
Reasoning and state monitoring for the robust
execution of robotic manipulation tasks*

Oriol Ruiz
Institute of Industrial and Control Eng.

Universitat Politècnica de Catalunya
Barcelona, Spain

oriol.ruiz.celada@estudiantat.upc.edu

Jan Rosell
Inst. of Industrial and Control Eng.
Universitat Politècnica de Catalunya

Barcelona, Spain
ORCID: 0000-0003-4854-2370

Mohammed Diab
Dept. of Electrical and Electronic Eng.

Imperial College London
London, UK

ORCID: 0000-0002-5743-5190

Abstract—The execution of robotic manipulation tasks needs
to be robust in front of failures or changes in the environment,
and for this purpose, Behavior Trees (BT) are a good alternative
to Finite State Machines, because the ability of BTs to be edited
during run time and the fact that one can design reactive systems
with BTs, makes the BT executor a robust execution manager.
However, the good monitoring of the system state is required
in order to react to errors at either geometric or symbolic level
requiring, respectively, replanning at motion or at task level.
This paper make a proposal in this line and, moreover, makes
task planning adaptive to the actual situations encountered by
knowledge-based reasoning procedures to automatically generate
the Planning Domain Definition Language (PDDL) files that
define the task.

Index Terms—Robotic manipulation, task planning, task mon-
itoring, reasoning, ontology.

I. INTRODUCTION AND OVERVIEW

Some of the required capabilities for mobile manipulators
to make them able to autonomously move and work in semi-
structured human environments are:

• Smart perception capabilities that are able to, not only
perceive, but to understand the current state of the envi-
ronment (including the robot itself).

• Adaptive planning capabilities that are able to: a) plan
at task levels according to the current state of the en-
vironment and to the goal to be achieved, updating the
initial state and choosing the actions the robot can do
to solve the problem; b) plan at motion level according
to the current poses of the objects, modifying grasping
configurations if necessary, object placement poses or the
robot base location, and choosing the most appropriate
motion planner.

• Robust execution capabilities that are able to integrate
both the smart perception capabilities and the adaptive
planning capabilities to avoid failures or, if failures occur,
be able to reason on the failed state in order to plan the
best recovery strategy.

This paper partially contributes to the last two capabilities.

This work was partially supported by the Spanish Government through the
project PID2020-114819GB-I00

A. Planning capabilities

On the one hand, task planning copes with the determination
of the sequence of actions to be done to perform a given task.
In this sense, many problems can be tackled with classical
planning approaches, that assume known initial values of
variables, deterministic actions, and a set of goals defined over
the variables [1]. These problems are usually modeled using
the Planning Domain Definition Language (PDDL, [2]), which
is an action-centered language that use pre and post-conditions
to describe, respectively, the applicability of actions and their
effects. Planning tasks specified in PDDL are separated into
two files, a domain file for predicates and actions, and a
problem file for objects, initial state and goal specification.
On the other hand, knowledge plays a significant role in
planning, mainly to enhance the capabilities of the robots
and make them able to comply with the actual situations
encountered. Knowledge needs to be structured such that it
is usable for reasoning tasks and, in this line, ontologies arise
as hierarchical structures expressing the universe of discourse
based on relations, such as is-a and has-a, between concepts
and instances of classes, being these concepts, instances, and
relations expressed in formal languages. Many studies have
investigated the use of knowledge in planning using ontolo-
gies, like in the manipulation domain [3], in the navigation
domain [4], or in the perception domain for manipulation [5].
A review of the use of ontologies to give robot autonomy is
presented in [6].

This paper proposes the use of ontologies with knowl-
edge about the objects in the environment, their features and
possible manipulation constraints, and about the robots and
their capabilities, to reason on the type of actions and the
robot required to solve a given manipulation task. As a result,
the PDDL files shall be automatically generated, which can
then be used to solve the problem with any classical task
planner. This way breaks the closed-world assumption that is
intrinsically present in many task planning approaches.

