and their locations. Then,
given a final state of the environment determined by the
user, a robotic system must be able to plan and execute a
manipulation task to change the state of the environment
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from the initial to the final desired one, despite possible
changes in the state of the environment encountered while
executing the task.

To cope with this problem the paper proposes a planning
and execution framework with (see Fig. 1): a) a perception
module able to detect the poses of the objects using fiducial
markers and to determine their locations, generating a list
of objects in the environment with geometric and symbolic
information; b) geometric and symbolic ontology-based rea-
soning modules able to reason on the locations of the objects
and on the actions required to solve a manipulation task
according to the current and desired goal states and the avail-
able robots, filling up the required information and, hence,
generating the PDDL domain and problem files as well as
the motion planning problem file; c) a TAMP generator
which combines the symbolic and geometric information and
configures the planning problem in a TAMP configuration
file; d) a task planner server able to find a sequence of actions
to solve a task, assuming a PDDL task description; e) a
motion planning server able to find collision-free paths and
to solve geometric queries, using geometric models of the
objects and the robots; f) a TAMP manager able to coordinate
the planning levels using the TAMP configuration file to
link symbolic and geometric information of the actions, and
able to write a behavior tree XML file; g) a behavior tree
executor able to execute a task in a flexible way, and to adapt
to changes at different levels, replanning at motion or task
level as required, or even reasoning on the required actions
to recover from an unexpected state. The recovery process
entails calling the perception module to observe changes
in the environment, calling the reasoning module to make
changes in the problem files, calling the TAMP generator
to reproduce the TAMP configuration file accordingly and,
finally, querying the TAMP manager to produce a favorable
BT XML file which the BT executor adapts to.

The contributions of the paper are:
• A smart manipulation system able to perceive and un-

derstand the current state of the environment, and to
reason on the actions required to solve the task, mod-
eling the task with the appropriate PDDL domain and
problem files.

• A robust execution mechanism that can automatically
generate and update BTs, giving rise to a behavior
reactive to changes at geometric and symbolic levels.

After this introduction, Sec. II presents the reasoning mod-
ule and Sec. III the behavior tree structure and its automatic
generation and update. Then, Sec. IV shows some demonstra-
tion examples and, finally, Sec. V presents the conclusions
and future works.

II. REASONING FOR TASK PLANNING
This section describes a reasoning module conceived to help
increasing the robot autonomy by automatically generating
the PDDL domain and problem files needed to solve a task.
Assuming the availability of a perception module able to de-
tect the objects and agents in the environment, the following

two challenges need to be addressed: 1) the interpretation of
the perceived environment through a reasoning framework
to understand the current scene; 2) the generation of the
task specific PDDL files, based on the current state of the
environment and assuming known all the possible actions
that can be executed in the domain and provided by a given
global domain PDDL file. This paper suggests the overall
schema shown in Fig. 2 to cope with the above mentioned
challenges.

A. ONTOLOGY-BASED REASONING FOR ROBOT
MANIPULATION
Robotic manipulation involves the planning at task level
(determining which is the sequence of actions to be done
to perform a given task) and at motion level (finding the
sequence of collision-free motions that allow to safely move
the robot from one configuration to another). In this scope, a
standardized ontological-based reasoning framework, called
Perception and Manipulation Knowledge (PMK), was intro-
duced in [11] as a tool to help task and motion planning
systems (TAMP) in terms of reasoning. PMK provides:

a) Reasoning for perception related to sensors and algo-
rithms, e.g. to determine which is the sensor to be used
in a given situation.

b) Reasoning about the objects features, e.g. to determine
if an object is pickable or not.

c) Reasoning for situation analysis to spatially evaluate the
objects relations between each other, e.g. to determine if
an object is behind another.

d) Reasoning for planning to reason about the precondi-
tions of actions, action constraints and geometric rea-
soning related to the robot and to the environment, e.g.
to determine if a grasping pose is reachable or to select
a feasible placement region.

PMK is extended here by including the knowledge about
the actions the available robots can perform, and by broad-
ening the object features related to those actions. Also rea-
soning predicates from PMK are extended to help in the
selection of the actions required to solve a given task and to
automatically set the PDDL domain and problem files. These
predicates allow robot-centered and state-centered reasoning:

1) Robot-centered reasoning
It includes the following predicates: a) find_robot

(Region, Robot) to return the available robots within
the environment and the regions they are located at;
b) find_robot_capability (Robot, Capability)

to return the actions a given robot can do; c)
find_robot_reach (Robot, Region) to check if a
given robot can reach a given region using its capabilities.

