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Dual-Arm Robots
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Abstract—This paper presents a planning procedure that
allows an anthropomorphic dual-arm robotic system to per-
form a manipulation task in a natural human-like way by
using demonstrated human movements. The key idea of the
proposal is to convert the demonstrated trajectories into attrac-
tive potential fields defined over the configuration space and
then use an RRT∗-based planning algorithm that minimizes
a path-cost function designed to bias the tree growth toward
the human-demonstrated configurations. This paper presents a
description of the proposed approach as well as results from a
conceptual and a real application example, the latter using a real
anthropomorphic dual-arm robotic system. A path-quality mea-
sure, based on first-order synergies (correlations between joint
velocities) obtained from real human movements, is also proposed
and used for evaluation and comparison purposes. The obtained
results show that the paths obtained with the proposed procedure
are more human-like.

Index Terms—Human-like motions, humanoid robots, path
planning for manipulators, synergies.

I. INTRODUCTION

MOTION planning is a basic research issue in robotics,
particularly since the robots became an essential part

in many application fields like, for instance, the medical and
the electronic industries, or even in the computational biology
or computer animation fields. The importance of this problem
is more relevant for robotic systems with a high number of
degrees of freedom (DOFs), like those involving mechani-
cal hands or anthropomorphic structures. Moreover, a path
is sometimes required that, besides being collision-free, also
optimizes a quality measure like minimizing the traveled dis-
tance [1] or the time required in the path execution [2]. In
the case of humanoid robots, one of the needs is to find
robot movements that mimic those of human beings, since
human-robot collaboration is facilitated if the robot shows
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human-like movements [3] because when humans are familiar
with the robot motions, they may adjust their motions to avoid
possible collisions or enhance the collaboration.

Different planning algorithms able to tackle the motion
planning of complex systems have been developed, being the
sampling-based planners the most outstanding [4]. Among
them, the most commonly used are the probabilistic roadmaps
(PRMs) [5] and the rapidly exploring random trees (RRTs) [6].
Diverse improvements have been proposed to these planners
to deal with constraints [7], to consider configuration-space
costmaps [8], or to bias the sampling toward better regions of
the configuration space by using, for instance, retraction-based
methods [9] or principal component analysis (PCA) [10].
Since these algorithms are nonoptimal, other variants like the
PRM∗ and RRT∗ algorithms have been proposed [11]. Besides,
recently, the RRT∗ planner was combined with potential fields
in order to improve its efficiency [12] and guide the solution
path [13]. In this line, this paper proposes the use of a vari-
ant of the RRT∗ algorithm that minimizes a path-cost function
computed with a potential field obtained from human demon-
strations, thus resulting in human-like motions. Potential func-
tions learned from human demonstrations have been also used
in control policies [14].

Looking for human-like movements leads to the search of
the right coordination between the robot joint movements.
Toward this goal, the direct use of the real movements of a
human being as a reference is common [15]. On the one hand,
a usual assumption of many approaches analyzing human
motion is that humans try to minimize an unknown cost
function while doing everyday manipulation tasks, e.g., hand
jerk (i.e., the third time-derivative of the hand position) [16],
joint jerk [17], joint torque [18], or a convex combination
of several cost functions with weighting factors chosen to
describe an observed human motion [19]. Hence, minimiz-
ing these cost functions, human-like motions can be obtained.
However, it can be complex to incorporate these functions in
the inverse kinematics of some manipulators. On the other
hand, new human-like movements can be obtained using
human motions previously registered, e.g., by properly modi-
fying these motions to fit a new scenario [20], by using these
known movement trajectories to train a neural network [21] or
to adjust the parameters of a nonlinear dynamical system [22].
Other related advanced procedures include, e.g., the generation
of cyclic motions for dual-arm robots using neural networks
and quadratic programming [23], the consideration of the robot
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dynamics in the motion planning by transforming the problem
into an optimization of a nonlinear fitness function [24] or the
use of movement primitives based on a model of the triangle
defined by the human upperarm and forearm [25].