B. Executing capabilities

In order to execute the planned manipulation tasks, Behavior
Trees (BT, [7]) can be used. BTs are modular and re-usable
tree structures conceived as sets of action-conditions generally
called behaviors. The BT nodes are broadly classified into two



State module

Perception 

Reasoning module

TAMP module Task 

planning
Motion 

planning

BT execution 

framework

Geometric Data

* Expected state
* Observed state

Reasoner 

Symbolic Data

State analysis

OntologiesUser

PDDL domain file
PDDL problem file

Problem Query

PDDL actions
PDDL predicates
PDDL objects

Problem module

PDDL actions
PDDL predicates
PDDL objects

Fig. 1. Overall System Schema

classes: Control Nodes, that help in regulating the execution
flow, and the Execution Nodes, which are leave nodes used
to get a feedback from environment (Condition Nodes) or to
perform a robot action (Action Nodes). A BT-based execu-
tion framework for task and motion planning (TAMP) was
proposed in [8]. In this work in progress we propose a state
monitoring module to be used by this BT execution manager
to react to non-expected situations, i.e. Condition Nodes will
query the module to test whether the conditions to execute an
action hold, e.g. whether the object to be picked is located
at the expected region and with the expected pose. Whenever
the condition is not met, replanning at either motion or task
level is required, thus giving the necessary reactive capability
to cope with failures or changing environments.

C. Overview

In order to make the task planning capabilities of a robotic
system adaptive and reactive to the actual situations, the PDDL
domain and problem files should be automatically generated,
and a state monitoring should be able to detect the situations
that need replanning actions. Upon a user request of a task
to be solved and once the perception module provides the
current state of the environment, the system should reason on
the actions to be used to solve the task, among all the possible
actions that the available robots can perform.

Figure 1 shows the main modules of the proposal:
• A Problem module: A module used by the user to define

the environment (geometric and symbolic data) and the
manipulation problem to be solved. It contains the set of
actions, predicates and objects provided by the Reasoning
module.

• A Reasoning module: Assuming known all the possible
actions that the robots can perform, all the predicates
that may be required to define the state of the system,
and the robots, regions and objects, this module reasons,
using ontologies, on the subsets needed to solve the task
queried by the user.

• A State module: Equipped by a perception submodule
able to detect the objects poses, the state module is
responsible to determine the symbolic state (Observed

state). It also maintains which is the Expected State
according to the last action executed. This module is
directly connected to the BT execution manager.

The Reasoning module is detailed in section II and the State
module in section III. Finally, Sec. IV sketches the conclusions
and on-going and future work.

II. REASONING MODULE

A standardized ontological-based reasoning framework
called Perception and Manipulation Knowledge (PMK) was
introduced in [5] as a tool to help task and motion planning
systems (TAMP) in terms of reasoning, by providing:

a) Reasoning for perception related to sensors and algo-
rithms, e.g. to determine which is the sensor to be used
in a given situation.

b) Reasoning about the objects features, e.g. to determine if
an object is pickable or not.

c) Reasoning for situation analysis to spatially evaluate the
objects relations between each other, e.g. to determine if
an object is behind another.

d) Reasoning for planning to reason about the preconditions
of actions, action constraints and geometric reasoning
related to the robot and to the environment, e.g. to
determine if a grasping pose is reachable or to select a
feasible placement region.

PMK has been extended here by including in the knowledge
the actions the available robots can perform, and by broaden-
ing the object features related to those actions. Also reasoning
predicates have been provided to help in the selection of the
actions required to solve a given task and to automatically set
the PDDL domain and problem files.

A PDDL parser package called Universal-PDDL-parser [9]
has been used to write the PDDL domain file including only
those actions that are relevant for the task, the decision of
this relevance being made by the reasoner according to the
knowledge available in the extended PMK ontology.

A list of all the possible PDDL actions is assumed to be
initially available to the reasoner, as well as the PDDL pred-
icates. The selection of the actions is handled by asking task
specific questions to the knowledge layer which is formed as
ontologies within Protégé interface. The appropriate questions
are created as Prolog predicates and are used to check robot
capabilities and to check the available objects within the task
environment, e.g.: a) find_robot(Region, Robot) returns
the available robots within the environment and the regions
they are located at; b) find_robot_capability(Robot,

Capability) returns the capabilities of a given robot; c)
find_robot_reach(Robot, Region) checks if a given
robot can reach a given region using its capabilities.

During the reasoning process, the questions (predicates)
asked to the ontologies are grouped into two sections, one
with the global predicates that are asked always such as the
predicates related to robot capabilities, independent of the
specific task, and the other with task specific predicates that are
only asked depending on the answers of the global predicates,
such as the features of the specific environmental entities.



III. STATE MODULE

The State Module is the one which keeps track of the State
of the system, and will need to detect if a change has occurred
in order to trigger a replan.

