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This paper addresses the problem of obtaining the required motions for a humanoid

robot to perform grasp actions, trying to mimic the coordinated hand-arm movements

humans do. The first step is the data acquisition and analysis, which consists in capturing
human movements while grasping several everyday objects (covering four possible grasp

types), mapping them to the robot and computing the hand motion synergies for the

pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis
step is done, which consists in generating potential grasps for a given object using the

four family types, and planning the motions using a bi-directional multi-goal sampling-
based planner, which efficiently guides the motion planning following the synergies in

a reduced search space, resulting in paths with human-like appearance. The approach

has been tested in simulation, thoroughly compared with other state-of-the-art planning
algorithms obtaining better results, and also implemented in a real robot.
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1. Introduction

Humanoid robots equipped with anthropomorphic dexterous hands are among the

most representative examples of robots becoming more sophisticated and complex.

The anthropomorphic mechanical hands are devices that concentrate in a com-

pact volume a high number degrees of freedom (DOFs), ranging usually from 12

to 25 DOFs, as well as several different sensors. Obtaining a satisfactory perfor-

mance of these hands requires the automatic planning of their movements, which

is still an arduous and non-evident task since the complexity of the planning prob-

lem increases exponentially with the number of DOFs. Furthermore, sometimes not

only a feasible path is required but also the one that optimizes some quality metric

(e.g. minimizing the path length or the energy consumption). Regarding humanoid

robots, for instance, the motion planning must not only focus on the efficient search

of a valid solution, but also on the search of robot movements that mimic the mo-

tions of the human beings. In this way, the human-robot collaboration is facilitated,

because humans are familiar with the robot motions and thus they can adjust their

motions to avoid possible injuries or enhance the collaboration [1].

Motion planning of complex systems has been addressed using different plan-

ning algorithms, being the sampling-based planners [2] and, especially among them,

the Probabilistic Roadmap planners, PRM [3], and the Rapidly-exploring Ran-

dom Trees, RRT [4], the most commonly used. These algorithms have been ex-

tensively studied and, hence, several variants exist, for instance to deal with task

constraints [5], to bias the sampling towards better regions of the configuration space
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by using potential fields [6] or retraction-based methods [7], or to obtain continuous

and smooth trajectories satisfying geometric and dynamic constraints [8].

On the other hand, the robot joints must be properly coordinated in order to

obtain human-like motions. Thereby, real human movements are commonly used as

a reference [9], either pursuing a direct on-line teleoperation of the robot [10], or

with the aim of analyzing these movements and getting some valuable information

to be applied later in a planning phase [11]. Some relevant pioneering works dealt

with the grasping problem analyzing the correlations of the finger joints when the

human hand was grasping objects [12]. These correlations were called hand postural

synergies and mapped into a mechanical hand [13]. The synergies existing in the

human hand were also used for other objectives such as the analysis and design of

robotic hands in order to mimic human grasps [14], the design of specific hand con-

trol systems [15,16], or the identification of the hand pose using low-cost gloves [17].

Nevertheless, there exist other approaches that, instead of studying the hand syn-

ergies while grasping an object, compute the synergies from hand movements when

the human tries to cover the whole hand configuration space in an unconstrained

way [18, 19]. More recently, a compliant model, called soft synergies, was also in-

troduced and used in the selection of grasping forces, in their control, and in the

control of the motion of the grasped object [20, 21]. In addition, synergies were

also used in a dual-arm anthropomorphic system while performing manipulation

tasks [11, 22]. The works mentioned above dealt with synergies involving correla-

tions between joint positions. A more recent work extended the concept of synergies

to the velocity space (i.e. the space of the first derivative of the configuration tra-

jectories) calling them first-order synergies [23, 24] (in contrast with the synergies

in the configuration space, that were called zero-order synergies).

