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Abstract—The article deals with the problem of planning in the
task space in the presence of vector fields, while verifying and val-
idating the constraints in the configuration space. The proposed
approach, called the Task Space Vector Field Rapidly-exploring
Random Tree (TSVF-RRT) algorithm, extends the Task-Space
Rapidly-exploring Random Trees (TS-RRT) algorithm by in-
corporating vector fields into the task space, while avoiding
non-trivial constraints on the configuration space. The planner
restricts the search to a lower dimensional space, minimizing
the upstream functional. To evaluate the proposed approach,
graphical simulations are presented, carried out using a planar
manipulator of 10 DOF. Possible advantages that encourage
further research in this line are discussed.

Index Terms—Motion Planning, Task-Space, Vector Field

I. INTRODUCTION

Planning a collision-free path in real environments is a
fundamental task in robotics. Many physical systems have
hundreds of Degrees of Freedom (DOF). The human body,
for example, has 244 DOFs, the majority of them in the
hands and the feet. Most of the practical algorithms used in
high-dimensional environments use sampling-based planners,
including Probabilistic Route Maps (PRMs) [1] and Rapidly
Exploring Random Trees (RRTs) [2]. These methods use
random tests to obtain the connectivity of the free space,
usually in configuration space (C-Space). Despite the suc-
cess of these planners on certain classes of high-dimensional
problems, the performance of the algorithms can be very
sensitive to aspects like the way random samples are chosen
and the distance metric used. Also, as with most planners,
the complexity grows with the dimensions of the problem.
In contrast, Task-Space sampling-based planners allow fast
planning in high-dimensional systems by exploring actions
in a low-dimensional, e.g. Task-Space RRT (TS-RRT) [3].
Usually the Task-Space is the Cartesian space where the robot
operation is performed, and it usually represents the end-
effector positions in the case of manipulators.

Although the computational cost per one sampling is gener-
ally more challenging in Task-space than in C-Space, planning
within Task-Space has advantages such as: finding the path
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and goal configuration simultaneously, and easily using envi-
ronmental information [4]. Instead of specifying a particular
set of desired joint angles for the entire robot performing
a grasping task, it can be considered only the position of
the hand (solution in Task-Space), finding a feasible path
and a corresponding goal configuration in the C-Space to the
desired goal position in the Task-Space at the same time. In
addition, planning within Task-Space allows to take advantage
of environmental information directly.

Many planners in C-Space often suffer due to narrow
passages or local traps problems. An approach proposed for
these cases is inspired from obstacle avoidance techniques.
It does not explicitly build a roadmap but, instead, builds a
differentiable real-valued function, called potential function,
that guides the motion of the moving object. The potential
function usually consists of an attractive component, which
pushes the robot towards the goal, and a repulsive component,
which pushes the robot away from obstacles [5]. Planning
on a configuration space in which a potential function value
is associated with each point can also be cast as a vector
field planning problem, by taking the (negative) gradient field
of this potential function as the vector field [6]. The vector
field path planning problem arises in a wide range of robotic
applications, highlighting the Vector-Field RRT (VF-RRT)
algorithm [7]. The VF-RRT algorithm extends a tree in a
similar way to the EXTEND function of the classical RRT
algorithm, but biasing the selection of random directions by
means of optimal (or desired) vectors in such a way that
the tree explores the directions indicated by the vector field
before other directions. While vector field-based navigation
combines the kinematic path planning problem with lower-
level feedback controller design, which is robust despite the
presence of disturbances, it cannot easily deal with obstacles
in spaces with dimensions higher than two [8].

The method proposed here is called Task Space Vector
Field Rapidly-exploring Random Tree (TSVF-RRT) and is
an extension of the TS-RRT algorithm, incorporating vector
fields in the Task-Space (low dimension), while validating the
constraints in the configuration space. The algorithm allows to
easily deal with obstacles in the Task-Space and incorporates
geometric constraints for the end-effector, by orienting the
vector field in the direction of said constraint, guiding the
growth of the tree in C-Space.



After this introduction, the article is organized as follows.
Section 2 exposes the background related to the proposed
planner. Section 3 provides a description of the TSVF-RRT al-
gorithm. Section 4 presents experimental results with different
geometric constraints using on a planar manipulator. Section 5
presents a discussion of the results and the conclusions of the
work.