In the motion planning of mechanical hands, several works
used “postural synergies” (i.e., correlations between DOFs)
to simplify the problem by reducing the dimension of the
search space as well as to mimic human postures. The
correlations of the human hand configurations while perform-
ing a grasp were studied [26] and mapped into a robotic
hand [27]. These synergies were suggested to be an emergent
consequence of neuromuscular impedance [28]. The syner-
gies existing in the human hand [29] were also used for
other objectives such as the analysis and design of robotic
hands in order to mimic human grasps [30], the selection of
grasping forces [31], and the design of specific hand control
systems [32]. Later, a compliant model for synergies, called
“soft synergies,” was introduced and used in the selection of
grasping forces, in their control, and in the control of the
motion of the grasped object [31], [33]. The use of syner-
gies was recently also used in a dual-arm anthropomorphic
system while performing manipulation tasks [34], [35]. One
of the main problems faced when trying to obtain human syn-
ergies is the capture of the human configurations in order
to get proper information for the search of the synergies.
In the case of the hands mentioned above, the problem was
mainly addressed using: 1) vision systems (e.g., [36]) which
have the frequent problem of visual occlusions and usually
require special marks on the hand to facilitate the configura-
tion identification and 2) sensorized gloves (e.g., [37]). In the
particular application of moving a prosthetic hand, the analysis
of forearm electromyogram signals was proposed (e.g., [38])
but this is not practical in most general-purpose robotic
applications.

The works mentioned above dealt with synergies involv-
ing correlations between joint positions. Nevertheless, a recent
work extends the concept of synergies to the velocity space
(i.e., the space of the first derivative of the configuration
trajectories) calling them first-order synergies [39], [40] (in
contrast with the synergies in the configuration space, that
were called zero-order synergies). In this line, this paper pro-
poses a human-likeness index based on first-order synergies
and uses it to evaluate the paths obtained with the proposed
motion planner based on human demonstrations.

After this introduction, Section II presents the problem state-
ment and the approach overview, and Section III outlines the
required preliminaries. Then, Section IV details the proposal
of the planner and its performance analysis, and Section V
introduces the human-likeness index and uses it to evaluate the
proposed planner. Finally, Section VI presents the conclusion
and future work.

II. MOTIVATION AND APPROACH OVERVIEW

The first goal of this paper is to introduce a plan-
ning procedure designed specifically for anthropomorphic
dual-arm robotic systems that solves manipulation tasks using
human-like paths. To this end, the movements of a human

operator are used as demonstration paths. The main features
of the proposed approach are as follows (see Fig. 1).

1) The movements of a human operator solving manip-
ulation tasks are captured and then mapped to the
anthropomorphic dual-arm robotic system.

2) The demonstration paths are used to generate attractive
potential fields over the configuration space C.

3) The captured movements are also used to select a region
of a lower-dimensional subspace of C, called Bk, that
contains a predefined high percentage of the sample vari-
ance of the demonstration paths. By planning in this
subspace, a significant reduction of the computational
cost is expected.

4) Using the potential fields generated in C, a path cost is
defined to guide an RRT∗-based planner. The proposed
planning algorithm uses a stochastic gradient-descent
method to minimize the path cost and to bias the tree
growth toward the demonstrated human movements.

The second goal of this paper is to define a quality index
to evaluate the human-likeness of a path by considering how
much aligned the path is with respect to certain reference
human movements. These movements, which can be differ-
ent to the ones used as demonstration paths to solve the task,
are characterized by using a set of first-order synergies defined
over the relevant configurations of C.

Note that, since the two goals are clearly independent, they
are addressed separately in Sections IV and V, respectively,
each one with its own experimentation. Thereby, first a path
is obtained with the proposed planner using demonstrations
(Section IV), and then the human-likeness of the planned path
is evaluated (Section V); this human-likeness index can be
used to evaluate the paths obtained with the proposed planning
procedure or with any other motion planner.

III. PRELIMINARIES

This section presents some basic concepts and procedures
(introduced in previous works [13], [34], [39]) that are relevant
to the present proposal.

A. Capturing and Mapping Human Motions

Human movements are used to guide the motion planning
to find human-like paths for dual-arm systems and to evalu-
ate the human-likeness of the paths. Human motions can be
captured and mapped to the robot configuration space in dif-
ferent ways, depending on the available sensors and on the
robot kinematics. In this paper, magnetic trackers and sen-
sorized gloves are used to take samples of the position and
orientation of the operator wrists while performing manipu-
lation tasks [see Fig. 1(top-left)]. Then, the captured data are
mapped to the dual-arm robotic system by solving the inverse
kinematics of the arms for each sampled wrist configuration,
obtaining in this way the corresponding configurations of the
dual-arm system. Inverse kinematics of robotic arms usually
have several solutions, or even infinite in the case of redundant
arms with more than 6 DOFs, therefore some anthropomor-
phism criterion should be used to solve it (e.g., controlling the
position of the robot elbows [41]).

In this way, for each task execution done by the operator,
a sequence of configuration samples is obtained in the robot
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Fig. 1. General schema of the proposed approach.

configuration space C, defining a sequence Pi of rectilinear
segments connecting time-consecutive mapped configurations.
In our case, the dual-arm system used is composed of two
UR5 6-DOF robotic arms from Universal Robots, assem-
bled emulating the human arm configuration as shown in
Fig. 1(top-right), each arm being equipped with a 16-DOF
Allegro Hand from Simlab (although this paper is only focused
in the motions of the arms).

