A Dataset Generation Tool for Deep learning-based
Motion Planning in Complex Environments

Muhammad Usman Sarwar
Dept. of Computer Science
COMSATS University
Islamabad — Lahore Campus, Pakistan
ORCID: 0000-0001-6252-0034

Jan Rosell*
Inst. of Industrial and Control Eng.
Universitat Politéecnica de Catalunya

Barcelona, Spain
ORCID:0000-0003-4854-2370

Abstract—Learning-based approaches for motion planning
have gained much attention. These approaches show better per-
formance in terms of computational efficiency as compared to the
tradition approaches, such as sampling-based motion planning.
One of the key challenges for learning-based approaches is to
generate training datasets. This work-in-progress proposes a
generalized dataset generation approach for motion planning
that allows to generate simulation data for motion planning
under geometric, kinodynamic and physics-based constraints.
The generated dataset can easily be encoded in any required
format for training. This tool will be used at the Institute of
Industrial and Control Engineering (IOC-UPC) to test learning-
based motion planning strategies for dual arm mobile manip-
ulators under physics-based constraints. As a first step, in this
study the developed approach is tested by generating datasets for
mobile robots. The generated datasets are used to train motion
planning networks, an approach for deep learning-based motion
planning.

Index Terms—Motion planning, Deep neural networks, dataset
generation.

I. INTRODUCTION

Motion Planning is an essential component to solve ma-
nipulation planning problems for robots, ranging from simple
mobile robots to high dimensional robotic systems, such as
dual-arm manipulators with anthropomorphic hands. The main
objective of motion planning is to compute collision-free paths
from a start to a goal state in the configuration space. Over
the last decades, various sampling-based planning approaches
have been proposed, such RRT [1]] along with their variants
like the bidirectional RRT [2] or the optimization variant
RRT* [3]. These planning algorithms work efficiently for low-
dimensional spaces but, for high dimensions, the planning
time may take too long for some applications. To overcome
this challenging issue, deep learning-based motion planning
approaches have emerged recently.

*This work was partially supported by the Spanish Government through
the project PID2020-114819GB-100. Email: jan.rosell@upc.edu.

Moman Sohail
Dept. of Computer Science
COMSATS University
Islamabad — Lahore Campus, Pakistan
ORCID: 0000-0002-3275-3774

Muhayy Ud Din
Inst. of Industrial and Control Eng.
Universitat Politécnica de Catalunya

Barcelona, Spain
ORCID: 0000-0001-6214-1077

Wajahat M Qazi
Dept. of Computer Science
COMSATS University
Islamabad — Lahore Campus, Pakistan
ORCID:0000-0002-6970-8328

The deep learning-based approaches for motion planning
use sample datasets of valid motion paths generated for
random environments. These sample datasets are used to train
deep convolutional neural networks that, once trained, are
able to compute very fast the path from a start to a goal
state in a given environment. Learning-based approaches have
shown significant improvements in terms of computational
time over the classical sampling-based approaches, although
the accuracy is highly dependent on the training data, i.e.
accurate and large datasets leads to a better performance of
the deep learning-based approaches. The problem is that the
generation of these training datasets is one of the most critical
and computationally intensive tasks in deep learning-based
approaches. Various techniques have been used for dataset
generation, such as human demonstration or the execution of
the task to be learned in the real system. These have very
interesting features, although may be very time consuming
and difficult to prepare when a reasonable amount of data
is required. Alternatively, the approach most commonly used
among learning based-approaches, is to simulate the real
system and generate data in an automated way. However, in
this case the challenging issue to be handled is the precise
modeling of the real world scenarios and the automation of the
data generation. In the case of motion planning, the generation
of the paths also implies the implementation of the motion
planning algorithms whose behavior is to be learned.

This study proposes a software tool for automated motion
planning data generation for learning-based approaches. It
allows to generate datasets under geometric, kinodynamic and
physics-based constraints, and also allows to easily incorporate
the required enhancements in the motion planner core to gener-
ate data under certain motion planning constraints. Moreover,
it provides a data encoder which converts the generated motion
planning data into any desired format.

After this introduction, the rest of the paper is structured as
follows. Sec. [l presents some related previous works, Sec.