A. Expected State and Observed State

The way the State Module works is by having two versions
of the State:

• Expected State: it is the state that the system should be
in if the tasks that have been carried up to a point have
been successful. At the start of the execution it is the
state that is read and interpreted directly from the PDDL
files. When an action is performed, the Expected State
needs to be updated with the new stage of the planned
execution.

• Observed State: it is the state the state that the system
is in, observed using the Perception Module (which is a
submodule within the State Module). During each loop of
the State Module, the environment is observed, meaning
that the appropriate sensors are called and the Observed
values in the state are updated according to the output.

These two versions of the system State are required as there
needs to be a way to compare the states according to the
original plan and the actual states, i.e., a replan is necessary if
there is a mismatch between the Expected and the Observed
states, as the original plan built with the Expected State may
no longer be valid.

B. Observing the State

The State Module also handles the conversion between data
from the sensors (geometric poses, joint states, state of the
gripper, etc.) and symbolic data for the task planning process.
Some criteria to translate from the output of the perception
services to the binary conditions of the predicates is required.
A distinction is made between Observable and Not Observable
predicates.

• Not Observable predicates: they contain those predi-
cates that will always match their Expected value due
to their nature as intrinsic properties of the state defined
at the start of the execution. For instance, the predicate
REACHABLE ROBOT REGION indicates that the robot
arm can reach the location designated as REGION. This
property will not change during the course of the execu-
tion, it is immutable.
They also contain to properties that cannot be observed
using the current Perception Module, even if they are
not intrinsic properties and are prone to change during
the execution. Without the ability to sense them, there
is no alternative other than trusting that they are set
to the value they are Expected to be. For instance,
if in a scenario in a kitchen there is a predicate that
controls the state of the oven, OVEN ON, but the oven
itself has no sensor, the system has to trust that it has
been turned ON when the appropriate action has been
performed. Not Observable predicates are not considered

when comparing the Observable and Expected states, as
there is no risk of mismatch.

• Observable predicates: they contain those predicates
that can be observed using the Perception module and
have the potential to cause a replan. For instance, the
predicate IN OBJA ZONEL is observable, and requires
that the perception module outputs the pose of Object A,
detected by e.g. a fidducial marker, and then assigns a
location to that object if the object pose lies within the
limits of a location region.

As an example, the implemented State Module has been
tested with the capabilities to observe and interpret the logic
of the following predicates:

• Location predicates: those related to where the object is
observed.

– IN OBJ ZONE: Set to true when the object OBJ is
in the region ZONE.

– CLEAR OBJ: Set to true when there is nothing on
top of the object OBJ.

– ONSTACK OBJ1 OBJ2 Set to true when two ob-
jects are stacked, with OBJ1 on top of OBJ2.

– VISITED ZONE: Set to true when an object has oc-
cupied region ZONE at some point in the execution.

• Gripper predicates: those related to the gripper accord-
ing to whether it is holding any object.

– HOLDING ROBOT OBJ: Set to true when the robot
ROBOT is holding the object OBJ.

– HANDEMPTY ROBOT: Set to true when the robot
ROBOT has the gripper free to grab something. There
is overlap with HOLDING ROBOT OBJ but both are
needed to facilitate the description of the actions pre-
conditions.

C. State definition

The State Module loads the Expected State from the initial
files and then constantly observes the environment. States are
defined with the following data structure:

• Obstacles: list of all the obstacles in the problem, each
with the following properties:

– Name
– Expected Pose
– Expected Location
– Observed Pose
– Observed Location

• Robots: list of all the robots in the problem, each with
the following properties:

– Name
– Joint States

• Locations: list of all the locations in the problem. Each
location is defined with the following properties:

– Name
– Location x-y-z limits

• Expected Predicates: list of all the predicates that are True
for the expected state. At the start they are read from



the PDDL file and then, each time an action in the task
plan is executed, it is updated by adding and deleting
the appropriate predicates following, respectively, the
positive and negative effects of the action taken.

• Observed Predicates: list of all the predicates that are
True based on the data from the Perception module.

D. Associated BT Nodes

The BT Nodes related to the State Module are:
• CompareStates: Condition Node which will perform

the comparison between the Expected State and the
Observed State by comparing the predicates that are
observable and thus have the possibility to be different. If
there is a mismatch it returns the Observed State in order
to rewrite the appropiate files to begin a new execution
(the old Observed State will become the new Expected
State for the next execution).

