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ABSTRACT

One of the problems that service robotics deals with is to bring mobile manipulators to work in semi-
structured human scenarios, which requires an efficient and flexible way to execute every-day tasks,
like serve a cup in a cluttered environment. Usually, for those tasks, the combination of symbolic
and geometric levels of planning is necessary, as well as the integration of perception models with
knowledge to guide both planning levels, resulting in a sequence of actions or skills which, according
to the current knowledge of the world, may be executed. This paper proposes a planning and execution
framework, called SkillMaN, for robotic manipulation tasks, which is equipped with a module with
experiential knowledge (learned from its experience or given by the user) on how to execute a set of
skills, like pick-up, put-down or open a drawer, using workflows as well as robot trajectories. The
framework also contains an execution assistant with geometric tools and reasoning capabilities to
manage how to actually execute the sequence of motions to perform a manipulation task (which are
forwarded to the executor module), as well as the capacity to store the relevant information to the
experiential knowledge for further usage, and the capacity to interpret the actual perceived situation
(in case the preconditions of an action do not hold) and to feed back the updated state to the planner to
resume from there, allowing the robot to adapt to non-expected situations. To evaluate the viability of
the proposed framework, an experiment has been proposed involving different skills performed with
various types of objects in different scene contexts.

1. Introduction

Indoor robots with autonomy, mobility and manipulation
capabilities have the potential to act as robot helpers at home
to improve the quality of life for various user populations,
such as elder and handicapped people, or to act as robot co-
workers at factory floors to collaborate with other operators.
Working in an semi/unstructured environment means that
the robot does not always have a model of the environment
and abundant problems have to be taken into consideration,
for example, the need of removing obstacles in order to have
precisely access to a particular object, which requires the in-
tegration of symbolic and geometric planning levels, with
skills such as pick-up, put-down and open-drawer. More-
over, perception systems like vision, depth sensors, and oth-
ers, can be used to model the geometry of objects in the en-
vironment and regularly update the status of dynamic parts.
However, to figure out the entire world with perception be-
fore planning is quite computational expensive. Therefore,
working with partial information becomes necessary, which
requires a dominant perception capability to update key in-
formation as needed. Different types of sensors have their
own limitations, so sensory integration methodologies are
very helpful. Multi-sensory data integration aims to com-
bine information from multiple sensory data or data derived
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from different sources. The goal of sensor integration is to
obtain information which in some sense is better than the one
obtained when the sources are used separately.

For every-day tasks, the experiential knowledge can play
a significant role to make the robot capable to learn from its
experience instead of repeatedly plan the same task with the
same givens within the planning system, which could be a
computational and time consuming process. An important
research question raises: “How can we adapt executions
of these tasks to similar environments and agents?" The
answer is, a robot can imitate an observed action sequence
or skill, like open a drawer, if it first understands the inherent
characteristic features of each action. Such features need
to reflect the semantics of the skill with a high degree of
invariance between different demonstrations of the same
skill. Then, a robot will be able to execute the skill in any
appropriate similar situation.

1.1. Problem statement and proposal

Mobile manipulators acting as robot co-workers are re-
quired to work autonomously in human environments and in
the presence of human operators. As illustrated in Fig. 1,
autonomy can be achieved with the integration of key ca-
pabilities, such as planning, that usually combines task and
motion planning capabilities in order to find feasible plans
for the robot to solve complex tasks, and perception, respon-
sible for achieving the successful execution of such plans and
react accordingly if changes are required. For the former, the
use of prior knowledge based on experience may become es-
sential to facilitate the planning process in every-day tasks,
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as well as an adaption process of the robot’s skill and tra-
jectories whenever the situation to be faced is similar to a
previously encountered one. Moreover, the use of learning-
based techniques aiming for autonomous self-improvement
can be considered to recover such failures that may occur in
the planning or execution phases. For the latter, rich per-
ception modules may be equipped with sensory integration
mechanisms to work with different sensors, including for in-
stance those that can cope with non-line-of-sight situations,
like RFID.

With this in mind, this study proposes a framework to
make the robot work efficiently in semi/unstructured envi-
ronments in every-day tasks by providing the capabilities for:

1. perceiving objects that may be in the line of sight or
not,

2. analyzing the current situation to know if a similar one
was previously encountered,

3. planning with the aid of symbolic and geometric rea-
soning procedures, and

4. acquiring experiential knowledge on how to execute a
set of skills, to be used for adapting the motions of the
robot in similar situations.

1.2. Motivation examples

The mobile manipulator TIAGo is assumed to work in
the semi-structured environment shown in Fig. 2, where
there are several cans (some filled and some empty) and
a file cabinet with three drawers (the first to store empty
cans and the second to store the filled ones). Two tasks are
scheduled, one task is to sort the cans and store them on the
corresponding drawers, and another one is to take a stored
filled can and serve its contents to a customer. A perception
system is used to figure out the location and status of the
objects. To execute these tasks, some skills are introduced:
pickUp, putDown, openDrawer and serving. The execution
of these skills will require, in new situations encountered for
the first time, the call to a motion planner to find the robot
motions, and in situations similar to previous ones, the use
of motion adaptation, i.e. perception, situation similarity

checks, planning and the use of experiential knowledge will
be required.

To autonomously execute the above-mentioned tasks,
a task manager is used to integrate the proposed modules
of perception, planning and reasoning in a way that the
robot can be adapted working in different environments
with minor changes. This means the robot needs to have
a description of the environment and then it can use the task
manager for coordinating the modules to execute such indoor
manipulation tasks.

2. Related work

Various studies have been working in the planning do-
main by combining task and geometric levels, such as [24,
3]. Further, to guide the planning systems in both levels
in the manipulation domain, the use of knowledge with as-
sistance of perception has also been proposed, like the Per-
ception and Manipulation Knowledge (PMK) framework [8]
that proposes the integration of a vision-based perception
system with knowledge to assist the combination of Task and
Motion Planning (TAMP) for complex manipulation tasks.
Similarly, [26] proposes the use of knowledge for modeling
actions.

The use of experiential knowledge was later proposed in
[5], integrated with the knowledge-based reasoning frame-
work [26], to enable robots to perform human-level tasks
flexibly in varying conditions using a mechanism based on
machine learning for adaptation that allows the robots to ex-
change knowledge between themselves in different environ-
ments. However, the question that arises now is how to au-
tomatically build the experiential knowledge. To answer the
question, planning and adaptation modules are required.

There exists a large corpus of work on skills representa-
tion and execution [1, 6, 17]. Two distinct approaches are
commonly preferred in order to represent and execute skills;
one at the symbolic level [13, 23], the other at the motion
level [12,5]. The former defines skills at a higher level and
allows for generalization and planning, while the latter gives
more flexibility for an execution-relevant definition of skills.

High-level symbolic representations many times use graph
structures and relational representations [21], while alterna-
tive methods, such as [15], capture underlying task struc-
tures in the form of probabilistic activity grammars. All
these approaches give compact descriptions of complex tasks,
but they do not consider execution-relevant motion parame-
ters (trajectories, poses, forces) in great detail. For motion-
level representation there are several well-established tech-
niques, such as Dynamic Movement Primitives (DMPs) [12]
or hidden Markov models [14]. With motion-level encoding,
one can investigate or learn different trajectories with a cog-
nitive sense, i.e., the same skill can be represented by various
trajectories.
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Figure 2: The motivation example. On the left, the represented scene in Kautham Project. On the right, the real scene.

3. Framework

In this section, an overview of the framework, the de-
scription of the proposed modules, and how the data is man-
aged are explained in detail.

3.1. Overview

With the aim of executing tasks like that of the moti-
vation example automatically, the integration of several lay-
ers and modules is required, covering perception, knowledge
representation and reasoning, and planning at symbolic and
geometric levels.

The proposed framework — SkillMaN - is composed
of three main layers, as shown in Fig. 3: planning and
execution, knowledge, and assistant (low-level) layer.

The planning and execution layer contains two modules,
the task planning and the task manager modules. The former
includes a task planner to compute a sequence of skills to be
done, which requires a problem and domain description to
set the initial scene, including the state of the world entities,
and the goal state. The latter provides interfaces to commu-
nicate with the agents/operators (e.g., robots, humans or sen-
sors). It also keeps monitoring the executed skills or atomic
actions and it returns a failure signal to the recovery module
if an error occurs. Moreover, it has a procedural structure
for each step of a skill. This structure is formally defined
as a workflow that can be automatically executed through
interfacing existing software components of the robot con-
trol system. Workflow modeling is devoted to represent the
structure of a task and to organize its execution, i.e., the ab-
stract steps required for task execution are described. For
example, to execute the pickUp skill, a two-step sequence of
operations is required: 1) call the Inverse Kinematics (IK)
module to check reachability for grasping the object; 2) find
a collision-free path towards a grasping configuration. For
putDown skill, to seek for available placement room to place
the object is also required.

The knowledge layer contains a set of knowledge to

guide the planning and execution layer.

1. Awareness module, that contains a) Perceptual knowl-
edge to assist the robot to figure out which are the
proper algorithms and parameters to be used for avail-
able sensors in order to extract data; b) Geometric
knowledge to provide the geometric reasoning respon-
sible for checking the feasibility of the skills; c) Skill
knowledge to check the availability of the skills in the
knowledge database to be used by the planning mod-
ule, and how to execute them.