This work proposes to characterize for the robot the synergies existing in the

human grasping motions, considering different grasp types and grasp phases. Then,

for a given object to be grasped, the proposed approach looks for a set of potential

grasps using these synergies and uses a sampling-based motion planner, especially

designed to exploit these synergies, to reduce the planning complexity and, at the

same time, achieve hand-arm movements with human-like appearance. The work

presented here is an extension of the work presented in [25] that includes the grasp-

ing planning phase, more detailed descriptions of the motion planning algorithms

and the experimental validation of the approach.

After this introduction, Section 2 presents the problem statement and gives an

overview of the proposed approach. Then, Sections 3, 4, 5 and 6 describe each of

the main blocks of the work, namely, the capture of human motions, their analy-

sis, the synthesis of grasps and the motion planning of the robot arms, with each

section including experimental results that validate the proposed approach. Finally

Section 7 presents the conclusions and future work.
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Fig. 1. Human operator wearing the measurement equipment (left), set of grasped objects in the

experiments (middle), and dual-arm robot (right).

2. Problem statement and approach overview

The goal of this work is to plan the motions of a hand-arm robotic system trying

to mimic the hand-arm movements that a human does to pick an object perform-

ing different types of grasp. To this end, a sampling-based planning algorithm is

designed and the movements of a human operator are used to guide the motion

planning. The main steps of the proposed approach are the following. They are

grouped in two phases, a general phase to analyze the human motions when per-

forming generic grasping operations, and an application phase devoted to sythesize

both the grasp configurations and the motions required to grasp a particular object:

General analysis phase:

(1) Motion capture and mapping : The motions of a human operator performing

different types of grasp on several objects are captured, as shown in Fig. 1,

and then mapped to the robot whose motions are aimed to be planned

(Section 3).

(2) Motion analysis: The synergies existing in the human motions when a given

grasp is done are computed from the captured motions, and used to define

a low-dimensional space for grasp and motion planning purposes, being this

dimension-reduction process dependent on the grasp type (Section 4).

Application synthesis phase:

(3) Grasp synthesis: For a given object to be grasped, grasps of different types

are computed using the corresponding synergies (Section 5).

(4) Motion planning : A bidirectional sampling-based planner is designed to use

the proposed dimension-reduction method and to bias the tree growth to-

wards the directions of the computed synergies, hence, obtaining human-like

movements with a low computational load (Section 6).

Fig. 2 shows a flowchart describing the main steps and actions of the proposed

approach. Each of the main blocks is detailed in a specific section below, including

in each of them a subsection with a description of the theoretical framework and

another one with the details of the implementation and the experimental results.
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(1) MOTION CAPTURE AND MAPPING

Human demonstrations

   - Different types of grasps

- Different objects

Mapping demonstrated samples to robot configuration space 

Sets of robot configurations per grasp type

(2) MOTION ANALYSIS

Automatic partition of samples into pre-grasp and grasp phases

Merge all pre-grasp samples into a single set and run PCA

Merge grasp samples into grasp family sets and for each set run PCA

Select synergies for the pre-grasp phase and for the grasp families

Sets of synergies and planning subspaces 

(3) GRASP SYNTHESIS

Generate grasps for the given object for each grasp family          
    (using the corresponding synergies)

Select those kinematically reachable

Select those collision-free

Valid grasps for each grasp family for the given object

(4) MOTION PLANNING

Run a modified RRT-Connect using:

  - the initial robot configuration

  - the obtained valid grasps as potential goals

The graph growth is guided with the corresponding sets of synergies:

  - of the pre-grasp phase for the tree rooted at the initial configuration

 - of the corresponding grasp family per each goal

The procedure ends when any goal is reached 

Execution of grasp movements

Robot model

Initial robot config. / Objects and environment models
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Fig. 2. Flowchart describing each step of the proposed two-phase approach.
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3. Motion capture and mapping

3.1. Theoretical framework

In this work, human motions are used as a reference to obtain human-like movements

of a hand-arm robotic system picking a given object. Many types of common human

grasps are gathered in the grasp taxonomy of M.R. Cutkosky [26], which classifies

the grasps depending on the object size and on the type of grasp, and which was

extended in [27]. Later, W. Dai, Y. Sun and X. Qian [28] updated the taxonomy of

Cutkosky and analyzed, from a different perspective, the entire grasping trajectory

and not only the grasping configuration (i.e. the final snapshot), proving that the

grasp types can be grouped naturally into consistent grasp families (see Fig. 3).