2) State-centered reasoning
State-centered reasoning is required to reason on the ini-
tial and goal state of the world. Even though the per-
ception module provides the poses of the detected ob-
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FIGURE 1: Schema of the proposed TAMP framework. The Reasoning is described in Section II, and the BT Generation and
Execution in Section III.

FIGURE 2: Flowchart of the overall symbolic reasoning
operation.

jects and agents, it does not provide the symbolic re-
gions where they are located, nor the spatial relation in-
formation between the detected objects (i.e. in, on, left,
right). For this purpose, spatial evaluation predicates from
PMK, which convert raw perceived environment informa-
tion into spatial locations and relations, are used to rea-
son on the state of the environment based on the per-
ceived objects, e.g. retrieve_symbolic_region_init

(objPose, symbolicRgn) predicate returns the symbolic
region of an object given its pose, and on (obj1, obj2)

predicate evaluates to true if object obj1 is on top of obj2.
These calculations are based on comparing perceived co-
ordinates of the objects with specific values depending on
the spatial relation definition. For instance, to infer the on
relation between two objects, the x and y coordinates should
be similar for the two objects, meanwhile the z coordinates

FIGURE 3: Knowledge management schema.

should be apart within a certain threshold.
In addition to finding object locations and the spa-

tial relations between the objects, the initial and goal
states can be retrieved with the following predicates in-
herited from PMK: 1) retrieve_symb_init (Task); 2)
retrieve_symb_goal (Task), which gather all the state
predicates that evaluate to true in the initial and goal state,
respectively.

The overall reasoning process through the above-
mentioned predicates queried over knowledge is presented in
Section II-C.

In order to reason over the knowledge, an intermedi-
ate layer between the knowledge and the user program is
required to organize the sequence of the predicates to be
queried with the relevant information coming from the per-
ception module. For this purpose, in this paper, the overall
knowledge management schema in Figure 3 is implemented
through a ROS interface.
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B. PDDL PARSER
In order to deal with the challenge to generate task spe-
cific PDDL files, the PDDL parser and writer tool called
Universal-PDDL-parser [6] is used. With the help of this
package, a global PDDL domain file with all the possible
actions that can be done with the robots available is first
parsed into its elements (e.g. the actions and the predicates
defining their preconditions and effects) and the contents is
stored using the classes within the package (with the help
of this hierarchical class structure, the links between the
elements in the global file are also preserved).

After reading and storing the global domain file, the
task specific PDDL files for the given task is automatically
generated by using the same parser tool to write into a
new PDDL file including only the actions that are rele-
vant for the task. The decision of this relevance is made
by the reasoner. In order to rewrite the task specific do-
main file, the feasible actions list determined by the rea-
soning framework is forwarded into print(std::ostream& os,
std::vector<std::string> actionList) function in the parser
package where os input is the new task specific PDDL file
to be generated and the actionList input is the feasible action
set coming from the reasoner.

C. AUTOMATIC PDDL GENERATION
PDDL files are automatically generated with the help of
the aforementioned perception module, reasoning predicates,
and PDDL parser. The reasoning process requires the com-
bination of the robot and state-centered reasoning predicates
discussed above to answer the query: Which are the actions
to be included in the PDDL files to solve this problem?.
Particularly, for a given task and situation, the following
information is obtained from the predicates introduced in
Sections II-A1 and II-A2:

• Spatial relations between the objects.
• Initial and goal states.
• Available robots and their capabilities.

Finally, based on this information: a) The robot assigned to
the task is selected; b) The PDDL problem file is written
with the actual initial state; c) The PDDL domain file is
written by the PDDL parser with the required actions to
solve the given task. The required reasoning predicates can
be extended according to the complexity of the task.

As an example, imagine that in a table-top manipulation
task to be done by a fixed robot, one of the objects is in
another counter out of the robot reach. In this case, the
reasoning module should determine that the Move action is
required, as well as a robot with navigation capabilities able
to perform that action.

III. BEHAVIOR TREE-BASED EXECUTION
Behavior Trees (BTs) is a useful mechanism to implement
an execution manager for a robotic system, which provides
modularity and re-usability features. The building blocks of
BTs are known as BT-nodes, which may be either Execution

FIGURE 4: Schema of the Behavior Tree ROS implementa-
tion.