2. Experiential knowledge module, that contains knowl-
edge for planning and situational knowledge. The knowl-
edge for planning provides the geometric-skills infor-
mation (based on the robot's experience) such as how
to grasp an object? What are the constraints of a task?
For example, if an object is stored in a box or a drawer,
the robot requires to reason over the knowledge to fig-
ure out which type of grasp is feasible to be success-
fully executed (i.e., side or top-grasp). Besides this
knowledge for planning, situational knowledge is re-
quired to check the similarity between the current sit-
uations with those stored in a database.

3. Recovery module, that provides knowledge to inter-
pret the failures and proposes recovery strategies like:
1) asking a human for assistance for unsolvable tasks
by the robot, 2) guiding the robot to autonomously re-
cover itself, for instance by calling a sensing module
to figure out the current scene of the world or keep re-
peating the same action with another parameter (e.g.,
repeat a grasping action with different angle).

Finally, the assistant layer provides the low-level mod-
ules that allow to deal with:

1. perception issues, like finding out which sensors can
be used for a sensing action in a given situation, which
are dealt by the sensing module.

2. geometric issues, like determining if a configuration is
collision-free or if an inverse kinematic solution exists
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Figure 3: The proposed framework: layers and modules.

for a gripper pose, which are dealt by the geometric
module.

. robust issues, like the need to adapt the robot paths to
the actual situations, which are dealt by the adaptation
module.

The rest of the section is structured as follows. First, in
Sec. 3.2 the assistant (low-level) modules used in the assis-
tant layer will be described. Then, in Sec. 3.3 the knowledge
modules in the knowledge layer used to guide the planning
system and to interpret the failures in the execution phase
and provide recovery strategies are presented. Moreover,
the inference mechanism and data management issues are
discussed. Sec. 3.4 presents the task planning and task man-
ager modules proposed in the planning and execution layer.
Finally, in Sec. 3.5 the framework flowchart illustrates how
the proposed layers and their modules are integrated.

3.2. Assistant modules

This section describes the low-level modules proposed in
the SkillMaN framework: sensing, geometric and adaptation
module.

3.2.1. Sensing module

Our sensing module integrates different types of sensors,
RFID, with one-dimensional output data, and RGB-D cam-
era, with multi-dimensional output data. The purpose of the
multi-sensory integration is to cover the non-line of sight
(NLOS) by using RFID technology, and line of sight (LOS)
by using a camera. This integration allows the robot (es-
pecially the ones that have navigation capabilities) to figure
out where the objects are located in an indoor environment

(even if these objects are hidden, like cans inside a drawer),
and the status of the objects (e.g., a can is full or empty).

RFID technology

An RFID technology is composed of three main parts:
reader, tags and antenna. The tags, like the ones used in [7],
have a physical storage medium that allows a robot to store
relevant data related to the status of the object or its relative
location or spatial relationships, information that can be
automatically updated from the result of the robot actions.

The use of RFID technology has appeared from the
beginning of this century and most of the related works
are focused on localization, like the works presented in [7,
16]. However, few efforts have been done to utilize the
memory inside the tags for autonomous manipulation tasks,
which requires implementing robust strategies to store and
update the data in memory. Here, in this work, we make
use of associated memory to store the dynamic data and
update them accordingly to support the planning system by
extracting the relevant information (see Sec. 3.3.5).

The purpose of using RFID in SkillMaN is:

1. To partially localize the objects in the indoor environ-
ment. This allows the robot to start planning under
partial information of the environment instead of dis-
covering the entire environment which increases the
computational cost of the planning process. This in-
cludes figuring out the hidden objects that the other
sensors like camera can not detect. Then, the inte-
gration with other sensors like a camera can precisely
recognize the objects.

To store relevant data regarding the status of the
objects in the environment, such as a can is full or
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empty, in order to adapt the manipulation behavior of
the robot.

Camera

Using the camera and visual tags attached to the objects,
the object poses are obtained (more complex untagged-based
pose estimation algorithms could be used). Then, spatial
relationships are extracted geometrically to understand the
state of the physical world. Relationships currently supported
by the framework are in, on, inside, right and left as pre-
sented in [8].

The tags are used to identify the world entities and
semantically link them to the properties of each object.
Specifically, the purpose of integrating the sensing module
with a camera is to precisely detect the position of the objects
and their IDs and assert them on the relevant ontology.
Then, evaluate the spatial relations of the world entities with
respect to each other and the robot (e.g., object A is located
on the right side of the robot and on the left side of object
B.)

3.2.2. Geometric module

The geometric module provides several services that
help a planner to evaluate the feasibility of the skills. It is
composed of four main services:

1. Inverse Kinematics (IK) used to compute the robot
configurations for a given gripper pose,

2. Collision Check (CC) used to check the feasibility of
a single configuration or a motion,

3. Motion Planning (MP) used to generate a sampled-
based motion to be executed, and

4. Object Placement (OP) used to sample the placement
region.

In SkillMaN, these services may be required in many
situations in the manipulation domain, such as the case
where an object is blocking the chosen configuration to
grasp/place an object. This situation requires the selection
of alternative feasible (or reachable) grasping poses and/or
placements. Specifically, these services are used to:

1. Compute an alternative grasp or an alternative place-
ment pose for the object.

2. Compute the IK for the new grasp or the IK for the
new object placement according to the current grasp.

3. Compute a collision-free path for the new goal config-
uration.

These services may be required during planning to find
a feasible solution, or to generate recovery strategies to
recover a plan whenever a failure occurs.

3.2.3. Adaptation module

This is a module that adapts the robot motions to the
actual scene based on the perceived poses of the objects in
the environment. Broadly, there are two sources from where
to adapt the motions, one is from human demonstrations,

the other is from collision-free motions computed by a
motion planner. This is similar to what humans do, i.e.,
we intuitively know how to perform the motion primitives,
although our exact motions are only produced when we see
the objects and adapt them to the scene context while we
perform the skill.

The technique used for imitation motions has been the
Dynamic Movement Primitives (DMPs), that implements
a set of differential equations that allow describing any
motion. Complex motions have long been thought to be
composed of sets of primitive actions that are executed
together. DMPs are a mathematical formalization of the
motions of the primitives using dynamical systems theory.
These dynamical systems have stable behaviors using the
basic set of parameters provided by the DMP tool, although
extra parameterization according to the task at hand may
improve the results.

3.3. Knowledge modules

Formally, knowledge is divided into knowledge repre-
sentation and inference mechanism. The former copes with
how the knowledge is represented, the latter copes with how
to infer the relevant knowledge. In SkillMaN, the main goal
is to capture knowledge about

1. how the planning system can be guided by the knowl-
edge,

2. how the similarity of the situations can be checked,

3. how the knowledge can efficiently mange the percep-
tion system,

4. whether a path is feasible or not,

5. how can robots perform skills and what skills are
needed to achieve certain goals,

6. how can a situation be interpreted as a failure, and

7. which are the available recovery strategies for a given
failure.

The knowledge modules are first introduced and then the
heterogeneous inference mechanism will be detailed at the
end of the subsection.

3.3.1. Experiential knowledge module

The knowledge-based experience, or experiential knowl-
edge, is divided into two main parts: knowledge for planning
and situational knowledge.

Knowledge for planning:

One of the significant requirements for the planning sys-
tem is to reason about how to perform skills in semi/unstruc-
tured environments. This requires having geometric infor-
mation, based on the current situation of the environmental
entities, of how to manipulate the objects, e.g. which is the
experience-based feasible grasp. This is what we call "geo-
metric skills experience".

Currently, in SkillMaN, there are two sources from
where to build the geometric skills experience: humans
and robots. For humans, the user can build manually the
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Figure 4: The situation modeling in SkillMaN. The blue and
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instances of the classes. The multi-sensory module is used to
build the description of the environment.

geometric skill experience including the description of the
task constraints (either programmed or included in an
ontology). For the robots, if the robot starts exploring the
way of executing an action and finds a feasible solution, it
stores this solution to be later used if required. For example,
let’s consider the side-grasp is used for picking an object
from a table and there is an obstacle occluding the path
from a certain angle, several angles could be applied to
explore the feasibility of the grasping configurations. Once
found, the robot stores these configurations to be used in
similar situations. This knowledge is required to guide the
planning system especially when some motion constraints
exist. In the proposed case study, several constraints have
been introduced to show the importance of using geometric
skills experience within a planning system as shown in
Sec. 5.

Situational knowledge:

In SkillMaN, experiences are thought to be situations
that provide a relational context on a set of events that
occurred, and objects that were involved. This includes,
e.g., what roles an object plays during an skill, and what
the diagnosis is in case a failure was raised during skill
execution. Situations in our knowledge base, as described
in Fig. 4, can be written as a tuple < S,0, E >, where .S
is the skill that was executed, O the set of objects that were
involved, and E the set of events that occurred.

The representation strategy of the Descriptions and Sit-
uations ontology [18] has been followed where descriptions
are used to create views on the relational context of situa-
tions. In particular, the proposed framework associates skills
to the situations where the skill was executed, and exploits
this information for the realization of a set of inference mech-
anisms.

The environment’s description is used to semantically
link low-level perception data with high-level knowledge,
and to analyze the situation of the environment entities in
order to enhance the task execution. The tagged-based sen-
sors, i.e., RFID and camera, are used to identify the world
entities and semantically link them to the properties of each
object. Specifically, the purpose of the sensing module is
to detect the position of the objects and their IDs and assert
them on the ontology to build the description of the environ-

ment and its relevant instances following the Perception and
Manipulation Kowledge (PMK) presented in [8].