This family-grouping is used here to adapt the planning process according to the

grasp being performed (even though several potential grasp types are considered

simultaneously).

3.2. Experimental results

Using a Cyberglove sensorized glove with a 50 Hz sampling frequency, the motions

of a human operator are recorded performing 15 different grasp types on 9 objects,

with 12 repetitions per grasp type and starting off from a comfortable stand position

in front of the object (see Fig. 1-left and Fig. 3). This implies 180 demonstrations

and more than 15000 configuration samples, each one containing 22 measurements

describing the positions of the finger joints read from the glove. Once the samples

have been captured, they are mapped to the robotic hand. This mapping depends on

the kinematic structure and particularities of the used robotic system. In this work,

a robotic hand-arm system composed of a 6-DOF UR5 robotic arm equipped with

a 16-DOF Allegro Hand is used (see Fig. 1-right). On the one hand, the information

regarding the little finger is discarded and a joint-to-joint mapping is used for the

flexion/extension joints of the other three fingers and the thumb. On the other

hand, a fingertip-position mapping is used to compute the mapped values of the

abduction/adduction joints of the fingers and the thumb, and also the value of the

thumb opposition joint.

4. Motion analysis

4.1. Theoretical framework

The synergies (i.e. couplings between DOFs) are obtained running a Principal Com-

ponent Analysis (PCA) over the set of hand configurations mapped from the human

movements. This returns a new basis of the hand configuration space, with the axes

sorted in decreasing order of the associated sample variance (i.e. the first axis marks

the direction with maximum sample variance and so on). Each axis is called a syn-

ergy and the motion along it, equivalent to a single DOF, implies the movement of

several (or all) joints. Although nonlinear approaches to obtain synergies have been
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Fig. 3. The 15 force-closure grasps whose movements have been captured in this work, classified

following the tree structure of the M.R. Cutkosky [26] taxonomy and grouped into grasp families,
1 to 4, according to W. Dai, Y. Sun and X. Qian [28].

Fig. 4. Hypothetical mapped trajectories on the hand-configuration space, divided into pre-grasp

and grasp phases, to obtain the common pre-grasp synergies (0) and the grasp synergies of each

family (1 to 4).

also proposed (e.g. [29]), the simple linear approximation of the PCA is enough to

capture the subspace where the demonstrated motions lie, being useful and imple-

mentable by a drive mechanism [30] and a real-time algorithm [15].

Two phases can be observed in the mapped grasping motions (see Fig. 4). Dur-

ing the first phase, called pre-grasp phase, the trajectories of the hand joints are

common motions opening the hand similarly in all the executions, regardless of the

grasp type performed. Then, there is a certain moment in which the demonstrated

trajectories begin to differ and specialize according to the type of grasp being car-

ried out. This is the grasp phase itself. Nevertheless, the transition from one phase

to the other is diffuse and does not occur at the same time for all the demonstra-

tions. Hence, the transition time is computed as follows. Let Q be the set of hand

configurations mapped from a given grasping demonstration, and, for a given time

instant t, let Q−
t and Q+

t be the sets of configurations in Q captured before and

after t, respectively. In addition, let the likeness of the two given sets QA and QB
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of hand configurations be defined as the overlapping between the distributions of

the configurations in the sets, which is a measure of the similarity between QA and

QB [22]. This index can be computed as

L(QA, QB) =
e−

1
2 (µA−µB)ᵀ(ΣA + ΣB)−1(µA − µB)√

(2π)1+2n |ΣA + ΣB |
(1)

where n is the number of DOFs of the hand, µA and µB are the barycenters and

ΣA and ΣB are the covariance matrices of the configurations in the sets QA and

QB , respectively. Then, the time instant t indicating the transition between the two

phases is defined as the one minimizing L(Q−
t , Q

+
t ).