II. RELATED BACKGROUND

A. Vector-Field RRT (VF-RRT)

The VF-RRT algorithm is a planner that favors the tree
growth in the direction of a vector field f(q) to obtain trajec-
tories with an upstream criterion. Its operation is similar to that
of the Rapidly-Exploring Random Trees (RRT) algorithm. The
difference is a biasing in the selection of random directions
by means of optimal (or desired) vectors in such a way that
the tree explores the directions indicated by the vector-field
before any other directions [9]. Given the initial configuration
qinit (root node of the tree) and the final configuration qgoal, a
random node qrand is generated in the C-Space, and then the
nearest neighbor node qnear of qrand in the tree is selected.
Then, a unit vector vrand from qnear to qrand and a vector
vfield of the vector field are determined.

The factor ω is a weight value that describes how much to
draw vnew toward the vfield direction. As ω becomes bigger,
vnew tends to be directed toward vfield. The growth direction
of the tree is an intermediate direction vnew between the vrand
and the vector field vfield. The new node qnew is obtained
from the extension with stepsize δ from qnear in the direction
of vnew (Fig. 1). This is repeated until the distance between
qnew and qgoal is less than the connectivity criterion [9].

Fig. 1. Determination of a new node in the VF-RRT algorithm [7].

The VF-RRT algorithm adaptively balances between ran-
dom exploration and deterministic vector field following. The
algorithm retains several of the desirable features of the
RRT algorithm, e.g. the Voronoi bias property, computational
efficiency, and algorithmic simplicity. In [6] its application in
non-honolonomic systems was demonstrated by using as an
example a car-like model.

B. Task-Space RRT (TS-RRT)

The TS-RRT algorithm consists of building a tree of sam-
ples in the Task-Space, while verifying and validating the
constraints in the C-Space. The implemented TS-RRT planner
is based on the structure of the algorithm provided by the

Open Motion Planning Library [10]. The operation of the
TS-RRT is described in Algorithm 1. First, the initial and
final configuration is projected onto the Task-Space (Line 4
and 5) and the sample tree T rooted at qstart and xstart is
created (Line 6). Each node in the tree contains information
from both the C-Space and the Task-Space. Iteratively, the
tree grows until a certain stopping criterion is met (Line 7),
e.g. maximum number of iterations, maximum size of the
tree or specified period of time. At each iteration, a random
sample, xrand , is generated directly in the Task-Space. In
the random process, the algorithm can choose the actual
goal state with a certain probability. This bias, usually set to
around 5%, allows to quickly connect T with xgoal (Line 9).
Otherwise, the sample is obtained from a uniform distribution
in a delimited region (Line 11). Subsequently, the tree grows
towards xrand by adding a new configuration xnew, calculated
by the TS-EXTEND function (Line 13) detailed below. If
the new configuration xnew matches xgoal (Line 14), then
the algorithm has found a solution and it returns the path
connecting qstart and qgoal through the configurations of the
tree T (Line 16). Otherwise, this procedure is repeated with
a new xrand configuration. Finally, ∅ is returned (Line 19) if
the stopping criterion is satisfied with no solution found.

Algorithm 1 BUILD TS-RRT
1: In: Initial Configuration qstart ∈ Cfree

2: Goal Configuration qgoal ∈ Cfree

3: Out: Path P ∈ Cfree between qstart and qgoal
4: xgoal ←− f (qgoal)
5: xstart ←− f (qstart)
6: T←− InitTree[qstart, xstart]
7: while StopCriteria(T) do
8: if p < GoalBias then
9: xrand ←− xgoal

10: else
11: xrand ←− SampleTask()
12: end if
13: xnew ←− TS-EXTEND (T, [xrand, qrand])
14: if xnew = xgoal then
15: P ←− Path(T)
16: return P
17: end if
18: end while
19: return ∅

The TS-EXTEND function, described in Algorithm 2,
follows the procedure below to extend the tree T towards the
xrand configuration. First, the TS-NEAREST-NEIGHBOR()
function selects from the configurations of the tree T the
nearest node xnear to xrand in Task-Space (Line 5). Then,
a small step of predefined length ε is made from xnear to
xrand, reaching a new node xnew (Line 6), which is projected
on to the C-Space (Line 7). If the line segment between
qnear and qnew is valid, i.e. along the segment there are no
collisions of the robot with itself or with the environment
(Line 8), the segment is added to the tree (Line 9) and



xnew is returned (Line 10). If it is invalid, the tree does
not grow and ∅ is returned (Line 12). A Voronoi bias in
the Task-Space can dramatically improve the performance of
random motion planners while avoiding non-trivial constraints
on the C-Space, by encouraging exploration of empty regions
in the Task-Space, rather than in the entire C-Space, which
allows solutions to be found directly.