Nodes or Control Nodes. The Execution Nodes are leaf
nodes, i.e. they do not have child nodes, and are used to
query the robotic system hardware, either to get a feedback
from the sensors or to perform a robot action. They can be
Action Nodes that return SUCCESS, FAILURE or RUNNING
and that can be preempted, or Condition Nodes that return
just SUCCESS or FAILURE and that cannot be preempted.
Control Nodes, on the other hand, are used to control the
execution flow by regulating a periodic signal, called tick,
amongst its multiple child nodes, one child node at a time, in
a given sequence. They can be Sequence Nodes that return
SUCCESS only if all of the child nodes return SUCCESS, or
Fallback Nodes that return SUCCESS as soon as one of the
child nodes returns SUCCESS. A highly reactive behavior can
be achieved by the variants of these nodes, called Reactive
Sequence Nodes and Reactive Fallback Nodes, which while
a given current node is RUNNING, the previous nodes in the
sequence or fallback are continuously ticked so as to monitor
a change in their state that shall abort the execution of the
running node.

Mathematically, BTs can be represented as directed
acyclic graphs and hence easily be described in an XML file.
Moreover, each node in a behavior tree can have input and
output data ports which provides flexibility in the exchange
of data between nodes and between different behavior trees.
To implement BTs for task and motion planning problems,
the behaviorTree.ROS [23] library can be used, which pro-
vide classes to initialize BT nodes as ROS nodes, allowing
them to act as clients to ROS Action Servers and Service
Servers (Fig. 4). As the BT action nodes can be preempted,
they are implemented as clients to ROS Action Servers,
while BT condition nodes are implemented as clients to ROS
Service Servers. The exchange of information from a BT
client to a ROS server is done via input-output ports of BTs,
using a variable storage system called Blackboard which can
be accessed using a key/value system.

This section proposes a BTs structure to execute the
sequence of actions of a manipulation task generated by
the TAMP framework described above, and how to auto-
matically generate the XML files that describe them. The
proposal seeks to achieve robustness in the task execution
and, with this aim, the main BT is defined as shown in
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Main Tree → Sequence

A: SetInitialBlackboard

? Fallback

?R Reactive Fallback

≠ Inverter A: SymbolicStateCheck

SUBTREE 

ReplanTaskMotion

SUBTREE 

TaskPlanBT

FIGURE 5: The main Behavior Tree.

Fig. 5, where a Reactive Fallback node is used which,
while the TaskPlanBT responsible of the task execution
is RUNNING (meaning it is performing the different actions
in the plan), a node called SymbolicStateCheck keeps
monitoring those variables of the state which are always
observable (e.g., an object being held by the gripper), so as
to interrupt the execution of the TaskPlanBT and launch
a ReplanTaskMotion process if an erroneous state is
detected in order to replan the task from the current state.
Those state variables which are not always observable (e.g.,
the pose of an object may be occluded by the robot while it is
moving) will be monitored just before the execution of each
robot action, as shown in the next section.

A. TASK-LEVEL BEHAVIOR
The TaskPlanBT is a simple BT sequence, as that shown in
Fig. 6(left), which will execute the actions of the task plan, as
provided by the task planner. The actions (Pick, Move, Place,
etc.) are BT subtrees named after the actions name plus a task
index (e.g., MOVE1, PICK2, MOVE3, PLACE4,...), and all have
the same general sequence structure shown in Fig. 6(right),
that includes:

• First, a symbolic check: the preconditions of the actions
are checked and if there is a mismatch between the
expected and observed state variables, a full replan is
triggered (details on the state module monitoring can be
found in [24]).

• Second, a geometric check: the relevant poses of the
objects involved in the action are checked, so as to verify
whether they are equal to those that have been used to
plan the motions (within a given tolerance), e.g. a Pick
action will look that the object to be picked at position
x=0.3 m, y=0.3 m and z=0 m is actually at that pose or,
otherwise, will replan a motion to comply to the actual
pose. This is different to the symbolic check because as
long as the predicates remain the same, this only has
an effect on the motion to be executed, not the task
plan. The objective is to fix small deviations from the
expected object poses, like for instance in the case a
Place action leaves the object slightly moved of where
it was supposed to be left, the next Pick will need a
correction.