Once the transition time between the pre-grasp and the grasp phases has been

identified for each execution, all the samples in the pre-grasp phases have been

grouped and used to compute the pre-grasp synergies. On the other hand, the

samples in the grasp phases have been grouped according to the grasp family which

each demonstrated grasp belongs to, and, then, a set of grasp synergies has been

computed for each grasp family (see Fig. 3). In this way, the pre-grasp synergies

explain the hand motions in the pre-grasp phase in all the grasps, and each set of

grasp synergies models the hand motions of each grasp family.

For a robotic hand with n DOFs, the synergies define an n-dimensional box

centered at the barycenter of the configurations used to obtain the synergies and

with each side aligned with a synergy [31]. In order for the box to contain the

(100−α)% of the configuration distribution for a given α (i.e. any hand configuration

inside the box would then be similar to the ones used to compute the synergies),

each side of this box is fixed to 2
√

2 erf −1(n
√

1−α ) times the standard deviation of

the configurations in the corresponding direction. The dimension of the box can be

reduced by using only k<n synergies (picking them in decreasing order) such that

k is the minimum value making the accumulated variance be above a confidence

level of (100− β)% for a given desired β.

4.2. Experimental results

This statistical analysis was applied to the 180 mapped trajectories obtained in

Subsecction 3.2, identifying each case the pre-grasp and grasp phases. Table 1 shows

the accumulated sample variance obtained for the synergies corresponding to the

pre-grasp and each grasp phases.

In this work, the hand has n = 16 DOFs, and we consider α = β = 5%. Thus,

the dimension k of the resulting lower-dimensional boxes, called Bk, required to

make the accumulated variance be above a confidence level of 95%, is 4 or 5 for

the grasp phase, depending on the grasp family (see bold values in Table 1), and 6

synergies are needed for the pre-grasp phase (a little bit greater, as it was expected,

since the movements of all the grasp families are considered in this case).

Despite the simplification, Bk still represent accurately the mapped hand mo-

tions. Thereby, if the planning of the hand motions is performed in the correspond-
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Table 1. Accumulated sample variance as a function of the number k of chosen synergies, for the

common pre-grasp phase and the grasp phase of each of the demonstrated grasp families.

k Pre-Grasp
Grasp Family

1 2 3 4

1 65.575 % 79.474 % 64.234 % 63.280 % 88.568 %

2 77.795 % 86.125 % 81.877 % 84.238 % 91.955 %

3 84.586 % 91.442 % 88.091 % 91.428 % 94.921 %

4 90.316 % 94.015 % 92.225 % 94.377 % 96.606 %

5 93.260 % 96.229 % 95.108 % 96.394 % 97.676 %

6 95.996 % 97.665 % 96.781 % 97.664 % 98.685 %

7 97.262 % 98.315 % 97.850 % 98.569 % 99.160 %

8 98.165 % 98.802 % 98.834 % 99.027 % 99.449 %

9 98.901 % 99.218 % 99.241 % 99.467 % 99.624 %
...

...
...

...
...

...
16 100 % 100 % 100 % 100 % 100 %

ing Bk, the planning complexity is reduced and the obtained motions are similar to

the movements mapped from the human operator.

5. Grasp synthesis

5.1. Theoretical framework

Grasp can be generated using different procedures, but a simple one is using

GraspIt! [32]. It is a robotic grasping simulator that allows to obtain force-closure

grasps. The following data are introduced to the simulator: a) the model of the

mechanical hand of the robot, where some grasping points on the finger tips and

the palm are predefined; b) the model of the object to be grasped, the model of

the surface where it is placed, and the models of other obstacles nearby that may

obstruct some grasp configurations; and c) the set of synergies corresponding to a

given family of grasps. The simulator randomly samples a hand pose, closes the

fingers following a motion obtained as a linear combination of the synergies, and

checks whether the resulting grasp is force-closure or not, and gives a grasp quality

measure. This is repeated a given number of times and the best grasps are returned.