Kautham

Kautham-GUI ’ ‘ Kautham ROS Node
Geometric Control Physics-based
Planners Planners Planner
OMPL ’ ‘ ODE

Training Data Generator

Configuration H

‘ Data Handler

t v

Kautham Data Kautham Data }__

pa— /=
R ——
Scene >

Training DataSet
Generator

Training

Neural Planner
Decoder Encode

A |

Fig. 1. Framework for training dataset generation.

details the proposal, that includes the framework and the data
generation procedures and GUI, and Sec. [[V|some preliminary
results and discussion. Finally, Sec. E] sketches the conclusions
and future work.

II. RELATED WORK

Deep learning-based approaches for motion planning have
recently gained much attention. Various approaches are pro-
posed to address key motion planning issues. For instance,
Motion Planning Networks (MPNet, [4]]) approach is proposed
to address the issue of computational complexity for high-
dimensional configuration spaces. MPNet consists of two
Neural Network models: Encoder Network (ENet) and Planner
Network (PNet). ENet has three linear layers and an output
layer. ENet takes vector of point clouds as an input and
encodes them into a N-dimensional space. PNet consists of
nine layers, it takes the current state, goal state of the robot
and encoded space from ENet as an input and plan the next
state for the robot that lies in collision-free space. To train
the network 110 different environments are generated for each
different problem type considered, and 5000 collision-free
paths are computed in each environment using RRT*. The
training dataset is generated using simulation.

A fully convolutional network is proposed in [5]] that learns
path planning by demonstration. Once training is performed,
it is combined with RRT*. The integration of the predicted
path with RRT* guarentees and optimal and feasible path.
One-shot motion planning approach for multi-agents in 2D
and 3D environments is proposed in [6], which is also based
on convolutional neural networks. In this work, instead of
generating paths iteratively, the complete path in one shot is
given. The data is generated as a grid map or binary image,
where O represents free space and 1 represents obstacle space.
These grid maps are used to train the convolutional neural
network.

All these approaches are required to have a dataset that is
used for training. Usually the approaches implement one of
the sampling-based motion planners and generate the data or
some existing motion planning libraries are used. However, to
generate data with multiple planners for comparison purposes,

or to incorporate additional constrains such as physics-based
constrains in the planning process, may require extra work
or may not be possible. This study proposes a generalized
dataset generation approach for learning-based motion plan-
ning, which allows to compute the sample data under geo-
metric, kinodynamic or physics-based constrains. Moreover, it
also allows to generate sample data for manipulation planning
that includes a sequence of move, pick and place actions.

III. PROPOSED APPROACH

The proposed framework is depicted in Fig. [I} It consists
of three main modules that are explained below.

A. The Kautham Project

The Kautham Project [7]] is a C++ based open source tool
for motion planning (sir.upc.edu/projects/kautham/). It pro-
vides the ability to plan motions under geometric, kinodynamic
and physics-based constraints. The Open Motion Planning
Library (OMPL, [8]]) is used for motion planning and physics
simulations are handled using open dynamic engine (ODE).
The Kautham Project also provides the flexibility to generate
data for manipulation planning problems in which the task
execution is explained via a sequence of actions such as move,
pick and place [9].

The robots and the obstacles are modeled using URDF
(wiki.ros.org/urdf), whereas the workspace is defined with a
problem file with XML format. This file contains the position
of the robot, the obstacles, the planner to be used along
with its planning parameters and the query. Besides the GUI,
The Kautham Project includes an interface implemented in
ROS [10] that is used to communicate with other modules
by means of services, and also a Python interface that wraps
those ROS services, easing its integration in other projects.

Some of the utilities offered by Kautham as ROS services
are:

e OpenProblem / CloseProblem

o SetPlannerByName / SetQuery / GetPath

o SetRobotsConfig / GetObstaclePos / SetObstaclePos
e AttachObstacle2RobotLink / DetachObstacle

e SetRobControls



v<Task name="OMPL_RRTconnect_boxes_world R2.xml">
v<Initialstate>

<Object object="plain"> 0.0 0.0 0.0 0.0 0.0 1.0 0.0 </Object>
<Object object="plainbox_1"> 0.19 0.19 0.10 0.0 -0.7071 0.7071 3.141 </Object>
<Object object="plainbox_2"> 0.60 0.60 0.10 0.0 -0.7071 0.7071 3.141 </Object>
<Object object="plainbox_3"> 0.19 0.40 0.10 0.0 -0.7071 0.7071 3.141 </Object>
<Object object="plainbox_4"> 0.19 0.60 0.10 0.0 -0.70671 0.7071 3.141 </Object>
<Object object="plainbox 5"> 0.19 0.80 0.10 0.0 -0.70671 0.7071 3.141 </Object>
<Object object="plainbox 6"> 0.89 0.90 0.10 -0.7071 0.7071 3.141 </Object>
<Object object="walls"> 0.0 0.0 0.0 0.0 6.0 1.0 0.0 </Object>
</Initialstate>