B. Zero- and First-Order Synergies

The postural synergies are correlations between the joint
positions of an articulated system [30]. This widely used
concept was called zero-order synergies in [39], where the
extension to the joint velocity space was proposed, introduc-
ing the concept of first-order synergies as correlations between
joint velocities. The zero-order synergies are obtained from the
PCA of a set of captured configuration samples. This returns
a new basis of C, called zero-order basis 0S, with the axes
ordered according to the sample dispersions along them. Each
axis represents a zero-order synergy and the movement along
it, equivalent to a single DOF, implies the correlated movement
of several (or all) the actual DOFs of the system. The proce-
dure to obtain the first-order synergies is exactly the same as
the one to obtain zero-order synergies, but in this case using
velocity samples. Thereby, the new bases of the velocity space,
defined by a barycenter µ and a covariance matrix � of veloc-
ity samples, are called first-order bases, 1S, and each axis of
the bases 1S represents a first-order synergy.

The linear approximation of the PCA is enough to represent
the subspace where the demonstrated motions lie. In fact, it has
been demonstrated to be useful and implementable by a drive
mechanism [42] or a real-time algorithm [43]. However, non-
linear approaches to obtain synergies have been also proposed,
such as the Gaussian process latent variable model [26] and
the unsupervised kernel regression [44].

The zero-order synergies are used to detect the relevant
region of C, called box B(0SG), where the captured motions
take place. Notice that the directions of the human motions

Fig. 2. Ray-shaped motion (left) and an elliptic motion (right), shown in red,
with the resulting cell-decomposition of C based on the first-order synergy dif-
ferences. Boxes B(0SG) have been split into two and eight cells, respectively,
with planes aligned with the 0SG axes (i.e., u1 and u2).

depend on the region of the configuration space where it takes
place. Therefore, to take this into account, the box B(0SG) is
divided into subregions where the 1S bases are significantly
different, as introduced in [39]. As an example, Fig. 2 shows
the box B(0SG) and its resulting partition based on differences
of first-order synergies for the samples of a motion that follows
a ray shape and for the samples of another motion that follows
an elliptic trajectory in clock-wise sense. For the ray-shaped
motion, B(0SG) is split into two parts, where the motion direc-
tions differ significantly from each other; and for the elliptic
motion, B(0SG) is split into eight cells.

Note that first-order synergies always exist if the sampled
joint values are not homogeneously distributed, which is quite
unlike in real human movements (that is why the first-order
synergies are useful in the analysis of human movements).

In this paper:
1) the 0S basis is used to define the lower-dimensional

subspace where the planning will be done (Section IV);
2) the 1S bases are used to define a human-likeness index

to evaluate the solution paths found for the dual-arm
robotic systems (Section V).

C. Motion-Cost Function

An RRT∗-based planner recently proposed allows the user
to guide the tree growth in a simple and transparent way [13];
this is done by defining attractive and repulsive points and
segments in the workspace that generate a potential field V(q)
in the configuration space C. Then, the planner constructs
low-cost paths following the resulting valleys and saddle points
in C. Considering piece-wise linear paths in C, the path cost
is computed by adding the costs of the rectilinear segments
(called motions). The cost of a motion between two configu-
rations qi and qf is defined as the linear combination of three
other costs cP, cI , and cD with respective positive weights ωP,
ωI and ωD

c
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where cP calculates the motion length, cI measures the motion
effort, computed as the product of the average value of V(q)
and the motion length, and cD evaluates the variations of
V(q) along the motion. Therefore, the path minimizing this
motion-cost function connects the start and the goal config-
urations in the shortest way that avoids the areas with high
V(q) values (i.e., with repulsive potential fields) and, at the
same time, keeps V(q) as monotonic as possible along the path
(i.e., avoiding unneeded motions from repulsive to attractive
potential fields and vice versa).

In this paper, the potential field is generated using real
human movements and the motion-cost function guides the
solution path toward these demonstrated human motions.

