
J Intell Robot Syst
https://doi.org/10.1007/s10846-017-0698-z

κ-PMP: Enhancing Physics-based Motion Planners
with Knowledge-Based Reasoning

Muhayyuddin1 ·Aliakbar Akbari1 · Jan Rosell1

Received: 13 March 2017 / Accepted: 8 August 2017
© Springer Science+Business Media B.V. 2017

Abstract Physics-based motion planning is a challenging
task, since it requires the computation of the robot motions
while allowing possible interactions with (some of) the
obstacles in the environment. Kinodynamic motion planners
equipped with a dynamic engine acting as state propagator
are usually used for that purpose. The difficulties arise in
the setting of the adequate forces for the interactions and
because these interactions may change the pose of the mani-
pulatable obstacles, thus either facilitating or preventing the
finding of a solution path. The use of knowledge can allevi-
ate the stated difficulties. This paper proposes the use of an
enhanced state propagator composed of a dynamic engine
and a low-level geometric reasoning process that is used to
determine how to interact with the objects, i.e. from where
and with which forces. The proposal, called κ-PMP can
be used with any kinodynamic planner, thus giving rise to
e.g. κ-RRT. The approach also includes a preprocessing step
that infers from a semantic abstract knowledge described in
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terms of an ontology the manipulation knowledge required
by the reasoning process. The proposed approach has been
validated with several examples involving an holonomic
mobile robot, a robot with differential constraints and a
serial manipulator, and benchmarked using several state-of-
the art kinodynamic planners. The results showed a sig-
nificant difference in the power consumption with respect
to simple physics-based planning, an improvement in the
success rate and in the quality of the solution paths.

Keywords Physics-based motion planning · Kinodynamic
motion planning · Knowledge-based reasoning

1 Introduction

Motion planning is one of the important issues in robotics,
either as a stand-alone problem or in conjunction with other
tasks such as grasping or manipulation. In the past decades,
the focus of many motion planning approaches has often
been to compute collision-free paths in the configuration
space C (the set of all possible configurations of the robot)
while satisfying some geometric constraints. Approaches
like grid-based methods or potential fields were first pro-
posed for such planning [17]. Although being practical for
simple scenarios, these algorithms were computationally in-
tensive and difficult to implement in higher dimensional con-
figuration spaces. Moreover, some problems arouse when
executing the computed geometric path in the real robot due
to the possible existence of kinematic and dynamic const-
raints. Therefore, new motion planning algorithms appeared
to cope with these problems [6, 18].

Sampling-based motion planning algorithms (such as
RRT [19]) were proposed to plan in higher dimensional
configuration spaces, since these algorithms do not require
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the explicit representation of the obstacles in C and showed
to comply very well to problems with kinodynamic con-
straints. In this line, the approaches such as Kinodynamic
Motion Planning by Interior-Exterior Cell Exploration
(KPIECE [29]) were recently proposed to plan efficiently
for systems with complex dynamics in high dimensional
configuration spaces. Moreover, these approaches can also
take into account the physics-based constraints such as
friction and gravity along with the kinodynamic constraints.

The possibility of taking into account physics-based con-
straints has also made it possible to consider not only the
search of collision-free paths but also the search of paths
where the interaction between the robot and the environment
is possible. This new class of planning algorithms is known
as physics-based motion planning, and can be considered
as an extension to kinodynamic motion planning. Physics-
based motion planners evaluate the interactions between
bodies based on the principle of basic physics and their
results influence the planning process. Therefore, planning
becomes a challenging task due to various factors such as
the high dimensionality of the state space (where the envi-
ronment may change as a result of the bodies interactions),
the large planning search space and the possibly highly con-
strained solution set. Moreover, the accurate modeling of the
objects interactions with dynamical effects such as friction
and momentum is required. To alleviate these challenging
issues, a few approaches have been proposed that develop
strategies to reduce the search space, e.g. [21, 33, 34].

Since physics-based motion planning deals with the kino-
dynamic and physics-based constraints along with the dyna-
mic interactions between rigid bodies, it is desirable to com-
pute an efficient solution in terms of dynamics measures,
such as power consumption, instead of just considering the
planning time or path length, as usually done in other mo-
tion planning problems (this is particularly true for task and
motion planning problems where dynamic cost computed by
the motion planner significantly influence the planning deci-
sion at task level [1, 2]). To the best of our knowledge, there
is not any approach within the framework of physics-based
planning that searches for power-efficient motion plans.