This procedure is encoded in the function GraspIt and used in Algorithm 1 where,

for all the grasp families and for each grasp returned by this function, computes the

inverse kinematics of the arm and, if available, verifies whether it is collision-free.

Therefore, the FindGraspConfigs function detailed in Algorithm 1 returns grasp

configurations that have a good grasp quality and are feasible and collision-free.

5.2. Experimental results

As application examples of the described procedure, Fig. 6 shows some of the best

grasps obtained for a bottle placed on a shelf among other bottles, and Fig. 7 the

obtained grasps for a box lying on a table among other objects. For these examples,
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Fig. 5. Contact points on the Allegro hand used by GraspIt! to find force-closure grasps: 4 per

finger, 3 for the thumb and 3 on the palm.

Algorithm 1: FindGraspConfigs

input : Object pose χr
o and set of synergies {Si, i = 1 . . . 4}

output: Set of grasps configurations Qgoal

1 {Gi} ← ∅;
2 Qgoal ← ∅;
3 forall grasp family i do
4 {Gi} ← GraspIt(Si,maxtrials);
5 forall Gi do
6 qigoal ← InvKin(Gi,χr

o);

7 if qigoal 6= ∅ andCollisionFree(qigoal) thenQgoal←Qgoal∪qigoal;

8 return Qgoal

GraspIt! has been configured to test, for each grasp family type, up to 70,000 grasps

and the best five are finally returned. The average time per family type was 34 s. This

time depends on the number of triangles in the meshes defining the geometries of

the models (the Allegro Hand model used in these examples is composed of 205,000

triangles) and on the number of contact points used in the hand (18 contact points

have been used in these examples, as shown in Fig. 5).

6. Motion planning

6.1. Theoretical framework

The planner proposed in this work is based on the RRT-Connect [33], which is

widely used in motion planning since it obtains good results even on robots with

a high number of DOFs and with cluttered environments. However, it has been

modified here to explore the search space by following the synergies according to

the type of grasp used at the goal configuration, and to allow several goals to be
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Fig. 6. Some of the grasps obtained for a bottle among obstacles.

considered simultaneouly, i.e. the changes done to the standard RRT-connect are:

a) a new extend procedure that grows the trees of samples along directions

defined by the synergies,

b) a new connect procedure that tries to connect the trees of samples in a less

greedy fashion, also following the synergies, and

c) a modification of the data structures and the main algorithm to allow the

simultaneous growing of several trees rooted at different goal configurations,

in order to deal with multigoal queries.

The proposed planner, outlined in Algorithm 2, uses the following nomenclature.

Let:

• C be the robot configuration space defined by the joint coordinates,

• q ∈ C be a robot configuration, defined as an arm configuration qa con-

catenated with a hand configuration qh,

• qstart ∈ C be a collision-free start configuration,

• O be the object to be grasped,

• χr
o be the pose of the object to be grasped, expressed with respect to the

robot,

• G = (qh,χo
h) be a grasp, composed of the hand configuration qh and the

pose χo
h of the hand relative to object O at the grasping time,

• {Gi} be a set of grasps for object O.
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Fig. 7. Some of the grasps obtained for a box among obstacles.

Algorithm 2: Planner

input : Start configuration qstart ∈ C, object pose χr
o, synergies {Si, i = 1 . . . 4}

output: Collision-free path P connecting qstart and one Gi
1 (Ea, Va)← (∅, qstart);
2 (Eb , Vb)← (∅, ∅);
3 Vb ← FindGraspConfigs

(
χr
o,Si

)
;

4 while not EndCondition( ) do
5 qrand ← RandConf( );
6 qnew ← SynExtend

(
(Ea, Va), qrand

)
;

7 if SynConnect(qnew, (Ea, Va), (Eb, Vb)) then
8 return Path

(
(Ea, Va), (Eb, Vb)

)
9 else

10 Swap
(
(Ea, Va), (Eb, Vb)

)
11 return ∅;