Experiential data:

Our system records sensory data over time and associates
it to situations during which the data was acquired. This
is mainly to capture the trajectories that were executed by
the robot, and to associate them with task, environment, and
execution. This is useful for machine learning applications
where expressive queries can be answered at higher levels of
the knowledge base, and results of such queries may serve as
filter for the lower-level data to gather only the data matching
a semantic situation.

In SkillMaN, two types of storage mediums are used, the
memory of RFID and knowledge database. The former is
used to store the dynamic data such as objects'positions and
their status (e.g., a can is full or empty). The latter is used,
beside guiding the planning system, to store the static data
such as objects' features. Data management is detailed in
Sec. 3.3.5

3.3.2. Awareness module

This module contains low-level knowledge related to
perception, to geometric issues required for the evaluation
of the actions feasibility, and to the way of executing skills.

Perceptual knowledge

To perceive a robot environment, different sensors are
usually used. Sensors provide data about the environment
in the form of signals (one dimension) or images (multi-
dimension), and to obtain the useful features from the per-
ceived data the suitable algorithms have to be applied, for
instance to detect an object pose some pose estimation al-
gorithms based on image features can be applied, or alter-
natively algorithms based on tags identification can be used.
The complexity increases when the integration between the
Sensors exists.

Perceptual knowledge is the knowledge related to the
robot sensors or to sensors associated to the environment.
This knowledge is used to guide the proposed multi-sensory
module. A first version of the perceptual knowledge was
presented in [8], where two cameras worked in parallel to
perceive the table-top environment. Here, we enhance the
representation of the knowledge to be capable of working
with different types of sensors including RFID and camera.

The perceptual knowledge for multi-sensory integration
in SkillMaN, as shown in Fig. 5, is represented as a tuple
< D,C, A > where D is ameasuring device (sensor), C is the
sensor constraints or limitations, and A is the corresponding
algorithm to extract the features from the sensor signals.

This knowledge is responsible to answer three main
questions which are the sensors attached to the robot?,
what type of data the sensors perceive and what are their
limitations?, how to extract the relevant data?. To answer
the first question, a description of the sensors is proposed to
make the robot understand which are the group of sensors
it has. Moreover a description of the components of each
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Figure 5: The representation of perceptual knowledge in SkillMaN.

sensor, like the tags, antennas and reader of the RFID is
included. To answer the second question, a description of
the perceptual features is proposed to clarify to the robot
which type of data (i.e, one or multi dimensions) the sensors
are perceiving, and what are the constraints or limitations
of each sensor. To answer the third question, a method to
call the corresponding algorithms is proposed to extract the
relevant data.

Using Description Logic (DL, [4]), the knowledge of
RFID sensors is expressed as:

RFIDKnowledge : —
JhasSuperclass(RF I D, Sensor),
A3Sense(RFID, RSST),
AJhasSensingComponents(RFI1D, Tag),
AhasSensingComponents(RF I D, Reader),
AJhasSensingComponents(RF I D, Antenna),
AJhasID(RFID,taggedI D),
AJhasConstraints(RF I D, minRange),
AJhasConstraints(RF I D, max Range),
AJhasAlgorithm(RFID,readTag).
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And the knowledge of camera is expressed as:

CameraKnowledge : —
dhasSuperclass(Camera, Sensor),
AdSense(Camera, Image),
AJhasConstraints(Camera, minRange),
AJhasConstraints(Camera, max Range),
AJhasAlgorithm(Camera, tiagoCam).

Geometric knowledge

The geometric knowledge has a structure for sequential
access to the geometric services in the assistant layer. The
main advantage of this ontology is that, instead of calling
the module manually from the task and motion planning
client, the robot can query over the knowledge to retrieve
the sequence of processes required to execute such actions
in an automatic way.

Skill knowledge

A skill, in SkillMaN, is a description of what the robot
can do. The SkillMaN provides some methods of teaching
new skills to the robot inspired by the work presented in [20]:

1. Primitive skills consist of a sequential list of atomic
actions, which refers to a single action or gesture,
including its preconditions and effects. For example,
an openDrawer skill is composed of the sequence
of actions: move to the handle position, close the
gripper, and finally pull the drawer.

2. Rule-based skills consist of a set of “if A then B rules"
to issue appropriate gestures according to sensors
outcome.

Both methods, however, cannot be executed on their own.
They require a structure, such as a workflow, that contains
the abstract steps that are usually required for task execution.
This structure is described at a symbolic level and grounded
to be attached to each skill using the assistant layer. The
main difference between the both aforementioned methods
is a perception-based conditional node in the structure. That
means the structure includes some branches of a given value
that should be sensed.

3.3.3. Recovery module

Knowledge for recovery is a module that provides an
interpretation of the failures that occur. In SkillMaN, an
interpretation failure ontology described in [9, 10] covering
several sources of failures, is used both during planning and
execution. It offers recovery strategies for:

1. Geometric failures, that may appear when e.g. the
robot can not reach to grasp/place an object, there is
no collision-free path or there is no feasible Inverse
Kinematic (IK) solution;

2. Hardware related failures that may appear when e.g.
the robot in a real environment requires to be re-
calibrated (gripper or arm), or it is sent to a non-
reachable configuration;

3. Software agent related failures, that may appear when
e.g. the robot has software components that fail like
when an algorithm is not able to extract the proper
features. This part is out of the paper scope and it has
been introduced in detail in [9].

3.3.4. Heterogeneous inference mechanism

This section presents a heterogeneous way of reasoning
that includes symbolic reasoning over the knowledge mod-
ule and geometric reasoning. The former includes filtering
the situation from the database, situation similarity check,
skill reasoning, semantic reasoning regarding the environ-
ment and its entities, manipulation constraints and percep-
tion. The latter includes the geometric reasoning to check
the feasibility of the generated skills. They are discussed
below.

Filtering situation:

Filtering situation is a process of finding those situations
that satisfies a skill description. It means the robot has
to detect the situations that use a specific skill in their
description, e.g. using a Prolog predicate [27] the reasoning
on “which are the situations that contain a certain skill?”
is:

?7— filterSituation( hasSkill(Situation, Skill) ),
?7— filterSituation( hasParticipant(Situation, Object) ),
?7— filterSituation( hasPart(Situation, Event) ).

Situation=[Skill , Object, Event].

Situation similarity check:

The similarity of scenes is computed using taxonomic
information from an ontology together with information
about what makes up the compared entities. Note that scenes
are compound entities — that is, a scene has objects and
agents as participants. Objects and agents themselves are
compound entities; an object or agent may have other objects
as parts. Also, the description of an agent includes the skills
to be executed, geometric-skills experience, and agent goal.

Entities that are considered simple — the parts of objects
or agents — are compared using Wu-Palmer similarity [28],
although for numerical stability reasons, the logarithm of
this similarity score is used here, i.e., for two individuals
x and y:

. _ depth (Ica C(x), C(y))
Sim(x. y) = log 5 Co) + depth €y

where C(x) is the class to which individual x belongs,
depth(A)is the depth of class A in a taxonomy, and /ca(A, B)
is the lowest common ancestor of classes A, B in that taxon-
omy. The intuition behind Wu-Palmer similarity is that sim-
ilar classes should be close to each other in the taxonomy.

To compare individuals x, y that are compound entities,
their parts are matched such that for every part x, of x, we
find the part y, of y that maximizes Sim(x,, y,). Then, the
sum of the similarity scores obtained from these matching
is added to Sim(x, y). The intuition here is that we want to
have the similarity of complex objects such as situations or
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a) b)

Figure 6: An example of similarity check between two scenes.
This example is also a part of the experimental scenes of
scenario one in Sec. 5 (storage task).

scenarios to depend on the nature of those scenarios as well
as their participants.

We only compare the “tree” of part-hood relations for
efficiency reasons. In principle, there may be many stored
scenes one could compare the current situation to, and filter-
ing out most of them so that only a few relevant candidates
remain. Once a few candidate similar scenes are selected,
the more intensive procedures of adapting robot motion from
the stored scene to the current one can be used to ascertain
the usefulness of the stored experience for the current task.

For example, as shown in Fig.6, if the robot has success-
fully planned the picking of the black can in scene a), this
situation, that contains the objects, geometric-skills experi-
ence, and skills, is stored in the ontology database. Inb), and
after checking the similarity of the scenes, the robot uses the
same geometric skills (grasp from the top), especially be-
cause the robot has the same goal (i.e., to place the can in a
drawer). More details about this example are mentioned in
the experimental section.

Skill reasoning

Symbolic skill reasoning to call the primitive skills from
the skill knowledge is used to load the problem and domain
description to the task planner. The purpose of the inference
in this level is to answer the question to any task planner,
“what is the world description?”, which using a Prolog
predicate is:

?— loadPDDL( hasfile (PDDLdomainFile, fileID) ).
File = PDDL domain file .

Another question arises is, “what is the problem?”,
which using a Prolog predicate is:

?7— loadPDDL( hasfile (PDDLproblemFile, fileID) ).
File = PDDL problem file .