IV. PROPOSED MOTION PLANNING PROCEDURE

A. Generating Potential Fields From Demonstrations

The proposed planning algorithm tries to follow the demon-
strated human movements by minimizing the cost of the path
over the configuration space C, where several potential fields
are defined to guide the tree growth. For this, the demonstra-
tion paths generate attractive potential fields. In addition, the
goal configuration qgoal acts also as an attractor. On the other
hand, the obstacles generate potential fields that repulse the
robotic arms while the arms also repel each other. To compute
the potential-field value V(q), let first:

1) λ ≥ 0 and σ ≥ 0 be, respectively, the strength and the
diffusion parameters of each potential field;

2) Pi ∈ P be the ith path of the set of demonstration
paths P, obtained from the mapping of the human
movements and projected onto C;

3) Oj ∈ O be the jth obstacle of the set of obstacles O with
which the dual-arm system can collide;

4) d(q,Pi) be the minimum distance in C, between the con-
figuration q and the demonstration path Pi;

5) d(Lq,Rq) be the minimum distance in the workspace
between both arms of the robotic system, when the
dual-arm robot configuration is q;

6) d(Lq,Oj) and d(Rq,Oj) be the minimum distances in
the workspace between the obstacle Oj and the left arm
and the right arm, respectively, when the dual-arm robot
configuration is q.

Then, the resultant potential-field value V(q) at a collision-free
configuration q is defined as the sum of four potential fields
values

V
(
q
) = Vgoal

(
q
) + Vpaths

(
q
) + Varms

(
q
) + Vobs

(
q
)

(2)

where

Vgoal
(
q
) = λgoal

(
1 − e −σgoal‖q − qgoal‖2

)
(3)

is the potential-field value of the configuration q regarding the
attractive potential field of the goal configuration qgoal (i.e., the
closer are q and qgoal and the smaller is Vgoal)

Vpaths
(
q
) =

|P|∑

i

λi

|P|
(

1 − e −σid
(
q,Pi

)2)
(4)

is the potential-field value of the configuration q regarding the
attractive potential fields generated by all the demonstration

paths Pi ∈ P, i.e., Vpaths decreases when q gets closer to
P [it must be noted that, since Pi and q are both expressed
in C, d(q,Pi) is simply the minimum Euclidean distance in C
between q and the rectilinear segments representing Pi]

Varms
(
q
) = λarmse

−σarmsd
(Lq,Rq

)2
(5)

is the potential-field value of the configuration q regarding
the repulsive potential field between the arms of the robotic
system, i.e., Varms grows if the arms get closer; and

Vobs
(
q
) =

|O|∑

j=1

λj

|O|
(

e −σjd
(Lq,Oj

)2 + e −σjd
(Rq,Oj

)2)
(6)

is the potential-field value of the configuration q regarding the
repulsive potential fields of all the obstacles Oj ∈ O, if either
the left arm or the right arm of the robotic system gets close
to any Oj, then Vobs increases.

To speed up the computation of V(q), the distances between
the robotic arms and the obstacles [i.e., d(Lq,Rq), d(Lq,Oj),
and d(Rq,Oj)] are computed using a simplified model of the
robot and the obstacles based on planes, spheres and capsules).

Note that as opposed to the potential-field function
presented in [13], which was valid only for the motion plan-
ning of a free-flying robot with only translation DOFs, in
this paper the potential field has been extended to scenar-
ios with a dual-arm robotic system (with more and different
DOF types), and it could be extended easily to problems with
several dual-arm mobile manipulators (i.e., parallel articulated
systems with many DOFs of any type).

B. HD-RRT∗ Planner

The proposed planning algorithm, called human demon-
strated RRT∗ (HD-RRT∗), is based on the RRT∗ planner [11]
that has as parameters the sampling bias α toward the goal con-
figuration and the advance step ε used in the extend function
to grow the tree.

In order to cope with the limitations of the standard RRT∗
for high-dimensional configuration spaces, a modified version
was proposed with the following changes [45].

1) A Sampling Bias: Once a solution has been found, the
sampling is biased, with a given probability β, toward
configurations around it. This guides the paths toward
local optimal solutions.

2) A Node-Rejection Criteria: Those samples that may not
be useful in finding a better solution than the current one
are discarded. This keeps the tree as reduced as possible,
thus reducing the computational cost.

The HD-RRT∗ planner proposed here introduces the next
additional changes with respect to the modified RRT∗.

1) The Optimization Function: The minimization of this
function, computed using (1)–(6), guides the solution
toward short paths that follow as much as possible
the demonstrated movements and that move away from
obstacles and from self-collisions.

2) The Extension Procedure: In the standard RRT∗ growth
of the tree, the selected node is steered toward the sam-
pled configuration. Here, this is modified to steer the
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Fig. 3. Pseudocode and flowchart of the CSTEER algorithm.

node with a probability γ toward low-cost directions
(with a stochastic gradient-descent method) using the
function CSTEER detailed below.

The proposed HD-RRT∗ planning algorithm uses the pro-
cedure CSTEER to extend the tree from a given configura-
tion qnear. The pseudocode and the flowchart of CSTEER are
shown in Fig. 3, where the following functions are used.

1) RAND01( ) returns a value uniformly chosen at random
from the interval [0, 1].