Algorithm 2 has as parameters qstart, χ
r
o and Si, and returns a path from qstart

to a goal configuration that allows to grasp the object. The planner maintains two

graphs of samples, each one denoted by a pair formed by a set of edges E and
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Fig. 8. Motion planning representation in C: sample trees rooted at the start configuration qstart

and the grasps G1 and G2, growing close the associated synergy lower-dimensional boxes (0 to 2),
while steering a given configuration qnear towards a random qrand and reaching qnew. Note that

the sample trees rooted at G1 and G2 belong to the same graph structure.

a set of vertices V . One of this graphs represents a single tree of samples rooted

at qstart (Line 1), and the other one contains several trees of samples rooted each

one at a grasp configuration Gi, computed by Algorithm 1 FindGraspConfigs

explained above (Line 3), as illustrated in Fig. 8. The planner grows the trees of

samples until there is a path between qstart and a grasp configuration. In each

iteration of the process, one of the graphs is steered towards a random configura-

tion qrand (uniformly sampled in C), using a variant of the basic extend method,

called SynExtend (Line 6), that makes the tree grow following the synergies. A

configuration qnew is reached if no collisions occur or ∅ is returned otherwise. Next,

the connection between the graphs is greedily attempted using a variant of the ba-

sic connect method, called SynConnect (Line 7), that also makes the tree grow

following the synergies. In case the connection fails, the graphs of samples swap

their roles (Line 10) and the whole process is repeated until a solution is found

or some termination condition holds (Line 4), e.g. surpassing a maximum planning

time, number of iterations or memory allocation. Otherwise, the solution path found

is returned (Line 8). The SynExtend and SynConnect methods are explained

next.

In order to integrate the synergies into the motion planning, the standard func-

tion extending the sample tree in RRT-based planners is replaced here by the func-

tion SynExtend, described in Algorithm 3. As in the classic method, a single step

is performed from qnear, the configuration in the graph closest to the desired target

configuration qtarget (Line 1), reaching a new configuration qnew. If the rectilinear

segment connecting qnear and qnew is collision-free, the segment is added to the

graph and qnew is returned (Lines 6-8). Otherwise, ∅ is returned (Line 9). However,

here, qnew is computed following the synergies. Thereby, if qtarget is close enough

to qnear, qnew is set equal to qtarget (Line 2), so that in the event that the two

sample graphs are close to be connected, the guideline to follow the synergies may
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Algorithm 3: SynExtend

input : Sample graph (E, V ), configuration qtarget and advance step ε
output: Configuration qnew

1 qnear ← NearestConf(V, qtarget);

2 if ‖qtarget − qnear‖ ≤ ε then qnew ← qtarget;

3 else
4 qproj ← Project

(
qtarget, (E, V )

)
;

5 qnew ← qnear+min
(
ε ‖qproj−qnear‖−1, 1

)(
qproj−qnear

)
6 if CollisionFree(qnear, qnew) then
7 (E, V )←

(
E ∪ (qnear, qnew), V ∪ qnew

)
;

8 return qnew;

9 else return ∅;

Algorithm 4: SynConnect

input : Configuration qnew and sample graphs (Ea, Va) and (Eb, Vb)
output: Bool

1 while qnew 6= ∅ do
2 if Va ∩ Vb 6= ∅ then return True;
3 else
4 qnew ← SynExtend

(
(Eb, Vb), qnew

)
;

5 Swap
(
(Ea, Va), (Eb, Vb)

)
;