Symbolic skill reasoning using rule-based logic is used
to check the satisfaction of the constraints of a situation. For
example, to place a can inside the second drawer of a file
cabinet requires that the first drawer be closed, i.e., it is one
of the preconditions that must hold to be able to execute the
place skill in the second drawer. The purpose of inference in
this level is to answer the question, “Do preconditions of a
skill hold?”, which using a Prolog predicate is:

?7— SkillPrecondiction( hasStatus (Object, Status) ),

?7— SkillPrecondiction( isReadFrom(Status , Sensor) ).
?— SkillPrecondiction( satisfies (Status, SkillPrecond) ).

SkillPrecondiction = Boolean value (True or False).

This predicate returns a Boolean value which identifies
whether the skill preconditions are satisfied. It is used in the
scenario described in Sec. 5 (storage task), where the RFID
tag memory is used to know the status of the drawer (i.e.,
open or closed).

Semantic reasoning:

Beside the aforementioned reasoning process, an expres-
sive inference process is proposed to identify the hidden knowl-
edge and increase the robots capabilities, as used in [8]. The
semantic reasoning obtains the knowledge that the robot re-
quires to manipulate the objects in the environment (e.g, what
are the fixed and manipulatable objects?), reasoning related
to sensing (e.g, what is the corresponding algorithm?), task
planning (e.g, what is the state of the objects in the current
scene?), and motion planning (e.g, which are the interaction
parameters that hold?)..

Geometric reasoning:

The main role of geometric reasoning is to evaluate ge-
ometric conditions of symbolic skills. Two main geometric
reasoning processes are provided:

Reachability Reasoning A robot can transit to a pose if it
has a valid goal configuration. This is inferred by calling an
Inverse Kinematic (IK) module and evaluating whether the
IK solution is collision-free. The first found collision-free IK
solution is returned, and, if any, the associated pose. Failure
may occur if either no IK solution exists or if no collision-
free IK solution exists.

Spatial Reasoning We use this module to find a placement
for an object within a given region. For the desired object, a
pose is sampled that lies in the surface region, and is checked
for collisions with other objects, and whether there is enough
space to place the object. If the sampled pose is feasible,
it is returned. Otherwise, another sample will be tried. If
all attempted samples are infeasible, the reasoner reports
failure, which can be due to a collision with the objects, or
because there is not enough space for the object.

Example of the Prolog predicates for the geometric rea-
soning are:

“Is the path toward a goal configurations reachable?”:
?7— testReachability ( hasAlgorithm (IKModule, IKAlgorithm) ).
Algorithm = Call IK service.

“Is the path toward a goal configurations collision-
free?”:

?7— CollisionCheck ( hasAlgorithm (CCModule, CCAlgorithm) ).
Algorithm = Call collision check service.

Also, these can be a part of a general workflow to call IK,
collision check and motion planning in a sequence as follow:

?7— testReachability ( hasAlgorithm (IKModule, IKAlgorithm) ),
?7— CollisionCheck ( hasAlgorithm (CCModule, CCAlgorithm) ),
?7— MotionPlanning ( hasAlgorithm (MPModule, MPAlgorithm) ).

Algorithm = Call [IK, CC, MP].
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3.3.5. Data management

Different ways to store the data related to the environ-
ment, its entities and the way of manipulation are introduced.
We divide the knowledge into static and dynamic knowl-
edge. Static knowledge is used to describe the static data
related to the environment, its entities such as the color and
dimension of an object. Dynamic knowledge is used to de-
scribe the dynamic data such as spatial relations, positions
of the objects and the way of manipulation based on the ob-
jects situation (e.g, the literal grasping pose of a can from a
drawer is from the top).

The management of the information related to the ma-
nipulation of objects (their properties and ways to be ma-
nipulated), requires the integration of the data stored in the
RFID tags memory and that stored in a database (DB) and
knowledge in ontology form.

Static knowledge.

DB and ontologies are used to store the static data.
DB is particularly used to store the skill-based experience
with their trajectories to be called when the situation fits.
The ontology is used to structure the abstract relations that
semantically describe the environment and its entities in a
hierarchical way.

Dynamic knowledge.

RFID tags memory play a significant role to store dy-
namic/partial data. Relevant data like spatial relations can
be smoothly stored in the memory. The framework has capa-
bility of updating the relevant data based on the robot result
of actions. For example, the relevant dynamic data could be
the status of a can (full or empty) and if the robot has done
a skill to serve a can in a cup, based on the result of this
action, the status can be automatically updated. Moreover,
asserting some information related to a new instance in the
environment like a cup0I belongs to a category cup in the
ontology. It allows the instance to take the same taxonomy
of the cup super class.

3.4. Planning and execution modules

In this section, the module of task planning and the
task manager module responsible for managing the tasks
are described. Also, the framework flowchart showing the
linkage of the proposed modules is introduced.

3.4.1. Task planning module

The symbolic planner is responsible to observe the cur-
rent state of the system, understand the goal and generate a
sequence of skills to achieve the goal. The initial state of the
world is extracted by the “initial state extractor or general
perception”. The initial state is the truth about the world and
is always detected before computing a plan.

The first step in defining the initial state is to get the poses
(positions and orientations) of all the available objects in
the environment. In SkillMaN, the planning starts with only
defining the target object instead of discovering the entire en-
vironment. That means some objects are not considered as

(:skill opanrawer
:parameters (?rob - robot ?cont - containerAll ?st - status ?st2 - status)
:precondition (and (= ?st closed) (status ?cont ?st)
(not (infeasible drawer2 drawer3 table))
(holding ?rob ?cont fileCabinet)
(forall (?0b2)
(not (isCritReach ?0b2 ?cont fileCabinet) ) ) )
:effect (and (not (status ?cont ?st) )
(status ?cont ?st2) (not (holding ?rob ?cont fileCabinet) )
(arm-empty ?rob) ) )

Figure 7: openDrawer skill representation in PDDL. It contains
parameters (the description of the skill), the skill preconditions
(drawer should be closed) and its effect (expected state).

participants of the robot working space. This planning pro-
cess is considered as a planning under partial information.
The main advantage is that it reduces the computational cost
of the planning process. Here, it is done by using the inte-
gration of RFID and vision sensors.

Computing poses of all objects is not enough, we also
need to define their state, e.g. if a can is filled or not,
which can be done by the perception service using the RFID
memory associated with the tags.

A plan is conceptually a high-level abstraction for going
from a given initial state to a goal state. It consists of a
sequence of skills that are defined, learned, or computed by
a symbolic planner.

Skills refer to an executable set of actions which require
motion. In SkillMaN, the following essential skills are
proposed to deal with several scenarios in indoor robotic
manipulation:

1. pickUp: a skill done by the robot to move an attached
object from one pose to another one.

2. putDown: a skill done by the robot to place an at-
tached object to a certain pose.

3. openDrawer: a skill done by the robot to move an
articulated object with a prismatic joint like to open
a drawer or box-like container.

As illustrated in Fig. 7, the skills in the skill database
can be defined as actions in PDDL for a particular domain,
in which the preconditions and effects of the skills are de-
scribed. The domain and problem PDDL files are labeled in
the skill knowledge. A planning query is given as a PDDL
problem, in which the goal and initial states are described
with semantic labels. Extended semantic annotations en-
able the linking between actions and problems using seman-
tic resolution, which allows to overcome the closed-world
assumption of the PDDL domain by automatically updating
the states of the world and the potential actions that the robot
can perform. The mechanism for the semantic resolution
is beyond the scope of this paper. The semantics, actions,
and required relationships are defined in PDDL domain files,
therefore, a suitable domain file must be defined explicitly by
the user to generate a plan for the problem. The output of the
planner is a sequence of skills that is executed at runtime,
which might require the planner to generate an alternative
plan in case of a failure, as presented in [9].
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Figure 8: Flowchart of the SkillMaN framework.

3.4.2. Task manager module

In this module, the perception, planning (symbolic and
geometric), adaptation and knowledge are combined. Af-
ter generating the scene using the initial state extractor with
the guidance of perceptual knowledge, and computing the
sequence of skills, the geometric module is used to compute
the collision-free path of each skill. Moreover, the knowledge-
based reasoning is used in this module to check the similarity
of the situations with the ones stored in the database.

The planner usually generates atomic actions or skills for
the robots although, atomic actions can also be generated
for humans or sensors. For example, one of the planning
actions could be sense the environment. That means that the
perception system uses a sensor and feeds back the planner
with the relevant information, or asks a human operator for
assistance. This module provides the interface for passing
the planned-based skills for the robot, sensors and humans.
More details about this module is described in Sec. 4.2

3.5. Framework flowchart

The flowchart shown in Fig.8 illustrates how the pro-
posed modules in the framework are integrated for such tasks.
Firstly, the robot needs to read which are the initial and goal
states. The initial state can be extracted using the perception
system. The exact location of the objects can be completely
detected if they are, for instance, in the field of view of a

Execution

ienti reasonin .
Expen:an;al Task L Yes Q No and : Interpretation
Knowledge uery

(EK) il Answer adaptation e EEETER
Retrieve
Store

Fail

camera, or only partially located by using the RFID. Then,
the task planner computes the sequence of skills to be exe-
cuted, what is called general plan. These sequence of skills
is obtained at a symbolic level, without any geometric con-
siderations.