2) UNIT(v) returns (v/‖v‖) if ‖v‖ �= 0, and v otherwise.
3) RANDORTHNORM(v) returns a random, unitary vector

orthogonal to v if ‖v‖ �= 0, and v otherwise.
4) V(q) is the potential-field value computed using (2).
5) �V(qnear) denotes the gradient of V(q) evaluated at

qnear.
The extension is performed toward qrand with an incre-

mental step ε (line 2), as it is done in the standard RRT
algorithm. However, with a probability γ < 1, a stochastic
gradient-descent method minimizing the motion cost is applied
instead. Note that the gradient-descent method can be trapped
in local minima of the motion cost. Nevertheless, since the
gradient descent is not applied always in all the iterations, the
RRT∗ exploration properties are preserved and the possible

local minimum traps are avoided (assuming γ < 1). The
extension direction is chosen randomly (line 3) between the
directions that minimize each component of the motion cost,
i.e., cP, cI , and cD [see (1)]. Each of these cost components
is chosen to be minimized with a probability proportional to
its weight value ωP, ωI , and ωD, respectively (e.g., the greater
ωP regarding ωI and ωD, the greater the probability that the
tree grows in the direction that minimizes cP). Then:

1) since cP measures the path length, the direction pointing
from qnear toward qgoal minimizes cP (line 5);

2) since cI measures the average value of the potential field
along the path, and the gradient �V(q) of the potential
field points in the direction of the local greatest growth
of V(q), then the direction that minimizes cI points in
the opposite direction of �V(q), i.e., the direction in
which V(q) locally decreases (line 7);

3) since cD measures the variations of V(q) along the
motion, then any direction orthogonal to �V(q) mini-
mizes cD because V(q) does not locally grow in any
direction perpendicular to �V(q) (line 9).

After several tests with different tasks, the parameters
of the HD-RRT∗ algorithm have been empirically set to
α = 0.05, β = 0.1, and γ = 0.1, being ε dependant on the
task. Regarding the motion-cost function, the motion con-
necting straightly qstart and qgoal has been used to set each
weight of the motion-cost function: ω� = c�(qstart, qgoal)

−1

for � ∈ {P, I, D} [see (1)]. Besides, the parameters of the
potential fields have been empirically set to: λgoal = 0.1,
σgoal = 0.1; λi = 0.1, σi = 7 ∀i; λarms = 0.3, σarms = 10; and
λj = 0.3, σj = 10 ∀j [see (3)–(6)]. The sensibility of the
system performance with respect to the planner parameters is
not high, thus determining them is not a critical issue. Thereby,
the same values of the parameters are used in the conceptual
and the real examples presented in the next section, with the
exception of the parameter ε that is the unique task-dependant
parameter.

C. Validation and Performance Analysis

The approach has been implemented within the Kautham
project [46], a motion planning and simulation framework for
teaching and research. The experiments described below were
obtained running the planner in a 2.13-GHz Intel 2, 4-GB
RAM PC.

First, for illustrative purposes, a simple example has been
set up. It consists of a 2-D scenario where a two-link pla-
nar manipulator must go from the start configuration qstart
to the goal configuration qgoal avoiding collisions with cir-
cular obstacles (see Fig. 4). Three demonstration paths and
qgoal were used to generate the attractive potential field,
while the circular obstacles generate repulsive potential fields.
The combination of these attractive and repulsive poten-
tial fields forms the potential-field function V(q). Fig. 4(left)
shows the three demonstration paths in the problem space and
Fig. 4(right) shows the obtained solution. Fig. 5 shows result-
ing potential-field function V(q) in the configuration space,
including the three demonstration paths in Fig. 5(left) and
the resulting tree of samples and the obtained solution in
Fig. 5(right).
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Fig. 4. Two-link planar manipulator problem: demonstrated paths (left) and
obtained solution path (right).

Fig. 5. Tridimensional and top views of the potential field V(q) over the
configuration space C for the example in Fig. 4 [brighter colors represent
lower values of V(q)], with the demonstrated paths (left), and the obtained
solution path and sample tree (right).

Note that V(q) is shaped like a plateau in the regions of
C where the manipulator is in collision with the obstacles
(depicted in black in Fig. 5), while, on the other hand, the
demonstration paths originate valleys (bright colored in Fig. 5).
Therefore, the use of V(q) in the cI and cD cost components
in (1) enforce the solution path to follow the demonstrations
as close as possible, while cP tries to shorten the path.