Algorithm 2 TS-EXTEND
1: In: Sample tree T
2: Configuration xrand
3: Configuration qrand
4: Out: Configuration xnew
5: [xnear, qnear] ←− TS-NearestNeighbor (T, xrand)
6: xnew ←− TS-Control (xnear, xrand)
7: qnew ←− f (xnew)
8: if ValidSegment (qnear, qnew) then
9: AddSegment (T, [xnear, xnew], [qnear, qnew])

10: return xnew
11: end if
12: return ∅

III. PROPOSED PLANNER

The proposed planner, Task Space Vector Field Rapidly-
Exploring Random Tree (TSVF-RRT), is based on the standard
TS-RRT, which does not incorporate information to sample
in the task space. This means that TS-RRT performs pure
exploration, which causes the Voronoi bias in the task space,
i.e., at each iteration, the probability that a node is selected
is proportional to the volume of its Voronoi region; hence,
search is biased toward those nodes with the largest Voronoi
regions (representing unexplored regions of the configuration
space) [11]. The Voronoi bias helps to quickly explore the
entire Task-Space, but this can increase the probability of
exploring areas far from the goal [4]. To solve this problem,
the proposed planner TSVF-RRT, performs the exploration in
the Task-Space biasing based on a vector field. Incorporating
this vector field into a lower dimensional space allows to better
deal with obstacles [8], constraining the growth direction in an
intermediate direction between that indicated by the random
sample (vrand) and that of the vector field (vfield), i.e.,

vaux ←− αvfield + βvrand, (1)

where the weights α and β are controlled by a parameter λ > 0
such that vaux → vfield if λ → ∞ and vaux → vrand if
λ→ 0. λ is initialized in a predefined λinit and then updated
every k iterations [6]. The proposed planner will use the
method in [12] to update λ, which initializes it to λmax, that
is, a value high enough for the tree to follow the vector field in
the first iteration, updating λ in each iteration. λ is bound in a
range [λmin, λmax] to prevent it from overflowing or growing
too large unnecessarily. λmin and λmax are set to 10−3 and
105, respectively.

The position of the new candidate node xaux is obtained
by extending the stepsize (δ) from xnear in the direction of
vaux,

xaux ←− xnear + δvaux (2)

The new node xaux is projected onto the C-Space obtaining
a new configuration, which will be incorporated into the
algorithm as qaux in each iteration, qaux guides the growth
of the tree in the C-Space based on the vector field of the
Task-Space. Then, the configuration qnear nearest to qaux is
selected and a defined step is taken from qnear in the direction
of qaux, thus reaching a new configuration qaux. If the line
segment between qnear and qaux is valid, qaux is added to the
tree (Fig. 2).

Unlike the TS-RRT algorithm, which directly grows the
tree in the Task-Space with a distance function defined also
in the Task-Space [3], the TSVF-RRT algorithm consider the
behaviors of the local planner. A Task-Space distance function
frequently leads to failed local planning, because a pair of
nodes has a close distance in Task-Space, but a far distance in
C-Space. This causes inefficient performances, since its opera-
tions include, in addition to the inverse kinematics calculation,
several collision detection calls [13].

The operation of the TSVF-RRT planner is described in
Algorithm 3. First, a random node xrand is generated directly
in the Task-Space (Line 12). Then, in the TSVF-NEAREST-
NEIGHBOR() function, the xnear node nearest to xrand is se-
lected and projected onto the C-Space (Line 14). Subsequently,
in GetNewDirection() a new xaux is obtained (Line 15).