The robot starts to follow the general plan without any
geometric consideration and, based on the perception out-
comes and robot goals, it semantically reasons on which sit-
uations stored in experiential knowledge use the same skill
(filtration process). In the case of similarity, the task man-
ager determines how to execute the skill by querying the
adaptation module, that retrieves the information from the
experiential knowledge.

If the adapted motion is not collision-free or if no similar-
ity was found, then the robot queries the geometric reason-
ing modules, i.e., inverse kinematic, collision check, motion
planning, and object placement, to generate a motion for the
skill (also, if necessary, with the assistance of the experi-
ential knowledge to provide relevant geometric information
like the best grasping configuration to be used). After the
motion is generated, it is stored in the Database (DB) as ex-
perience to be called whenever needed.
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4. Implementation and set-up
4.1. Implementation tools
4.1.1. Perception

The C++ library ar—track—alvar (http://wiki.ros.org/
ar_track_alvar) has been used to detect the object pose and
ID. Moreover, the C++ library ThingMagic Mercury API
(http://www.thingmagic.com/manuals-firmware) of RFID tech-
nology has been used to detect the objects, including the
hidden ones, and to store the relevant dynamic information.
Some services are implemented to read the tagID, read the
data from memory and write/update the data on the memory.
These IDs are asserted in the knowledge to extract a seman-
tic description of the object. All the transformations of the
objects and camera are calculated with respect to the world
frame.

4.1.2. Planning and adaptation

A planning system consists of two main phases: task
planning and motion planning. The first is implemented
using the Fast Forward (FF) task planner to generate a
sequence of actions. The latter is implemented using The
Kautham Project [22]. The Kautham Project is a C4++ based
open-source tool for motion planning, that enables to plan
under geometric and kinodynamic constraints. It uses the
Open Motion Planning Library (OMPL) [25] as a core set
of sampling-based planning algorithms. In this work, the
RRT-Connect motion planner is used to generate a path
between two configurations.

The main technique onto which the imitation motions
have been implemented is the DMP [12]. The DMP exper-
iments are performed first in simulation and afterwards us-
ing the real robot. The experiment consisted in learning by
recording the execution of the planned-base motion and then
changing the initial and final points to see how the planned
gestures are imitated.

An interface has been implemented to command the
arm to perform such motions that require imitation gestures.
This interface can be divided into three main parts, the
data acquisition process, the DMPs generation, and the
execution of the motion. The data acquisition is performed
by recording the motion. The DMPs generation is done
using the motion recorded as input to learn how to perform
the DMP primitive in a new situation. The execution of the
motion uses the initial configuration and goal state required
to adapt the motion in similar situations.

The integration between the planning and adaptation
tools is done automatically together in the preparation phase.

In SkillMaN, the proposed abstract primitives are de-
scribed:

1. releaseGripper: an atomic action used to open the
gripper.

2. closeGripper:
gripper.

an atomic action used to close the

3. pick-place: an skill that contains the atomic actions
move, hold and put-down; it is used for transferring
the objects between two locations.

4. openDrawer: is an skill that contains the atomic ac-
tions move, hold and pull; it is used for opening/clos-
ing the drawers.

5. serving: is a skill that contains the actions move and
pour; it is used for serving the beverages to a customer.

The motions that are adapted are initially either com-
puted by the motion planner, e.g, in case 3 and 4, or copied
from human demonstrations, e.g, in case of 5. In case of 1
and 2, the motion of closing and opening the gripper is pre-
defined.

These abstract primitives correspond to the basic func-
tions of the robot manipulator, which can be implemented in
many different ways. Our way of implementing such prim-
itives is at the lowest motor control level. The focus of our
work is, however, not a specific implementation, but rather
we would like to propose a way to combine them to seam-
lessly perform skills.

4.1.3. Knowledge

The knowledge is designed using ontology web language
(OWL) using the Protégé ontology editor (http://protege.
stanford.edu/). Ontology instances can be asserted using
information processed from low-level sensory data.

Queries over the knowledge to reason or check the sim-
ilarity are based on SWI-Prolog and its Semantic Web li-
brary which serves for loading and accessing ontologies rep-
resented in the OWL using Prolog predicates. A ROS (Robot
operating System) interface has been implemented in order
to facilitate the query-answer process as a client-service com-
munication.

The PMK framework [8] is used in this work. It is ex-
plicitly implemented to enhance Task and Motion Planning
(TAMP) capabilities in the manipulation domain. It is inte-
grated with the multi-sensory module allowing the instances
to be asserted to the ontology using information processed
from low-level sensory data. The reasoning scope of PMK
is divided into four parts: reasoning for perception, the rea-
soning for object features, the reasoning for a situation, and
reasoning for planning.

4.1.4. Navigation and mapping

Fig. 9 describes the navigation strategy proposed in
SkillMaN. In (a), the plan view of the indoor environment
has been shown. By using the mobile capacity of TIAGo,
it plans toward the navigation position of the objects (e.g,
TIAGo navigate toward the picking and serving tables) until
it detects the labels attached to them, as shown in (b). During
the navigation, TIAGo has the capabilities of path planning
with obstacle avoidance and localization of the objects in the
map, as shown in (c). All the objects in the environment are
localized with respect to the reference frame.

Navigation TIAGo has autonomous navigation function-
alities implemented using the ROS 2D navigation stack (http:
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Figure 9: Navigation experiment: (a) the plan view of the indoor environment, (b) the real scene of how the robot detects the
tables used in the indoor environment, and (c) path planning, obstacle avoidance capabilities, and navigation poses on the map.

//wiki.ros.org/navigation). This package is one of the most
commonly used to implement mapping and autonomous nav-
igation solutions in robots running on ROS. It takes in infor-
mation from odometry and sensor streams and outputs ve-
locity commands to send to the mobile base. This naviga-
tion software is composed of several different ROS nodes,
services and topics that are able to perform SLAM [11]. Us-
ing the information stored on the map and the data of its
surroundings provided by different sensors, this package is
capable of computing a suitable path to lead the robot to a
certain goal position without hitting any obstacle.

Mapping The mapping and pose generation process
starts by creating the occupancy grid map of the environment
of the robot. To obtain it, the gmapping (http://wiki.
ros.org/gmapping) package installed in the robot has been
exploited. This map is necessary for the navigation to
successfully move through the room avoiding any collision.

Localization Localization is achieved by working with
the amcl package (http://wiki.ros.org/amcl). This package
is a probabilistic localization system for a robot moving in
2D. It implements the adaptive Monte Carlo localization
approach (MCL), which uses a particle filter to track the pose
of a robot against a known map. MCL generates a cloud
of particles which represent the possible states of the robot
distribution. Each particle represents a possible pose and
orientation of the robot on the map.

4.2. Task manager algorithm

The SkillMaN is not implemented for a specific task, it
is quite general and it accepts several tasks in indoor envi-

ronments with the consideration of some changes regarding
the description of the environment, as discussed in Sec. 6.3.
All the modules mentioned in Fig. 3, and the provided ser-
vices of each module as described in Fig. 10, are used by the
task manager. The task manager is responsible to call these
services in order to autonomously execute the tasks (as de-
scribed in algorithm 1).

In the planning phase, two services have been used to
call the the heuristic-based task planner FF (Fast Forward)
and to load the domain and problem files:

1. loadPDDL used to automatically load the PDDL do-
main and problem files, as described in Sec. 3.3.4

2. FF used to automatically compute symbolically the
sequence of skills to be executed.

With a guidance from knowledge modules, the following
services are used:

1. filterSituation used to filter the situations that include
a specific skill in the database,

2. similarityCheck used to compare the current situation
with the others stored in the database,

3. experientialKnow used to provide geometric skills,
based on the robot experience, i.e., the type of grasp
according to the current situation.

The assistant modules of sensing, geometric and adap-
tation are provided in services form. The sensing services
are used to provide the initial state of the environment to the
planner or whenever required, using cameras and RFID sen-
sor. The camera has two main services:

1. Cam status used to initialize the camera, and to input
(from either a human guidance process or a motion
planner) the motion to be adapted, and
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Figure 10: Task management and the communication with the ROS-based services from symbolic and low-level modules.

Algorithm 1: rask M anager

1 initial State < runPerception (RFID) /| run RFID sensor to perceive the environment using the perceptual knowledge
2 while Task goal not delivered do
3 D =load PDDL // 1oad the domain and problem files from skill knowledge
4 P = FF(D) // plan at symbolic level to compute the sequence of skills
5 skill N ame « firstAction(P)
6 while skillName do

7 objects, poses < runPerception(Camera) // perceive the actual state of the environment according to the skill
8 Y = skillName, objects I/ store the current situation.

9 F =filterSituation(skillName) // return a set of situations that use the same skill

10 S = similarityCheck(F, Y) // return the situation which is most similar in the similarity check, if any
1 if S!=emptySet then
12 Mot « loadMotion (S)
13 expKnow « experientialKnow // return the geometric-skills experience
14 Adapted M ot < adaptMotion(Mot, expKnow) // adapt motion into the current situation
15 if Adapted Mot = feasible then
16 execute(Adapted M ot)
17 L store[Adapted M ot, skill N ame, Y] // store the executed motion, skill and the current scene situation
18 if S = emptySet or C = infeasible then
19 Mot = generate M otion(skill N ame) // generate a collision-free motion for a new situation
20 if Mot = feasible then
21 execute(M ot)
22 L store[GenM ot, skill Name, Y ]
23 skill N ame < nextAction(P)
2. LocateCam used to estimate the objects poses and 2. ReadRFIDTag used to read the RFID tags ID associ-
their IDs. ated to the entities,

3. ReadRFIDMem used to read the dynamic data stored
in tags'memory, and

1. InitializeRFID used to set up the RFID system (i.e., 4. WriteRFIDMem used to update the tags'memory.
reader, antennas and tags),

The RFID sensor has four main services:
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The sensing module is managed through the perceptual
knowledge, the following service is used for this purpose:

e runPerception used to select the corresponding algo-
rithm(s) associated to the available sensors.