v<Transit>
<Conf> 0.60 0.10 0.05 0 -0.70710 0.707106 0 </Conf>
<Conf> 0.60 0.11 0.05 0 -0.70710 0.707106 0 </Conf>
<Conf> 0.60 0.12 0.05 0 -0.70710 0.707106 0 </Conf>
<Conf> 0.60 0.14 0.05 0 -0.70710 0.707106 0 </Conf>
<Conf> 0.60 0.15 0.05 0 -0.70710 0.70716 0 </Conf>
<Conf> 0.60 0.16 0.05 0 -0.70710 0.70716 6 </Conf>
<Conf> 0.61 0.18 0.05 0 -0.70716 0.70716 0 </Conf>
<Conf> 0.61 0.19 0.05 0 -0.70710 0.70710 6 </Conf>
<Conf> 0.61 0.20 0.05 0 -0.70710 0.70710 0 </Conf>
<Conf> 0.61 0.22 0.05 0 -0.70710 0.70710 0 </Conf>
<Conf> 0.61 0.23 0.05 0 -0.70710 0.70710 0 </Conf>
<Conf> 0.62 0.25 0.05 0 -0.70710 0.707106 0 </Conf>
<Conf> 0.62 0.26 0.05 0 -0.70710 0.707106 0 </Conf>
<Conf> 0.62 0.27 0.05 0 -0.70710 0.70716 0 </Conf>
<Conf> 0.63 0.29 0.05 0 -0.70710 0.70716 0 </Conf>
<Conf> 0.63 0.30 0.05 0 -0.70710 0.707106 6 </Conf>

</Transit>
</Task>

Fig. 2. Kautham Taskfile.

B. Training Data Generator

The training dataset generator is a Python-based Kautham
client which generates the dataset needed to train the neural
network. This module randomly samples the obstacles posi-
tions in the envionment along with the collision-free start and
goal states. This information is used to set the planning scene
in Kautham via ROS. The computed motion planning path is
then saved along with the environment details (such as obstacle
configurations) in a faskfile with XML format, as that shown
as an example in Fig. 2]

The main parameters that are required to generate training
data are specified in a configuration file with json format.
These parameters include the dimensions of the configuration
space, the number of environments to be generated for the
training data, the number of paths for each environment and
the required data encoder format.

The data handler module is used to control the data gener-
ation process. It is responsible to invoke the required data en-
coder and processing back the data received from data decoder.
The Kautham Data Encoder (KDE) is the main module that is
responsible to encode the computed motion planning data into
the required training dataset format. Different deep learning-
based approaches for motion planning may follow slightly
different data format. This module provides the flexibility to
encode data into any arbitrary format by implementing the data
encoder method. Kautham Data Decoder (KDD) is used to
visualize the computed path by the neural network in Kautham
or send to the real robotics platform. Similar to data encoder,
the data decoder also provides the flexibility to implement the
decoder method for decoding any arbitrary data format.

For the current demonstration we used motion planning net-
works that is one of the best deep learning-based approaches
for motion planning. The functionality of the MPNet is sum-
marized in the related work. KDE encodes the environment
into obstacle cloud (ObsC). It contains the point cloud of
the obstacles, the positions of the points in the cloud are
defined with respect to the world frame. All the generated

|

Dataset Generation Tool Interface - [Preview] — Qt Designer

Data Generator
1 2

Update Configration Generate and Encode Data

Train Model
3 4 5

Load Data Planning Space Start Training

Neural Planner
6 7 8 9
Compute Path

Load Environment Query Generate Taskfile

Neural Planner Process 0%

Fig. 3. User interface of training dataset generator tool.

environments are encoded using KDE and saved to the disk
as training dataset. A set of valid paths {p},...,pc } for each
environments is also saved along with the obstacle cloud. A
path pi* consists of the set of robot configurations {g1,...,qn}
valid for the particular environment e;, represented with ob-
stacle cloud ObsC;. These files are later used by the encoder
network of MPNet for training.

Once training is performed, the generated path by MPNet
neural planner along with the environment (represented by
obstacle cloud) can be decoded back to kautham raskfile using
Kautham data decoder. The KDD will extract the positions
of the obstacles from the obstacle cloud along with the path
configurations (generated as an output of the MPNet). The
data handler will save them into the raskfile with appropriate
XML tags. The raskfile then can be used to visulize the scene
in Kautham using Kautham-Gui or can be send to the real
robotic platform.