The planning procedure assures that a solution path avoid-
ing obstacles and self-collisions is found (if one exists) due
to the asymptotic completeness of any RRT-based planning
algorithm, even if the demonstration paths are not collision-
free (as it actually happens in this example, see Figs. 4 and 5).
It must be also remarked that the fact that the demonstration
paths provides relevant information on a given task is more
significant than the number of demonstration paths used, and
that the method works well even with a single demonstration
(in this case the valleys are sharper, and they become wider
when there are several different demonstration paths, with the
valley width growing when the dispersion of the demonstration

TABLE I
AVERAGE RESULTS OF THE CONCEPTUAL EXAMPLE MOTION PLANNING

TABLE II
AVERAGE RESULTS OF THE ASSEMBLY EXAMPLE MOTION PLANNING

paths grows). On the other hand, the computation time of the
motion-cost function grows when the number of demonstra-
tion paths increases [as it is expected according to (4)], but it
does not produce any other negative consequence.

Numerical results of the two-link planar manipulation
problem using three demonstration paths are summarized in
Table I where the average values after 100 executions are
shown (remind that the sampling-based planners rely on a ran-
dom process and therefore generate a different solution each
execution). A maximum time of 10 s was allowed for each
execution, this was enough to get a 100% of success rate,
i.e., the system finds always a collision-free path avoiding
self-collisions and collisions with the obstacles. The collected
data include the following.

1) The final solution length L (measured in C as the
summation of joint movements in radians).

2) The final path cost cP (defined as the sum of the motion
costs of all the segments that form the path).

3) The unit path cost ĉP (computed as cP divided by L).
After this simple example, the planning of the motions for

an assembly task is used as a real example of the proposed
planning procedure (see Fig. 1). This task consists in hold-
ing a cylindrical box with one hand and a soda can with the
other, and then move both objects to a preassembly pose that
allows the insertion of the can into the box. Note that the
start and the goal dual-arm configurations are given and that
the proposed algorithm plans the path of the whole dual-arm
robotic system. For this example, the movements of a human
operator were captured while solving the task (see Fig. 1), and
then these movements were mapped to the dual-arm system
(see Section III-A). These human movements were used as
demonstration paths to generate the attractive potential fields
as well as to obtain the zero-order basis 0S of the demonstrated
task. The axes of 0S are sorted in decreasing order of the
associated sample dispersions, then the subspace Bk spanned
by the first k axes has a dimension lower than the complete
C space and, at the same time, contains a high percentage
of the sample variance. In this paper, k has been chosen so that
the accumulated sample variance of the first k axes surpasses
the 95% of the total sample variance, i.e., k depends on the
human demonstrations of the task and it may vary from task
to task. Following this criterion, for this example, only two



2304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

Fig. 6. Snapshots of a solution path for the assembly example planned in the reduced subspace Bk .

axes were needed [Fig. 1(bottom-right) shows the distribution
of the accumulated sample variance of the captured motion as
a function of the number of synergies]. The potential field was
generated using five demonstration paths, and the planning of
the robot motions has been done using the whole configura-
tion space C and also using the reduced planning subspace
Bk, with maximum allowed planning times of 100 and 10 s,
respectively, assuring a 100% of success rate.

Fig. 6 shows snapshots of an instance of the solution path
for the assembly task obtained using the reduced subspace Bk.
Videos of each step of the experiment for the assembly task are
available in [47]. Table II shows the average results obtained
after 100 executions for each case using five demonstration
paths. The table includes, as tree growing success, the percent-
age of times that the CSTEER function returned a collision-free
motion (i.e., the percentage of iterations in which no collisions
occur and the tree actually grows).

As expected, the best paths (the ones with the lowest cost)
are obtained when the whole C space was used. Nevertheless,
planning in Bk allows a much shorter planning time (due to
the reduced dimension of the subspace) without increment-
ing excessively the cost of the path. In addition, the use of
Bk increases the probability of obtaining collision-free con-
figurations (see the tree growing success in Table II) because
fewer self-collisions occur, and therefore the efficiency of the
planning procedure increases.

V. HUMAN-LIKENESS EVALUATION

A. Definition of Human-Likeness Index

The proposed planning algorithm tries to mimic the human
demonstrations (which does not mean “following a specific
human path”) as long as it does not imply that the arms are
dangerously close to each other or to the obstacles. In addition,
the goal configuration acts as an attractive point for the planned
path. Therefore, the planned path does not follow strictly the
human demonstrated motion and then the human-likeness of
the planned path may be somehow spoiled. In order to eval-
uate the human-likeness of different paths (obtained with the
proposed planning procedure or with any other), this paper
introduces a human-likeness index QP . This index computes
the misalignment of a path with respect to the first-order
bases 1S obtained from human movements. Since as detailed
in Section III-B, the configuration space is split into cells, each
one having an associated 1S basis, the value QP of a path P
is computed as