The geometric services are used to combine the geomet-
ric module with a symbolic planning level to guarantee the
feasibility of the planned skills. This module has four main
services, provided by The Kautham Project:

1. motionPlanning used to compute a collision-free path,

2. collisionCheck used to verify whether a robot config-
uration is collision-free or an object at a given pose is
not interfering with others,

3. inverseKinematics used to compute the robot config-
urations for a given desired pose of the end-effector,

4. objectPlacement used to sample/check the availability
of placement locations for the objects.

These geometric services are manged through the geo-
metric knowledge by calling following service:

e generateMotion used to compute the initial and goal
configurations (according to the action/skill to be per-
formed and the reachability and spatial reasoning pred-
icates proposed in Sec. 3.3.4), and the collision-free
path between them using the motionPlanning service.

The adaptation services are used to imitate/adapt the
motion of each skill to be executed in such situations. There
are two services managed through the geometric knowledge:

1. trainMotion used to input (from either a human guid-
ance process or a motion planner) the motion to be
adapted and returns the weights used to shape the this
motion, and

2. adaptMotion used to compute the initial and goal con-
figurations (according to the action/skill to be performed
and the reachability and spatial reasoning predicates
proposed in Sec. 3.3.4), and to adapt the trained mo-
tion is verified with the trainMotion service.

This interface is established based on ROS (Robot Op-
erating System) service-client communication, allowing the
task manager to monitor the task that other modules are re-
sponsible for.

4.3. Experimental set-up

The experiment has been done at IOC lab and it is
composed of:

The TIAGo robot.

A file cabinet with four drawers.

A storage table that contains the objects (cans).
Several cans that may be full or empty.

A serving table that contains a cup on a tray where the
robot must pour the contents of a can to a customer.
6. A perception system with camera and an RFID sensor
that includes:

wok W =

e A reader that has the capacity of reading four
antennas, distributed around the lab, and let the
robot determine the region where the objects are
located.

e The tags which have a unique ID and a memory
with a space of 64 characters.

5. Experimental scenarios

Before describing the proposed scenarios, some assump-
tions should be taken into account.

1. All the object models are defined in the knowledge
database.

2. All atomic actions/skills to be used are described with
their preconditions and effects in knowledge database,

3. All the RFID’s antennas are distributed in the envi-
ronment in a way that avoids the interaction between
the signals received from each one. That means that
each antenna only receives the information of the tags
located in its coverage region,

4. All environmental entities are labeled with either RFID
or vision-based tags,

5. All the features received from the multi-sensory per-
ception system (RFID and camera) are reliable enough,

6. All the atomic actions/skills are assumed robust enough
to be executed without failures in those scenarios, hence
not requiring the use of the recovery module.

S.1. Scenario one: Storage task

Fig. 11 shows a sequence of snapshots of the storage
cans task. The task is to classify the cans on the table to
store them in the drawers based on their status. Firstly,
the robot checks the status of the selected can by reading
this information from RFID memory. After computing the
symbolic plan, the robot can apply the skill openDrawer
(the first action of the symbolic plan) to the corresponding
drawer of the file cabinet, as shown in Fig. 11 a-b. Then, to
generate a collision-free path, the motion planner has been
called. Then, with guidance from semantic knowledge and
the experiential knowledge (if geometric experience exist),
the robot can reason about how to apply the pickUp skill
to the can from the table and how to putDown it inside
the drawer and close the drawer, as shown in Fig. 11 c-e.
After similarity check process of the current situation i.e.,
comparing it with the ones that have a similar description
stored in the database., the imitation process is used to
imitate those skills to be applied for the other cans, as shown
in Fig. 11-f. The second can is full and the corresponding
drawer where to be stored is the second one, shown in
Fig. 11 g-h. The perception system is used to check if the
preconditions of the actions are satisfied or not. For example,
to apply the openDrawer skill in the second drawer, the first
one should be closed to allow the robot to putDown the
selected can correctly in the drawer.
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e) f) 9) h)

Figure 11: a) the robot plans how to open the first drawer; b) the robot executed the openDrawer skill; c) the robot plans how
to pick the black can (based on its status, here it is empty) with the help of experiential knowledge about what is the best grasp
to place it in the first drawer; d) the robot executed the place skill; e) the robot executed the close action using the rule-based
skill; f) the robot checks the similarity of the current situations, it finds the same skill has been used with the same object (a
drawer in the file cabinet), then executes the skill with the same motion used to open the first drawer; g) the robot plans how to
pick the red can (based on its status, here it is full) with the help of experiential knowledge about what is the best grasp to place
it in the second drawer; h) then, the robot executed the place skill. Video URL: https://www.youtube.com/watch?v=bTmWAkjC93c

Figure 12: a) the robot checks the similarity of the current situation, it finds the same skill has been used with the same object
(i.e., a drawer in the file cabinet), then adapts the skill with the same motion used in the database; b) the robot figures out the
top-grasp is not feasible for pouring action, the top of the file cabinet is used as a placement room to change the grasp type; c)
the robot changes the grasp type from the top-grasp to the side-grasp; d) the robot is serving the contents of the can in the cup
to a customer, the serve motion is adapted from the experience, according to the current pose of the robot and location of the
cup. Video URL: https://www.youtube.com/watch?v=bTmWAkjC93c

5.2. Scenario two: Serving task The top surface of the drawer is used as a free placement
room for this sub-task. Then the robot is able to serve the
can. Moreover, if the position of the cup is changed, the
robot will be able to adapt the motion with the new position.

Fig. 12 shows a sequence of snapshots of the serving can
task. The task to serve the contents of the can inside a cup
on the tray. The robot can not apply the pouring skill with
the grasping pose used to pick it up from the drawer (which 5.3. Result
is top-grasp). The robot needs to temporally place the can to

change the grasp from the top to side grasping configuration. The perception, planning, and adaptation modules are
used with the knowledge for guidance, including experien-
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Table 1
Test the skill openDrawer, pickUp and serving using adaptation method vs the planning system with and without experiential
knowledge.
Skill Parameter Adaptation Planning
With Exp.know Without Exp.know
S — success rate 7. 1007 1007 507
openDrawer )
T — Avg. time (sec.) 45 115 39.5
S — success rate /. 1007 1007 507
pickU pFromDrawer
T — Avg. time (sec.) 12,5 335 58.5
S — success rate /. 1007 - —
serving
T — Avg. time (sec.) 12 — —
Averagetime (sec.) Successrate %
W Adaptation Planning with exp. Planning without exp. W Adaptation Planning with exp. Planning without exp.
70 120
60 100
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50
40
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o 40
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e C ] O
openDrawer pickFromDrawer serving openDrawer pickFromDrawer serving

(a)

(b)

Figure 13: (a) Average time for openDrawer, pickUp from the drawer and serving skills using adaptation and planning with and
without experiential knowledge. (b) Success rate for the each skill.

tial knowledge, to successfully execute the proposed tasks.
As illustrated in Table. 1, some factors have been considered
to compare between adaptation and planning with and with-
out guidance from the experiential knowledge, such as time
and success rate. Three main skills are used for this evalua-
tion, openDrawer, pickUp from the drawer and serving the
can to a customer in the tray.

The adaptation of a planned-based motion is used to
open the second drawer in the file cabinet in the storage task
meanwhile a human demonstration is adapted to pour the
can contents in the serving task. For the proposed skills, the
number of calls to the collision check module to verify the
feasibility of the path toward the goal configuration for the
adaptation is always less than the number of calls required
for the motion planning. The reason behind that is the
exploration process done while planning the motion of an
action using sampling-based method, i.e. a huge number
of configurations need to be evaluated in order to find a
collision-free path. For skills composed of several actions
(each one with its own motion) this is even more relevant.

Due to the aforementioned reason, and as shown in Fig. 13-
a, we noticed that the adaptation approach saves time in com-
parison to repetitively planning similar tasks. We also con-
sider the use of experiential knowledge in the planning in
the comparison. Although the planning using experiential
knowledge for both openDrawer and pickUp skills save around
38jof the time without using it, the adaptation method still
has better results. Meanwhile, the use of experiential knowl-
edge saves around 297 of the time without using the experi-
ential knowledge for the openDrawer skill, and more than
half (57}) for pickUp skill from the drawer. We executed
each skill 10 times.

There are 34 situations stored in the PMK ontology. These
situations are described through the axioms and properties of
PMK. To describe both aforementioned scenarios, 1254 ax-
ioms are used to relate instances, data, and classes. The sim-
ilarity check reasoning process based on belief states of the
world takes around 2.5 seconds over the PMK framework.
That means, the total time of adaptation, including similar-
ity check reasoning, is still less than the planning time. The
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reasoning process was run on an Intel Core 17-4500U 2.40
GHz CPU with 8 GB memory.