Algorithm 3 BUILD TSVF-RRT
1: In: Initial Configuration qstart ∈ Cfree

2: Goal Configuration qgoal ∈ Cfree

3: Vector Field field
4: Out: Path P ∈ Cfree between qstart and qgoal
5: xgoal ←− f (qgoal)
6: xstart ←− f (qstart)
7: T←− InitTree[qstart, xstart]
8: while StopCriteria(T) do
9: if p < GoalBias then

10: xrand ←− xgoal
11: else
12: xrand ←− RandTask()
13: end if
14: [xnear, qnear] ←− TSVF-NearestNeighbor (T, xrand)
15: xaux ←− GetNewDirection ([xnear, xrand], T, field)
16: qaux ←− f−1 (xaux)
17: qnew ←− TS-EXTEND (T, [xnear, qnear, qaux])
18: if qnew = qgoal then
19: P ←− Path(T)
20: return P
21: end if
22: end while
23: return ∅

GetNewDirection(), described in Algorithm 4, returns xaux
using the following steps. First the unit vector vrand is



determined from xnear to xrand and the vector vfield of the
vector field. The weights α and β describe how much vaux
tends towards the direction of vfield or vrand respectively,
according to (1). Once vaux is obtained, the position of the
new node xaux is obtained from qnear in the direction of
vaux with the stepsize δ. The node xaux is projected onto the
C-Space (Line 16). The result of the projection will be the
qrand random configuration, which will favor the growth of
the tree in C-Space based on the direction of the vector field
in Task-Space.

Algorithm 4 GetNewDirection
1: In: Configuration qnear, xnear
2: Sample tree T
3: Vector Field field
4: Out: Configuration xaux

5: vrand ←−
xrand − xnear
‖ xrand − xnear ‖

6: vfield ←− GetVectorField (xnear, field)
7: [α, β] ←− GetWeights (vrand, vfield,T)
8: vaux ←− αvfield + βvrand
9: xaux ←− xnear + δvaux

10: return xaux

The TSVF-EXTEND() function, described in Algorithm 5,
extends the tree T to the qrand configuration in a similar way to
the RRT algorithm [14]. If the new configuration qaux matches
qgoal, then the algorithm has found a solution, returning the
path connecting qstart and qgoal. If the stopping criterion
is satisfied without having found a solution, the algorithm
returns ∅.

Algorithm 5 TSVF-EXTEND
1: In: Sample tree T
2: Configuration xnear, qnear, qrand
3: Out: Configuration xaux
4: qaux ←− qnear + min (ε, ‖ qrand− qnear ‖)

qrand − qnear

‖ qrand − qnear ‖

5: xaux ←− f (qaux)
6: if ValidSegment (qnear, qaux) then
7: AddSegment (T, [xnear, xaux], [qnear, qaux])
8: return qaux
9: end if

10: return ∅

IV. RESULTS

In this section, some examples of a planar manipulator that
needs to find a suitable trajectory from a given starting position
to a given final configuration (Fig. 3). The Task-Space used is
the cartesian coordinate of the end-effector. Four algorithms
were tested in this problem, RRT, RRT-Connect, TS-RRT, and
TSVF-RRT. We will compare the efficiency of the algorithms
in terms of the time t required to complete the path search, the
number n of iterations, and the success rate (the percentage

Fig. 2. Schematic of the TSVF-RRT planner. The Task-Space (left) shows the
fetching of xaux with an embedded vector field. The new node is projected
on the C-Space (right), where the projected configuration is used as the qaux
for the growth of the sample tree.

of successful executions) within the maximum planning time
limit (30 seconds). The robot has 10 links, all of equal length.

The approach proposed in this work has been implemented
within The Kautham Project [15], a motion planning and sim-
ulation environment developed at the Institute of Industrial and
Control Engineering (IOC-UPC) for teaching and research.
The experiments were run on an 1.80GHz Intel i7-8565U,
16GB RAM PC + Ubuntu 20.04.4 LTS.

Figure 3 shows the results of the RRT algorithms (a),
the RRT-Connect algorithm (b), and the TS-RRT algorithm
(c). The figures show the planar manipulator trees (cyan),
and solution paths (red) obtained with the planners, and the
planar manipulator. Fig. 4 shows the results of the TSVF-
RRT algorithm. Four regions have been artificially imposed
on Task-Space, each with a vector field imposing different
direction of movements (indicated by arrows). The vector-field
points downwards in the left region, rightwards in the middle-
bottom region, and upwards in the right region. However, it
does not establish a clear direction of movement in the middle-
top region. The end-effector should go from xstart to xgoal,
with the vector-field guiding the growth of the tree in C-Space.