6 return False;

be relaxed. Otherwise, a step, with a maximum length ε, is taken, not towards the

desired qtarget (as it would be done in the standard procedure), but towards its pro-

jection qproj onto the lower-dimensional box spanned by the synergies (Lines 4-5),

as illustrated in Fig. 8. The Project procedure has been implemented such that

the arm component of qtarget remains the same and the hand component is pro-

jected onto the lower-dimensional box Bk of synergies associated with the root of

the sample tree containing qnear, i.e. if qnear belongs to the sample tree rooted at

qstart, qtarget is projected onto the box of pre-grasp synergies; otherwise, qnear be-

longs to a sample tree rooted at a certain Gi and, hence, qtarget is projected onto

the box of synergies associated with Gi.
In the classic RRT-Connect, the trees of samples are connected greedily by

extending one of the trees directly, along a rectilinear path in C, until the other tree is

reached or a collision occurs. However, in order to obtain a connection following the

synergies, the SynConnect function proposed here and described in Algorithm 4

extends both graphs, in alternation and successively, using the SynExtend method

towards the last added configuration in the other graph (Lines 4-5), until the graphs

are connected.
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Fig. 9. Examples of grasps of each family used to grasp a cylinder: Thumb-2 Finger, Thumb-3

Finger, Medium Wrap and Lateral Pinch (from left to right, respectively).

Table 2. Average results of the motion planning when running the classic RRT-Connect (a) and

the proposed approach with the proper (b) and with mismatched grasp synergies (c).

C
a
se Success

rate
Planning

time
#

iterations
# collision

checks
Valid

segments
Path length Human-

likeness

a 97 % 51.80 s 1834 32231 68.3 % 14.18 rad 73.6 %

b 100 % 6.21 s 274 10649 80.0 % 7.79 rad 83.1 %

c 100 % 11.79 s 484 13667 75.3 % 8.35 rad 81.9 %

6.2. Experimental results

For illustrative purposes, the motions of an anthropomorphic dual-arm robot have

been planned (see Fig. 1-right). The robot is located in front of a bookshelf and,

starting off from a natural standing pose, it must grasp a cylinder standing on one

of the shelves. Besides, the robot must perform human-like motions while avoiding

the collisions with itself, the bookshelf and the cylinder.

In order to validate and compare the performance of the proposed approach, the

following three cases have been evaluated:

a) A standard RRT-Connect, modified to tackle multi-goal queries, planning with-

out using synergies.

b) The proposed approach, planning using the proper grasp synergies in relation

of the grasp type to be performed.

c) The proposed approach, but in this case the grasp synergies and the grasp

families have been intentionally mismatched (i.e. each grasp family has been

randomly associated with the synergies of another grasp family).

For each execution, the planners are provided with: i) the start configuration

with the robot base lightly modified at random; ii) two predefined grasps per grasp

family, i.e. the automatic generation of grasps described in Section 5 has been

disabled for this comparison in order to clearly illustrate the motion planning part,

focusing only on it. Fig. 9 shows an example of the instances of each grasp type

used to grasp the cylinder.

The experiments in each of the three cases introduced above have been imple-
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Fig. 10. Snapshots of paths obtained to grasp a cylinder from a shelf with a standard RRT-

Connect (top), and the proposed procedure using the proper synergies for each grasp type (bot-
tom).

mented within the environment The Kautham Project [34], a motion planning and

simulation environment developed for teaching and research purposes, and run in a

2.13-GHz Intel 2, 4-GB RAM PC. A maximum planning time of 100 s is considered

for each planner instance. Thereby, if a path is not found within this time, the

execution is marked as a failure. Fig. 10 shows snapshots of cases a and b. After

100 executions, Table 2 shows the average values of the success rate, the planning

time, the number of iterations and collision checks, the rate of valid segments (i.e. the

ratio of iterations in which the sample trees actually grow), the path length (mea-

sured in C as the weighted sum of accumulated joint movements along the path),

and the path human-likeness computed as the misalignment of a path with respect

to a given set of reference human movements [31]. Here, natural free-movements of

the operator while moving freely the fingers in an unconstrained way (i.e. without

performing any specific task), trying to cover the whole hand workspace, are used

as reference of natural human movements.