C. User Interface

The user interface over the dataset generation framework of
Fig. [1] is depicted in Fig. 3] Below is the description of its
main functionalities for generating the datasets (steps 1 and
2), training the networks (steps 3 to 5) and playing the neural
planner (steps 6 to 9).

1) Update configuration allows to modify the training con-
figurations represented in json format.

2) Generate and encode data invokes the scene generator
that will generate the environments and forward to data
handler. The data handler will set the planning queries to
generate the data and invoke the required data encoder.

3) Load data will select the location of the dataset.

4) Planning space is used to set the dimension of the
workspace such as SE2, SE3 or R".



Fig. 4. Example scene for training dataset.

5) Start training will check the planning space and start
training accordingly for the given data set. The progress
of each step can be views visually on the progress bars.

6) Load environment sets the planning environment for the
neural planner.

7) Query allows to set any arbitrary start and goal state for
the neural planner.

8) Compute path will call the neural planner and solve the
planning query.

9) Generate taskfile invokes the Kautham data decoder that
will decode the path to visualize it in Kautham.

IV. RESULTS AND DISCUSSIONS

The scenario selected as a test to generate training dataset
consists of a cleaning robot moving in an environment that
is obstructed with several floor seats, as shown in Fig. 4] We
have generated three training datasets by changing the motion
planners to RRT, RRT* and KPIECE. The training dataset
consists of 140 environments where 1000 paths with random
start and goal states were generated for each (examples of
some randomly generated environments are shown in Fig. [3).
MPNet is trained for each dataset. Once training is performed,
the same scenes are provided as input to the three trained mod-
els and used to generate output paths available for comparison
purposes. The generate datasets, trained weights and the code
are avalible onlineEl

The reason to generate three datasets is to highlight the
flexibility and effectiveness of the proposed training data gen-
eration tool. In this work-in-progress a simple demonstration is
performed by changing different geometric planners. Similarly,
the dataset could also have been generated using the planners
that incorporate kinodyanmic or physics-based constraints.

V. CONCLUSIONS AND FUTURE WORK

This work-in-progress proposes a generalized dataset gener-
ation tool for deep learning-based motion planning in complex

Uhttps://gitioc.upc.edu/muhayyuddin. gillani/mp_dataset_generation.git

. -
o
f L 'd X

Fig. 5. Example of some random environments generated by scene generator.

environments. The generated data could easily be encoded in
any required format for providing input to the neural network
and decoded back to visualize with the Kautham GUIL

This approach will further be used to capture datasets for
mobile manipulators under various kinodynamic and physics-
based constraints. These datasets will be used to train deep
learning based approaches for motion planning to investigate
the effect of kinodynamic and physics-based constraints over
the learning.

Moreover the approach will be enhanced to generate the
datasets for task planning, that will consists of sequences of
pick and place actions.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378—
400, 2001.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2. 1EEE,
2000, pp. 995-1001.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846—
894, Junio 2011.

[4] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA). 1EEE, 2019, pp. 2118-2124.

[5] N. Pérez-Higueras, F. Caballero, and L. Merino, “Learning human-
aware path planning with fully convolutional networks,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2018, pp. 5897-5902.

[6] T. Kulvicius, S. Herzog, T. Liiddecke, M. Tamosiunaite, and
F. Worgotter, “One-shot multi-path planning for robotic applications
using fully convolutional networks,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA). 1EEE, 2020, pp. 1460—1466.

[71 J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcia, “The Kautham Project: A teaching and research tool for
robot motion planning,” in IEEE Int. Conf. on Emerging Technologies
and Factory Automation, 2014.

[8] I. Sucan, M. Moll, L. E. Kavraki et al., “The open motion planning
library,” Robotics & Automation Magazine, IEEE, vol. 19, no. 4, pp.
72-82, 2012.

[9] S. Saoji and J. Rosell, “Flexibly configuring task and motion planning

problems for mobile manipulators*,” in 2020 25th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA),

vol. 1, 2020, pp. 1285-1288.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating

system,” in ICRA Workshop on Open Source Software, vol. 3, 2009.

[10]


https://gitioc.upc.edu/muhayyuddin.gillani/mp_dataset_generation.git

	Introduction
	Related Work
	Proposed Approach
	The Kautham Project
	Training Data Generator
	User Interface

	Results and Discussions
	Conclusions and Future Work
	References