Fig. 13-b shows that the adaptation and planning with
experiential knowledge have a high percentage of success
rate, while this is not the case of planning without it. The
reason behind that is the exploration process required, i.e.
when no information is given, there is a need to explore all
the possibilities regarding potential grasps (here two type
of grasps were considered, top and side) until a solution is
found.

6. Discussion

6.1. Discussion about the result

The SkillMaN framework provides services that are
necessary for every-day activity tasks, with a knowledge
source, reasoning engine and skills descriptions. It has been
tested with a TIAGo mobile manipulator in a lab but it is
flexible enough to be extended to other robots (with different
kinematics and control architecture) or other environments
(even though, the generation of semantic descriptions of the
environments requires of manual processing).

The strategy of the task manager allows the the robot to
build the experience automatically. That means, initially,
the planner can be used to build the robot experience. To
set the initial scene to the planner, the initial state extrac-
tor, i.e., perception modules, localizes all the objects in the
robot working space with respect to the world frame. Also, it
is used to verify the satisfaction of some of the skills precon-
ditions. For example, as shown in Fig. 7, the precondition
to apply the openDrawer skill in a drawer is that the drawer
must be closed. This dynamic information is retrieved from
the RFID memory. The localization of the objects is done
using the integration between RFID and camera. By describ-
ing the robot and working space, the geometric modules, i.e.
inverse kinematic, motion planning, collision check and ob-
ject placement, in assistant system can be called in a struc-
tured way from the task manager to generate a collision-free
path of each symbolic skill. Then, store the motion in the
DB. The outcome of perception and semantic inference are
used to reason about the features of the objects (e.g, the han-
dle type of the drawer), the robot (e.g, the proper location to
avoid collision with the target object), the execution (i.e., the
tips of how to execute the task). Then, the DMP adapts the
motion.

Further, to plan the storage task shown in scenario
one, the robot needs to call the general task planning to
compute the sequence of skills, which requires to run a
general perception system (RFID) to set the initial scene
for the planner. Then query over the knowledge module to
illustrate the task constraints such as the top-grasp is used
to pickUp/putDown the can from/to the drawer in the file
cabinet. Moreover, query over the geometric module to
reason on the feasibility of each skill and generating its path.
In the case the robot has experience of how to execute such
skill in a certain situation (similarity check), the adaptation
module is used to adapt/imitate the skills.

As illustrated in Table. 1, the planning process can be
used to explore (without experience) how to grasp the cans.
That means, the robot can start with a side-grasp or top-grasp
with different parameters (angles). We assume the robot
changes the grasp type if a failure occurs (i.e., if the side-
grasp return false, the top-grasp is selected). For pickUp
from the drawer skill, the successful rate is half because
of selecting a side-grasp that collides with the drawer body
and it reports fail. Then the top-grasp is used and it reports
success.

Several final positions for serving task are proposed to
test the flexibility of the adaptation approach. It successfully
presents the contents of the can inside the cup, as shown in
Fig. 14.

As demonstrated in Fig. 13, and based on experimental
evaluations illustrated in Table. 1, the use of the adaptation
method is powerful for every-day tasks when a motion
already exists in the DB. It is demonstrated in the calling
of the collision check module for feasibility verification and
execution time.

6.2. Challenges

The SkillMaN framework has been able to cope with the
following challenges in the scenarios studied:

1. Detection of NLOS: The objects are not always in the
robot sight which requires a sensor like RFID to be
used to figure out the hidden objects such as in the
case of the is proposed for a serving task scenario.

2. Check skill feasibility: The skills are not always fea-
sible which requires a geometric reasoning with guid-
ance from knowledge to check the availability to apply
them in such situations. For instance, some geometric
challenges have been considered in the scenarios:

(a) In the storage task, a challenge of how to pick
the can and place it inside a drawer This requires,
based on geometric-skills experience, a top-grasp.

(b) In the serving task, a challenge of how to serve
the can to pour its contents in the cup. This
requires changing the type of grasp from top to
side. Moreover, a free room to place the can to
change the grasping type.

These challenges show the flexibility of SkillMaN to
work in a semi-unstructured environment as presented
in the proposed scenarios or a fully unstructured envi-
ronments as introduced in our previous works [2, 8].

6.3. System flexibility
The proposed system is flexible enough to e.g.:

1. use untagged-based perception systems, such as the
one presented in [13],

2. extend the way of describing the skills, besides de-
scribing using gestures or as actions in a planning sys-
tem,

3. add more skills, like grasp an object in a cluttered en-
vironment allowing the interaction with the obstacles
as presented in [19], and
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Figure 14: After applying the similarity check module and conclude the current situation exists in the knowledge database, the
adaptation process with different poses for serving skill is used.

4. to adapt more skills (e.g. in our system, for instance,
the robot adapts the openDrawer skill based on the
status of the drawer to either open or close it).

Regarding the proposed perception system, it is enhanced
by the use of RFID technology with tags that include a phys-
ical storage medium and several antennas to cover different
regions of the lab.The use of this technology increases the
richness of perception capabilities in several aspects, such
as:

1. being able to know the region where an object is
located (without knowing its exact pose, just by using
the antennas signals) which enhances the planning
capabilities by allowing the robot to start planning and
executing the task without a complete knowledge of
the scene;

2. being able to perceive objects without line of sight
(like in the serve scenario where the robot knew a full
can was stored in the second closed drawer).

7. Conclusion and future work

This framework discusses the importance to integrate per-
ception, planning, knowledge-based reasoning (including ex-
perience), in a skill-based manipulation framework to let the
robot automatically perform the tasks that include every-day
activities. Moreover, the framework also includes the proce-
dures to determine how to manage the data required to effi-
ciently perform the tasks. A set of skills such as pickUp,
putDown, openDrawer and serving are introduced. The ex-
ample with two scenarios including manipulation in indoor
environment has been introduced to show the capabilities of
the robot to use the proposed modules to execute the every-
day tasks in semi-structured environments. For every-day
tasks, the adaptation method is powerful in terms of time
when the robot already has experience of how to execute
the task. For planning, experiential knowledge is used as a
geometric-skill experience to facilitate the planning process
and reduce the cost that increases due to the exploration pro-
cess. The system shows flexibility to be adapted in several
environments and robots. Also, more skills can be added to
the framework.

Future work will be focused on increasing the robot
autonomy by implementing a library of actions/skills and
a sophisticated reasoning mechanism to allow the robot to

reason on the best action/skill to be used in the current
situation. Moreover, efforts will be put on increasing the
adaptation capability by generating motion templates from
humans or planners that could be efficiently adapted in
several situations.

References

[1] Aein, M.J., Aksoy, E.E., Worgétter, F., 2019. Library of actions: Im-
plementing a generic robot execution framework by using manipula-
tion action semantics. The International Journal of Robotics Research
38, 910-934. doi:10.1177/0278364919850295.

[2] Akbari, A., Diab, M., Rosell, J., 2020. Contingent task and motion
planning under uncertainty for human-robot interactions. Applied
Sciences 10, 1665.

[3] Akbari, A., Lagriffoul, F., Rosell, J., 2018. Combined heuristic task
and motion planning for bi-manual robots. Autonomous robots , 1—
16doi:10.1007/510514-018-9817-3.

[4] Baader, F., Horrocks, 1., Lutz, C., Sattler, U., 2017. An Introduction
to Description Logic. Cambridge University Press, United Kingdom.

[5] Bozcuoglu, A.K., Kazhoyan, G., Furuta, Y., Stelter, S., Beetz, M.,
Okada, K., Inaba, M., 2018. The exchange of knowledge using
cloud robotics. IEEE Robotics and Automation Letters 3, 1072—1079.
doi:10.1109/LRA.2018.2794626.

[6] Calinon, S., Guenter, F., Billard, A., 2007. On learning, representing,
and generalizing a task in a humanoid robot. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 37, 286-298.

[7] Deyle, T., Reynolds, M.S., Kemp, C.C., 2014. Finding and navigat-

ing to household objects with uhf rfid tags by optimizing rf signal

strength, in: 2014 IEEE/RS]J International Conference on Intelligent

Robots and Systems, pp. 2579-2586. doi:10.1109/IR0S.2014.6942914.

Diab, M., Akbari, A., Ud Din, M., Rosell, J., 2019. PMK - A Knowl-

edge Processing Framework for Autonomous Robotics Perception and

Manipulation. Sensors 19. doi:10.3390/s19051166.

Diab, M., Pomarlan, M., BeB3ler, D., Akbari, A., Rosell, J., Bateman,

J., Beetz, M., 2020a. An ontology for failure interpretation in auto-

mated planning and execution, in: Silva, M.F., Luis Lima, J., Reis,

L.P,, Sanfeliu, A., Tardioli, D. (Eds.), Robot 2019: Fourth Iberian

Robotics Conference, Springer International Publishing, Cham. pp.

381-390.

[10] Diab, M., Pomarlan, M., Borgo, S., BeBler, D., Rosell, J., Beetz,
Bateman, J., Beetz, M., 2020b. FailRecOnt - An Ontology for Failure
Interpretation and Recovery in Automated Planning and Execution,
in: Submitted to ECAW2020, Bolzano, Italy.

[11] Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization and
mapping: part i. IEEE Robotics Automation Magazine 13, 99-110.
doi:10.1109/MRA. 2006.1638022.