Looking to the results in Table 2, it can be seen that the proposed planning

approach is several times faster than the standard RRT-Connect algorithm (up

to an order of magnitude). In fact, the motion planning can be solved within the

time restrictions for the 100 % of the executions only when the proposed approach

is used, either when the grasp synergies are properly associated with the selected

grasps or when they are mismatched, i.e. cases b and c. It can be stated that the use

of synergies clearly reduces the planning time since the solution is enforced to lie

close to the lower-dimensional boxes Bk. This focuses the search efforts close to the

demonstrated movements (which are feasible solutions), thus accelerating the con-

nection of the sample trees and, thereby, reducing the needed number of iterations

and collision checks to find a solution. In addition, since the grasp synergies are

obtained from feasible movements, the probability of obtaining collision-free robot

configurations increases when using synergies (see valid segments rate in Table 2),

reducing greatly the computation time. The results also show that even when the
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Fig. 11. Snapshots of the grasping of a bottle in a simulated environment.

correct grasping synergies are not used, i.e. case c, the benefits of using synergies

are still evident. In this case, the planning time is slightly penalized, however, it is

still a better option than not using synergies at all. On the other hand, the proposed

planning procedure produces movements of the robotic system that look more nat-

ural and human-like (see human-likeness in Table 2), since the grasp synergies are

obtained from human demonstrations and the human-likeness is preserved within

the planning process.

Including now the grasp synthesis described in Section 5, Fig. 11 shows snapshots

of the simulated final path obtained using the grasps shown in Fig. 6 for the task

of grasping a specific bottle on a shelf among other bottles acting as potential

obstacles, and Fig. 12 shows snapshots of the simulated path and real final execution

of the task of grasping a box lying on a table in the middle of other obstacles using

the grasp shown in Fig. 7. A video of the simulated and experimental validation

examples is available at https://sir.upc.edu/projects/kautham/videos/IJHR.mp4.

7. Conclusions and Future Work

This paper has proposed a procedure to efficiently obtain human-like hand-arm

movements to grasp a given object, including the generation of the grasps. To this

end, the movements of a human operator performing different grasps on different

objects have been captured and mapped to the robot. These grasp movements have

been classified according to a grasp taxonomy, and for each grasp family a set

of human-demonstrated synergies (couplings between DOFs) have been computed.

In addition, a pre-grasp set of synergies has also been computed, common for all

the grasp families. Finally, a motion planner profiting from these synergies has
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Fig. 12. Snapshots of the grasping of a box in simulation and in the real environment.
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been presented and compared against other state-of-the-art planners planning the

motions of a real anthropomorphic dual-arm robot. The effect of using the grasp

synergies is positive since the results improve even in the case of using synergies

obtained for one type of grasp in the planning of movements for another type of

grasp.

The proposal opens several interesting potential research lines, such as its exten-

sion to the velocity space and the coordination of the robot base, arms and hands

all at the same time.

Acknowledgements

This work was partially supported by the Spanish Government through the project

DPI2016-80077-R.

References

1. T. Fukuda, R. Michelini, V. Potkonjak, S. Tzafestas, K. Valavanis, and M. Vuko-
bratovic. How far away is “artificial man”. IEEE Robotics and Automation Mag.,
8(1):66–73, Mar. 2001.

2. M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review. IEEE
Access, 2:56–77, Jan. 2014.

3. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robotics and
Autom., 12(4):566–580, Aug. 1996.

4. J. J. Kuffner and S. LaValle. RRT-Connect: An efficient approach to single-query path
planning. In Proc. IEEE Int. Conf. Robotics and Automation, pages 995–1001, Apr.
2000.

5. M. Stilman. Global manipulation planning in robot joint space with task constraints.
IEEE Trans. Robotics, 26(3):576–584, June 2010.
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22. N. Garćıa, R. Suárez, and J. Rosell. Task-Dependent synergies for motion planning
of an anthropomorphic dual-arm system. IEEE Trans. Robotics, 33(3):756–764, June
2017.
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31. N. Garćıa, J. Rosell, and R. Suárez. Motion planning by demonstration with human-
likeness evaluation for dual-arm robots. IEEE Trans. Systems, Man, and Cybernetics:
Systems, PP(99):1–10, 2017.
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