QP = 1 − 1

L

∫

P
MISALIGNMENT

(
q, v

)
dq (7)

where L is the path length, v = q̇, and MISALIGNMENT(q, v) is
the function that returns the misalignment η of the direction v

with respect to the basis 1S(µ, �) of the cell where q lies.
This misalignment η is measured as

η = 1

π
acos

(
(1 − ρ)�µ + ρ��

)
(8)

where
• ρ ∈ [0, 1] is a weighting variable that represents the prox-

imity of the basis 1S(µ, �) to the origin of the velocity
space, i.e., ρ increases as the origin of 1S gets closer to the
origin of the velocity space. ρ is computed as two times
the probability P that a random vector x obtained from
the normal multivariate distribution N (µ, �) (i.e., with
barycenter µ and covariance matrix �) satisfies µ ·x < 0.
The probability P is given by

P(µ · x < 0|x ∼ N (µ, �)) = 1

2
− 1

2
erf

(
µ · µ

√
2µᵀ�µ

)

(9)

where erf(x) is the error function. Then

ρ = 1 − erf

(
µ · µ

√
2µᵀ�µ

)

. (10)

Therefore, when the first-order basis 1S is exactly centered
at the origin (i.e., ‖µ‖ = 0), half of the distribution N sat-
isfies the inequality and, hence, ρ = 1. As the first-order
basis 1S gets away from the origin (i.e., ‖µ‖ → ∞),
only a reduced region of N satisfies the inequality and,
therefore, ρ → 0.

• �µ ∈ [−1, 1] is a measure that represents the alignment
between v and µ [see Fig. 7(left)].
�µ is computed as

�µ = sgn(v · µ)e− 1
2

(
w − µ

)ᵀ
�

−1(w − µ
)

(11)

where sgn(x) is the sign function. �µ is positive if
(v · µ) > 0, and negative otherwise. Besides, |�µ| is
proportional to the value of the probability density func-
tion of N (µ, �) evaluated at w, which is a scaled version
of v so that the projection of w into µ is µ itself [see
Fig. 7(left)], i.e., w = (µ · µ/v · µ)v. Therefore, |�µ| =
1 when v and µ are parallel and |�µ| = 0 when v and
µ are orthogonal.

• �� ∈ [−1, 1] is a measure that represents the alignment
of v and the direction u1 of largest variance of � [see
Fig. 7(right)].
�� is computed as

�� = 2 v̂
ᵀ
�v̂

uᵀ
1 �u1

− 1 with v̂ = v
‖v‖ (12)

where v̂
ᵀ
�v̂ is the variance of � in the direction of v,

and uᵀ
1 �u1 is the variance of � in the direction of u1.
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Fig. 7. Misalignment of each direction v = [ẋ1, ẋ2], when the first-order
basis 1S(µ, �) is far from the origin, i.e., � ≈ �µ (left), and when 1S is
exactly centered at the origin, i.e., � = �� (right). Brighter colors denote
better alignments. � is represented by an ellipse oriented according to the
eigenvectors ui of � and with semiaxes proportional to the square roots of
the eigenvalues of �. A sample of the velocities v and w is also shown.

The quotient of these two variances takes the maximum
value 1 when v and u1 are parallel, and the minimum
value 0 when v is parallel to um, the direction of small-
est variance of �. To obtain �� , this quotient is then
expanded from the interval [0, 1] to the interval [−1, 1]
with a linear transformation.

Note that the misalignment value η ∈ [0, 1] and it is
small when the advance direction v is similar to the synergy
directions. When the difference between v and the synergy
directions increases, the misalignment increases.

The pseudocode and the flowchart of the MISALIGNMENT

function are shown in Fig. 8. First, the first-order synergy
basis 1S(µ, �) of the cell where q lies is obtained with the
function FOSBASIS(q) (line 1) which returns ∅ if no first-order
basis is available, i.e., q is outside B(0SG) and therefore it
does not belong to any cell (see Section III-B). If 1S = ∅ the
misalignment η is set to the maximum value 1 (line 2); other-
wise, ρ is computed following (10) (line 4), �µ is computed
according to (11) (line 5), and �� is computed according
to (12) (line 6). Finally, η is computed according to (8) (line 7).

Now, since the path P is composed of a sequence of n
consecutive configurations qi connected by rectilinear motions,
QP from (7) can be approximated as

QP ≈ 1 −
n−1∑

i=1

MISALIGNMENT
(
qi, qi+1 − qi

)
��qi+1 − qi

��

L
.

(13)

Therefore a path with a high QP value, is highly aligned in
C with the human movements. Then, if the robot kinematic
structure is anthropomorphic (and the similar to the human
operator, the better), the position and velocity of the robot
wrists and the human wrists are similar.