[12] Ijspeert, A.J., Nakanishi, J., Schaal, S., 2002. Movement imitation
with nonlinear dynamical systems in humanoid robots, in: Proceed-
ings 2002 IEEE International Conference on Robotics and Automa-
tion (Cat. No. 02CH37292), IEEE. pp. 1398-1403.

[13] Konidaris, G., Kaelbling, L.P., Lozano-Perez, T., 2018. From skills

[8

—_

[9

—

Mohammed Diab et al.: Preprint submitted to Elsevier

Page 19 of 21


http://dx.doi.org/10.1177/0278364919850295
http://dx.doi.org/10.1007/s10514-018-9817-3
http://dx.doi.org/10.1109/LRA.2018.2794626
http://dx.doi.org/10.1109/IROS.2014.6942914
http://dx.doi.org/10.3390/s19051166
http://dx.doi.org/10.1109/MRA.2006.1638022

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

(26]

(27]

[28]

SkillMaN - A Skill-based Robotic Manipulation Framework based on Perception and Reasoning

to symbols: Learning symbolic representations for abstract high-level
planning. Journal of Artificial Intelligence Research 61, 215-289.
Lee, D., Nakamura, Y., 2006. Stochastic model of imitating a new
observed motion based on the acquired motion primitives. 2006
IEEE/RS]J International Conference on Intelligent Robots and Sys-
tems , 4994-5000.

Lee, K., Su, Y., Kim, T.K., Demiris, Y., 2013. A syntactic approach
to robot imitation learning using probabilistic activity grammars.
Robotics and Autonomous Systems 61, 1323-1334.

Li, Y., Mac Namee, B., Kelleher, J., 2010. Navigating the corridors
of power: using rfid and compass sensors for robot localisation
and navigation. The 11th Towards Autonomous Robotic Systems
(TAROS 2010) .

Liu, Y., Li, Z., Liu, H., Kan, Z., 2020. Skill transfer learning for
autonomous robots and human-robot cooperation: A survey. Robotics
and Autonomous Systems 128, 103515. doi:doi.org/10.1016/3.
robot.2020.103515.

Maass, W., Behrendt, W., Gangemi, A., 2007. Trading digital infor-
mation goods based on semantic technologies. Journal of Theoretical
and Applied Electronic Commerce Research 2, 18-35.

Moll, M., Muhayyuddin, Kavraki, L., Rosell, J., 2018. Randomized
physics-based motion planning for grasping in cluttered and uncertain
environments. IEEE Robotics and Automation Letters 3, 712-719.
Munawar, A., De Magistris, G., Pham, T.H., Kimura, D., Tatsubori,
M., Moriyama, T., Tachibana, R., Booch, G., 2018. Maestrob: A
robotics framework for integrated orchestration of low-level control
and high-level reasoning, in: 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE. pp. 527-534.

Pardowitz, M., Knoop, S., Dillmann, R., Zollner, R.D., 2007. Incre-
mental learning of tasks from user demonstrations, past experiences,
and vocal comments. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics) 37, 322-332. doi:10.1109/TSMCB. 2006 .
886951.

Rosell, J., Pérez, A., Aliakbar, A., Muhayyuddin, Palomo, L., Garcia,
N., 2014. The kautham project: A teaching and research tool for robot
motion planning, in: Proceedings of the IEEE Emerging Technology
and Factory Automation (ETFA), pp. 1-8.

Simmons, R.G., Apfelbaum, D., 1998. A task description language
for robot control. Proceedings. 1998 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Innovations in Theory, Prac-
tice and Applications (Cat. No.98CH36190) 3, 1931-1937 vol.3.
Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel,
P., 2014. Combined task and motion planning through an extensible
planner-independent interface layer, in: 2014 IEEE international
conference on robotics and automation (ICRA), IEEE. pp. 639-646.
Sucan, LA., Moll, M., Kavraki, L.E., 2012. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine 19, 72—
82.

Tenorth, M., Beetz, M., 2017. Representations for robot knowledge
in the knowrob framework. Aurtificial Intelligence 247, 151 — 169.
doi:doi.org/10.1016/j.artint.2015.05.010. special Issue on Al and
Robotics.

WIELEMAKER, J., SCHRIJVERS, T., TRISKA, M., LAGER, T.,
2012. SWI-Prolog. Theory and Practice of Logic Programming 12,
67-96. doi:10.1017/51471068411000494.

Wu, Z., Palmer, M., 1994. Verbs semantics and lexical selection,
in: Proceedings of the 32Nd Annual Meeting on Association for
Computational Linguistics, Association for Computational Linguis-
tics, Stroudsburg, PA, USA. pp. 133-138. doi:10.3115/981732.981751.

] Mohammed Diab is currently working toward the

Ph.D. degree in Automatic Control, Robotics and
Computer Vision at the Institute of Industrial and

8l Control Engineering (IOC), UPC. He is a voting
y member of the "Autonomous Robots" sub-group of
% the IEEE WG ORA that works on the standardiza-

tion of ontologies for robotics and automation. His
current research interests are focused upon task and
motion planning, perception and knowledge rep-
resentation and reasoning in manipulation human-
robot and robot-robot collaboration, and learning
in robotic system.

Mihai Pomarlan is a postdoc researcher at the Uni-
versity of Bremen. His current research interests
are focused on knowledge engineering and embod-
ied cognition, with a focus on applications for au-
tonomous service robotics.

Daniel BeBler is a Ph.D. student at the Institute for
Artificial Intelligence at the University of Bremen,
Germany, where he has also received his Diplom
degree (equiv. M.Eng.) in 2014. His main research
interest is knowledge representation and reasoning
in the context of autonomous robots, and as part of
integrated robot control systems. Since 2015, he
is the lead developer of the KnowRob knowledge
processing system which is the most widely used
KR system for service robots. Since 2018, he
is a voting member of the "Autonomous Robots"
sub-group of the IEEE WG ORA that works on
the standardization of ontologies for robotics and
automation. Since 2018, he is also a member of the
Medical Informatics Research Unit (MIRU) which
is a corporation between UNIHB and Mahidol
University, Bangkok, Thailand.

Aliakbar Akbari is a Postdoc researcher in Depart-
ment of Computer Science at Royal Holloway Uni-
versity of London. He did his Ph.D. in Robotics
at Universitat Politecnica de Catalunya (UPC). His
research interests include robot manipulation plan-
ning, Artificial Intelligence, and learning tech-
niques for human-robot Interactions.

Mohammed Diab et al.: Preprint submitted to Elsevier

Page 20 of 21


http://dx.doi.org/doi.org/10.1016/j.robot.2020.103515
http://dx.doi.org/doi.org/10.1016/j.robot.2020.103515
http://dx.doi.org/10.1109/TSMCB.2006.886951
http://dx.doi.org/10.1109/TSMCB.2006.886951
http://dx.doi.org/doi.org/10.1016/j.artint.2015.05.010
http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.3115/981732.981751

SkillMaN - A Skill-based Robotic Manipulation Framework based on Perception and Reasoning

Jan Rosell received the BS degree in Telecomumu-
nication Engineering and the Ph.D. degree in Ad-
vanced Automation and Robotics from the Univer-
sitat Politécnica de Catalunya (UPC), Barcelona,
| Spain, in 1989 and 1998, respectively. He joined
the Institute of Industrial and Control Engineering
(IOC) in 1992 where he has developed research ac-
tivities in robotics. He has been involved in teach-
ing activities in Automatic Control and Robotics
as Assistant Professor since 1996 and as Associate
Professor since 2001. His current technical areas
include knowledge-based task and motion plan-
ning, mobile manipulation and robot co-workers.

John Bateman is Professor of Applied Linguis-
tics in the Linguistics and English Departments
of the Faculty of Linguistics and Literary Sci-
ences at the University of Bremen. He received
his PhD in Artificial Intelligence from Edinburgh
University in 1986. His current research areas re-
volve around multimodal and multilingual semi-
otic descriptions, formal and linguistic ontologies,
functional and computational linguistics, focusing
particularly on accounts of register, genre, func-
tional variation, functional natural language se-
mantics, lexicogrammatical description and the-
ory, and computational instantiations of linguistic
theory. He has published widely in all these ar-
eas, as well as authoring several introductory and
survey articles on social semiotics, natural lan-
guage generation, and film and static document
analysis. He is currently the coordinator of the
Bremen Transmedial Textuality Research Group
(http://www.fb10.uni-bremen.de/bitt).

Michael Beetz received his diploma degree in
Computer Science with distinction from the Uni-
versity of Kaiserslautern. His MSc, MPhil, and
PhD degrees were awarded by Yale University
in 1993, 1994, and 1996 and his Venia Legendi
from the University of Bonn in 2000. Michael
Beetz was a member of the steering committee of
the European network of excellence in Al plan-
ning (PLANET) and coordinating the research area
"robot planning". He is associate editor of the Al
Journal and the coordinator of the German col-
laborative research centre EASE (Everyday Ac-
tivity Science and Engineering, since 2017). His
research interests include plan-based control of
robotic agents, knowledge processing and repre-
sentation for robots, integrated robot learning, and
cognitive perception. In 2019, he received a hon-
orary degree from the University of Orebro for his
longstanding cooperation and exceptional, interna-
tional research.

Mohammed Diab et al.: Preprint submitted to Elsevier Page 21 of 21


(http://www.fb10.uni-bremen.de/bitt)