• Then, after the preconditions are checked, the action
itself is executed following a BT subtree according to
the type of action (see next section).

• Finally, once the task has been performed, the expected

state is updated in order to be used in the next action
symbolic check.

B. ACTION-LEVEL BEHAVIORS

Each action of a task sequence is modeled with a BT com-
posed of different action nodes to control the robot motions.
For instance, a Pick task is carried out with a sequence
composed of: a) a MoveTraj action node responsible to
move the robot along a trajectory towards the grasp position
next to the object; b) a Gripper action node to close the
gripper; and c) another MoveTraj action node to go back to
the safe home position.

C. REPLANNING BEHAVIORS

To do a replan at task and motion levels, the following files
need to be updated: a) the PDDL problem file required by
the task planner needs to be updated with the initial state
according to the new observed predicates; b) the motion
planning problem file required by the motion planner and
the TAMP configuration file required by the TAMP manager
need to be updated with the new poses of the objects. This
is done following the ReplanTaskMotionBT shown in
Fig. 7. After its execution, a new BT results and, once the
BT executor is aware of it, it switches the BT to the new
one to be executed. On the other hand, if there are no sym-
bolic mismatches but only geometric differences, a behavior
called ReplanMotionBT is triggered which changes the
geometric files and calls the motion planner with the updated
information.

D. AUTOMATIC GENERATION OF BEHAVIOR TREES

The BTs are automatically generated by the TAMP manager.
First, the main BT is generated and, once the task planner
service is called, the manager writes the XML file for the
TaskPlanBT with the particular task plan, hence complet-
ing the first instance of Task-Level Behavior.

Then, the TAMP manager manages each of the actions in
the plan using the information of the TAMP configuration
file and calling the motion planning service when necessary.
For each action, it writes the XML file corresponding to the
Action-Level Behavior tree of the action. This includes the
coding of the trajectory generated by the motion plan as
required by the ROS Action Service of the robot. Once all
the actions have been managed, the first instance of all the
Action-Level Behaviors is complete.
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TaskPlanBT → Sequence

SUBTREE 

ACTIONBT1

SUBTREE 

ACTIONBT2

SUBTREE 

ACTIONBT3

ActionBT

→ Sequence

Preconditions

A: Action

A: SymbolicStateCheck

SUBTREE

ReplanTaskMotion

A: GeometricCheck

A:UpdateExpectedState

→ Sequence

? Fallback

Symbolic Check

? Fallback

Geometric Check

SUBTREE

ReplanMotion

FIGURE 6: (left) a TaskPlanBT with 3 generic actions; (right) the ActionBT general sequence structure for the actions,
where a symbolic check and a geometric check are done before the actual execution of the action.

ReplanTaskMotion

→ Sequence

A: ModifyPddl A: RewriteTampconfig A: ModifyKthXml A: InitTamp A: FindPlan A: FindTraj

FIGURE 7: ReplanTaskMotionBT: the sequence of ac-
tions to be performed to replan the whole task from the
current state, i.e. to plan the sequence of actions and their
motions.

FIGURE 8: Table top manipulation task: the three colored
objects must be moved between regions.

The generated BT XML files are passed to the BT executor
which is responsible for initializing the tree, ticking the nodes
of the BT and monitoring the state of the Task-level and
Action-level behaviors. If a change in state is observed, the
tree is re-initialized or partially rewritten according to the
change being symbolic or only geometric, hence executing
the task and motion planning problem in a robust manner.

IV. VALIDATION
In this section three examples in two different scenarios
have been designed to illustrate the ability of the proposed
framework to automatically generate the code to robustly
execute a manipulation task, recovering from different situa-
tions as required. The examples will illustrate the capability
of the proposed framework to adapt to changes at geometric,
symbolic or ontological level. No performance measures are
reported since the single purpose is the validation of the

FIGURE 9: Scenario 1 example 1: Goal (left) and init (right)
configurations.

FIGURE 10: Scenario 1 example 2: Goal (left) and init (right)
configurations.

adaptation capabilities provided.
The first scenario, used by the first two examples, is a

table-top manipulation problem performed by the dual-arm
Yumi robot. The table is divided into three regions, namely
ZONEL, ZONER and ZONELR which are reachable by the left
arm, the right arm or both of them, respectively. The task
consists in moving objects (square prisms) from one zone to
another (see Fig. 8).

The perception in the first scenario is done with a Kinect
Camera and the use of ArUco fiducial markers attached to the
objects which allow detection of their poses.