The human-likeness index QP depends on the 1S bases
used. QP can be tailored to any given particular task by using
the corresponding 1S bases, and used for the evaluation of
the human-likeness of the execution of that particular task.
Note that the 1S bases depend on the mapping of the human
movements to the robot configuration space, thus a mapping
preserving the human-likeness should be used to make 1S
really represent the human-like movements.

Fig. 8. Pseudocode and flowchart of the MISALIGNMENT function.

In this paper, we propose the use of 1S obtained from natu-
ral free-movements of the operator while he/she freely moves
both arms and hands in an unconstrained way (i.e., without
performing any specific task) trying to cover the whole
workspace in front of the body. There is no guarantee that
the operator actually covers the whole workspace, but it is
expected that he/she performs his/her most natural and evident
movements.

B. Evaluation

Zero- and first-order synergy bases were computed using the
free-movements described above. The configuration space C
was split into 64 cells based on the synergy differences, i.e., a
first-order basis 1S was assigned to each cell of C. These bases
were used for the computation of QP , which was applied to
the evaluation of the human-likeness of the solutions found
for the assembly example defined in Section III-A using the
following cases.

a) The HD-RRT∗ planner with several demonstrations,
planning in the whole configuration space C.

b) The HD-RRT∗ planner with several demonstrations,
planning in the lower-dimensional subspace Bk.
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TABLE III
AVERAGE HUMAN-LIKENESS VALUE OF THE ASSEMBLY EXAMPLE

USING THE PRESENTED APPROACH WITH SEVERAL

DEMONSTRATIONS [CASES a) AND b)], A SIMILAR

APPROACH [CASE c)], THE RRT [CASES d) AND e)],
AND AN ARTIFICIAL PATH [CASE f)]

c) The planner introduced in [34], that simply computes
zero-order synergies for different tasks and uses them to
reduce the dimension of the search space, thus reducing
the computational cost.

d) The standard RRT planner [6], planning in the whole
configuration space C.

e) The standard RRT planner, planning in the lower-
dimensional subspace Bk.

f) Two rectilinear segments in C connecting the start and
the goal configurations through an empirically selected
configuration qm /∈ B(0SG), i.e., qm is not in the subspace
of the sampled configurations of the free-movements.
Note that in this case no motion planning is performed
but even so the path is checked to be free of collisions,
either involving the obstacles or both robotic arms.

Table III shows the average results obtained, for each case,
after 100 executions. It can be noted that the proposed plan-
ner obtains paths with a significant better QP quality (even
though the presented approach needs a longer planning time),
i.e., the proposed procedure finds solution paths that are bet-
ter aligned with the natural movements of the human operator
and that therefore are more human-like. Note that the approach
presented in this paper obtains a better QP even though the
human movements used in the motion planning are different
to the ones used to compute QP . The path with the greatest
quality is obtained when the motions are planned in the whole
C space. However, the use of the subspace Bk is the best option
since it reduces significantly the computational cost without
penalizing considerably QP . Case (c) is very fast since it is
not based in any optimization method and hence ends as soon
as a solution is found, and has a relative good QP . The poor-
est quality is obtained with the manually set path, denoting
that this path is not much human-like. The planner used in
cases (d) and (e) does not consider human-likeness nor path
length as a quality index. Hence, bad results are obtained for
both measures.

Videos of paths obtained for the assembly task with the
considered approaches are available in [47].

VI. CONCLUSION

This paper has introduced a motion planning procedure,
designed for anthropomorphic dual-arm robotic systems, that
allows to solve manipulation tasks in a human-like fashion.
To this end, the movements of a human operator have been

used to generate attractive potential fields over the confi-
guration space. The motion planning has been solved with
an RRT∗-based algorithm, with a stochastic gradient descent
method to minimize a motion cost. The algorithm navi-
gates through the potential fields and biases the tree growth
toward the human-like movements. In addition, the synergies
(couplings between DOFs) of the demonstration movements
have been computed to find a lower-dimensional subspace
where the motion planning can be solved more efficiently,
basically due to the fact that the sampling procedure pro-
duces in fewer self-collision configurations. The proposed
approach has been illustrated with a conceptual example and
a real example executed with a physical dual-arm robotic
system. A human-likeness index, based on first-order synergies
(correlations between joint velocities) obtained from human
movements, has been also proposed and used for comparisons.
The obtained results show that the proposed procedure obtains
paths that are more human-like.

As a conclusion, this paper has presented a simple yet
efficient way to compute paths for dual-arm robotic systems
with human-like appearance, and it opens interesting potential
research lines, such as the use of demonstration paths in the
joint-velocity space and their first-order synergies during the
motion planning. Another interesting research direction con-
cerns the optimization of the presented human-likeness index
while solving the motion planning in order to better mimic
human task executions.
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