• LoadState: Condition node that is called at the start
of any BT execution to load the Expected State from the
indicated files.

• UpdateExpected: Condition Node which is called
after an action is executed and that computes the state
the system should be in when that action is performed,
following the rules established by the PDDL domain file.

• UpdateExpectedPose: Condition Node which is
used to modify the Expected Pose of an object (this is
needed in cases a Place action is performed).

• CheckObjPose: Condition node which is called to
check if the expected pose and the observed pose of an
object match (within a tolerance), used to trigger motion
replans that will not change the task plan.

E. Perception

In order to provide the necessary knowledge to the reasoning
process for both the domain and problem PDDL generation,
perception module should transfer the observed environment
where the task will take place. Various methodologies can be
followed for this purpose such as the use of fiducial markers
placed on the objects to be detected. Another solution is
to use Deep Neural Networks as in the Deep Object Pose
Estimation project [10]. The latter solution requires a training
session for the objects that are desired to be detected. For the
objects that are placed in non-line-of-sight regions, by using
RFID sensors [11], the detection of these objects can also
be accomplished. In addition to the available objects, human
operators in the environment can be detected using computer
vision and deep learning techniques [12]. All of the selected
perception submodules, independent of the methodology they
follow, will provide information of the detected aspects within
the task environment to the main perception module through
a ROS interface.

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented a new proposal to make the task
planning capabilities of a robotic system adaptive to the current
situation of the environment (which object are there and in
which locations), to the available robots and their features
(which actions can be performed), and to the task to be
solved as queried by a human operator. The contribution of
automatically generating the PDDL domain and problem files
breaks the closed-world assumption that is intrinsically present
in many task planning approaches. Also, the definition of a
State Module to encapsulate the evaluation of the state at
each step in the sequence of actions to solve a manipulation
task, allows the Behavioral Tree implementation of a task
and motion planning framework to be focused on the robot
side. The on-going work is centered in validating the proposal
with several case studies using the YuMi robot in table-top
manipulation tasks, and comprising examples regarding the
need of: a) replanning at motion level; b) replanning at task
level; c) reasoning to replan at task level with an extended set
of actions and resources.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Elsevier, 2004.

[2] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL—The Planning Domain Definition
Language,” 1998.

[3] M. Beetz, D. Beßler, A.Haidu, M. Pomarlan, Bozcuoglu, and G. Bartels,
“Know Rob 2.0 — a 2nd generation knowledge processing framework
for cognition-enabled robotic agents,” pp. 512–519, 2018.

[4] J. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez, “Building
multiversal semantic maps for mobile robot operation,” Knowledge-
Based Systems, vol. 119, p. 257–272, 2017.

[5] M. Diab, A. Akbari, M. U. Din, and J. Rosell, “PMK - A knowledge
processing framework for autonomous robotics perception and manipu-
lation,” Knowledge-Based Systems, vol. 19, p. 1166, 2019.

[6] A. Olivares-Alarcos, D. Beßler, A. Khamis, P. Goncalves, M. Habib,
J. Bermejo-Alonso, M. Barreto, M. Diab, J. Rosell, J. Quintas, J. Ol-
szewska, H. Nakawala, E. Pignaton, A. Gyrard, S. Borgo, G. Alenyà,
M. Beetz, and H. Li, “A review and comparison of ontology-based
approaches to robot autonomy,” The Knowledge Engineering Review,
vol. 34, 2019.

[7] M. Colledanchise and P. Ögren, “Behavior trees in robotics and AI,”
Jul 2018. [Online]. Available: http://dx.doi.org/10.1201/9780429489105

[8] P. Verma, M. Diab, and J. Rosell, “Automatic generation of behavior
trees for the execution of robotic manipulation tasks,” in IEEE Int. Conf.
on Emerging Technologies and Factory Automation, 2021.

[9] Universal PDDL parser multiagent. [Online]. Available:
https://github.com/aig-upf/universal-pddl-parser-multiagent

[10] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” 2018.

[11] M. Diab, M. Pomarlan, D. Beßler, A. Akbari, J. Rosell, J. Bateman,
and M. Beetz, “Skillman — a skill-based robotic manipulation
framework based on perception and reasoning,” Robotics and
Autonomous Systems, vol. 134, p. 103653, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889020304930

[12] A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua, “Com-
puter vision and deep learning techniques for pedestrian detection and
tracking: A survey,” Neurocomputing, vol. 300, p. 17–33, Jul 2018.