Geometric-level adaptation: The first example is used
to illustrate adaptation capability at geometric level. The
task consists in moving OBJB from ZONEL to ZONER (see
Fig 9). The solution can be visualized here: https://youtu.be/
jDIdwYBZYVg. In a second execution of the task, the object
is purposely moved by an operator (see Fig. 11 left), that
slightly changes its pose while being in ZONELR. Since the
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FIGURE 11: Human operator changing the object poses to
force the need of replanning.

object continues to be in its expected location, no task replan
is required but just the second Pick action needs to adjust its
motion by calling the ReplanMotionBT, as shown in the
second video https://youtu.be/zeRMDqWBBXc.

Task-level adaptation: The second example is used to il-
lustrate adaptation capability at task level. In this task, objects
OBJA, OBJB and OBJC are moved, respectively, from regions
ZONELR, ZONER and ZONEL to regions ZONEL, ZONELR
and ZONELR (see Fig 10). The original plan execution is
shown in this video: https://youtu.be/zCy2hL7fELk. In a
second execution of the task, the object OBJB is purposely
moved by an operator (see Fig. 11 right), from ZONER where
it is expected to be toward ZONEL where it will be observed.
A task replan is required as shown in the second video:
https://youtu.be/CI1mGexu8o8.

In the second scenario, used in the third example, there
are two robots, the Yumi and the TIAGo, in a simulated
environment. It is a manipulation task to be performed by the
Yumi robot to stack objects on its working table (Fig. 12-top).
The solution sequence of actions is: Unstack-Stack-Pick-Stack.

Ontology-level adaptation: This example is used to il-
lustrate adaptation capability at reasoning level. Upon the
start of the execution the initial pose of the blue cylinder
is changed to a location out of the reach of the Yumi robot
(Fig. 12-bottom). This requires that the reasoning module
to conclude that the TIAGo robot is required because it is
a mobile manipulator able to perform the Move action. The
final solution sequence has seven actions, the first three per-
formed by the TIAGo and the last four by Yumi: Pick-Move-
Place-Unstack-Stack-Pick-Stack. The video of the simulation is
available at https://youtu.be/MI7NOs1C_S0.

V. DISCUSSION AND CONCLUSIONS
Robotic manipulation requires task and motion planning
capabilities in order to find a feasible sequence of actions,
which is a challenging problem since the interaction between
both planning levels may be relevant. In this paper, an
heuristic-based task and motion planner is used that is able

to find such a feasible sequence of actions, but the focus of
the proposed approach is on how to actually execute it in a
robust manner, i.e. the work has focused on the development
of tools to provide robots with the capabilities to make them
autonomous enough to automatically execute manipulation
tasks, monitoring possible changes in the environment and
replanning as necessary to adapt to them.

The proposed approach has first dealt with the develop-
ment of reasoning capabilities to reason on the environment
(objects and available robots) and on the task goal to be
achieved in order to find out the required actions to solve
the task, and to assist the task planner with the automatic
generation of the PDDL files. Moreover, the proposal has
presented a behavior-trees (BT) execution framework that:
a) automatically generates the BTs required to execute the
task and b) automatically updates them in order to react
to possible changes at the geometric level (a new motion
is needed for a given action), at symbolic level (a new
sequence of actions is required to solve the task), or at the
ontological level (a new PDDL domain file is required with
a different set of actions in order to find the plan to solve
the task). This combination of planning and reasoning within
a BT execution framework increases the adaptability of the
system, i.e. the reasoning mechanism provides the missing
information that may be required while planning or executing
the task, which increases the adaptation performance. This is
not the case in similar approaches such as [22], that obtains
a reactive and flexible system by combining planning and
learning within a BT execution framework, but that requires
having prior complete knowledge to plan the task correctly
and that may fail when the necessary knowledge is missing.
Moreover, in our framework, we demonstrate the proposal in
a real scenario.

The adaptive task and motion planning capabilities of the
proposed framework is a step towards making robots more
aware, smarter and reactive. The paper has validated the
viability of the approach. We are currently working in three
main directions: a) extending the actions that the robots can
do to quantitatively evaluate the performance of the proposal;
b) incorporating the human operator as an agent so as to
allow robots to play the co-worker role; c) improving the
monitoring mechanisms so as to be able to cope with failures
caused by perception and reasoning errors.
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