Table 1 shows the average results after 30 executions of the
mentioned algorithms, with the planning time limited to 30 s.
In the table 1 it is observed that for the RRT-Connect algorithm
the path found is shorter and the tree has explored a smaller
area in C-Space than in the case of the other algorithms.

The average time t = 0.287 s of the RRT algorithm,
shows that the speed of this algorithm is higher than that
of the TS-RRT and TSVF-RRT algorithms, even though the
number of iterations n = 715 is five times higher than the
TS-RRT algorithm with n = 142. RRT algorithms have been
found to be quite fast in open environments [13]. In the
proposed planner TSVF-RRT, it is observed that the tree tends
to explore the directions indicated by the vector field before
other directions. Even so, it presents a time t = 1.727 s smaller
than the TS-RRT algorithm with t = 3.584 s.

TABLE I
COMPARISON OF THE FOUR ALGORITHMS IN 2D ENVIRONMENT.

Algorithm Success rate (%) Planning time (t) N° of iterations (n)
RRT 100 0, 2875 715
RRT-Connect 100 0, 0687 19
TS-RRT 100 3, 584 142
TSVF-RRT 100 1, 727 163



Fig. 3. Results of (a) RRT, (b) RRT-Connect and (c) TS-RRT in 2D
environment. All figures show the initial configuration of the robot and the
search tree in the Task-Space.

After obtaining these results in a space free of obstacles,
a second problem is generated incorporating an obstacle in
the path of the planners. The intention of this problem is to
observe the response of the TSVF-RRT planner in a space
with obstacles.

The artificially imposed regions in Task-Space (Fig. 4.b)
favor the growth direction of the end-effector towards the goal
and away from the obstacle. Figure 5 shows the process of the
planners RRT (a), RRT-Connect (b), TS-RRT (c) and TSVF-
RRT (d) with the built-in obstacle (red) in each of them.

Table 2 shows the average results after 30 executions. It is

Fig. 4. Result of (a) TSVF-RRT in 2D environment and (b) the imposed
vector field in Task-Space.

TABLE II
COMPARISON OF THE FOUR ALGORITHMS IN 2D ENVIRONMENT WITH

OBSTACLE.

Algorithm Success rate (%) Planning time (t) N° of iterations (n)
RRT 0 − −
RRT-Connect 100 5, 944 1620
TS-RRT 73 21, 299 826
TSVF-RRT 100 11, 885 741

observed that the RRT algorithm does not find a successful
path within the time limit. In the case of the RRT-Connect
algorithm, the found trajectories required an average time
t = 5.944 s, smaller than those of the TS-RRT (t = 21, 299 s)
and TSVF-RRT (t = 11.885 s) algorithms. Even so, the tree
of the TSVF-RRT algorithm explores a smaller area, with a
lower number of iterations (n = 741) compared to the RRT-
Connect (n = 1620) and TS-RRT (n = 826) and a success
rate of 100% versus 73% presented the TS-RRT. Even when
the proposed planner requires more time than RRT-Connect,
it tends to explore the directions indicated by the vector field
before other directions, better complying with the constraints
imposed in the Task-Space.



Fig. 5. Results of (a) RRT, (b) RRT-Connect, (c) TS-RRT and (d) TSVF-RRT
in 2D environment with obstacle.

V. CONCLUSION AND FUTURE WORK

The paper has presented a motion planner called Task Space
Vector Field Rapidly-exploring Random Tree (TSVF-RRT).
Based on the combination of the TS-RRT and VF-RRT al-
gorithms, it maintains the good properties of both approaches,
by adaptively balancing between random spatial exploration
and tracking of deterministic vector fields in low-dimensional
space. Experimental results for a planar manipulator show that
this algorithm can achieve good performance in 2D environ-
ments and its efficiency in the number of iterations is superior
to RRT, RRT-Connect and TS-RRT algorithms. However, at
runtime it has lower efficiency than some of them. This may
be because the computational cost per test is generally more
challenging in the Task-Space than in the C-Space, when
performing a projection (IK and FK) between both spaces.
Future work is focused on extending the planner to 3D real
world environments and, also, automatically define the vector
field to incorporate constraints of the task to generate feasible
movements from high-level requirements. Solving the problem
of exploration in a constrained task space can be a powerful
tool to allow a variety of planning algorithms to work in higher
dimensional spaces.
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