With the physics-based motion planning in mind, one
of the problems that can be stated is the following. Find
a path for a robot (either a mobile or a manipulator) to
move from an initial state to a goal state while interacting,
if necessary, with the obstacles of the environment, obtain-
ing a power-efficient solution that satisfies the constraints
(regarding which obstacles can be collided, from where and
with which interacting force). This paper aims to find a
solution to this problem statement by proposing a power-
efficient approach for physics-based motion planning based
on the use of manipulation knowledge. Compared with plain
physics-based motion planners, the proposal results in an
improvement in the success rate and in the quality of the

solution paths. A preliminary version of this approach was
presented in [21], where the focus was on the introduction of
a knowledge-based reasoning process for an efficient plan-
ning (in terms of time). This paper extends the approach
for a power-efficient solution by proposing an improved
framework and a new planning algorithm. Moreover, a
detailed comparison of the approach with other approaches
is presented in a variety of different scenarios.

Contributions The main contribution of this work is
the proposal of a physics-based motion planning method
equipped with a control sampling strategy that allows the
search of a power-efficient motion plan, which may include
free robot motions along with interactions with manipulat-
able objects that may be obstructing the path. The main
components of the proposal are: (1) the partition of C into
different regions as a function of whether the robot can
either move freely or interact with manipulatable objects;
(2) an instantaneous reasoning process that performs low-
level geometric reasoning in order to analyze the configu-
ration space regions and update the sampling range; (3) a
detailed representation of knowledge, which is categorized
into semantic knowledge and manipulation knowledge, to
help improving the knowledge-based inference process. The
proposed framework consists of a high-level and a low-level
layer, that are connected through a ROS-based communi-
cation layer. The high-level layer contains the knowledge
about the robot and the environment, that is used by the
low-level motion planner for reasoning about the sampled
controls and to update the manipulation constraints. This
hierarchical structure results in smart motion plans for the
robot to efficiently interact with the objects in the environ-
ment. The performance of the proposed planning approach
is tested with three different scenarios: an holonomic mobile
robot, a car-like mobile robot and a planar manipulator.
The results are compared (in terms of power consumption,
planning time and success rate) with other physics-based
planning approaches.

The paper is structured as follows. First, Section 2 details
some relevant related work and Section 3 formulates the
problem and sketches the solution. Afterwards, Section 4
explains the high and low level representation of knowl-
edge, Section 5 details the high level knowledge inference
process and the low level reasoning process and Section 6
explains the framework and the proposed planning algo-
rithm. Finally, Section 7 describes the obtained results and
Section 8 concludes the study.

2 Related Work

The simplest form of motion planning is a geometric prob-
lem devoted to compute a collision-free path from a start to
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a goal state in the configuration space while satisfying some
geometric constraints like joint limits and collision avoid-
ance. Sampling-based motion planners such as RRTs and
PRMs [15] are able to solve problems in high dimensional
configuration spaces, by connecting collision-free samples
forming a graph or a tree-like structure that capture the con-
nectivity of the free configuration space, or of the part of the
free space relevant to the query to be solved. In some cases
the kinematic and dynamic constraints of the robot must be
taken into account while planning due to the difficulty that
may arise in the following of a geometric path. This need
gave rise to kinodynamic motion planners.

2.1 Kinodynamic Motion Planning

Physical systems may be subject to kinematic constraints
that may be holonomic or nonholonomic. The former are
constraints on system configurations, q0, q1, ..., qn, and
can be expressed as f (q0, q1, ..., qn; t) = 0, i.e. they only
depend on the coordinates and time, whereas the latter
cannot be expressed in this form; they are constraints on
velocities. Moreover, the system may be subject to dynamic
constraints due to the dynamics laws and bounds on veloc-
ities, accelerations and applied forces. In robotics, the term
kinodynamic planning was introduced by [10] to refer
to motion planning problems where both kinematic and
dynamic constraints were considered, i.e. a motion planning
approach devoted to the search of a solution path that com-
plies to the kinematic and dynamic laws and the bounds over
the applied forces, the velocities and the accelerations. Basi-
cally, these kinodynamic algorithms search a solution in a
higher dimensional state space X that records the dynamics
of the system. For any particular configuration q ∈ C, the
state of the system is represented as x = (q, q̇) ∈ X , and
the state propagation is performed by a transition function
defined as:

ẋ = f (x, u) (1)

with u ∈ U , the set of valid control inputs. The solution
to a kinodynamic problem is found by determining the set
of appropriate control inputs that applied using Eq. 1 brings
the robot from the initial to the goal state while satisfying
all the constraints.

Sampling-based motion planners (particularly those
using tree-like structures) have the ability to efficiently plan
in the presence of kinodynamic constraints [5, 30]. These
planners can be divided into three main categories:

1. Planners that sample the states, such as RRTs and
Expansive-Spaces Tree planners (EST) [13, 14]. The
RRT grows a tree rooted at the start state by iteratively
selecting a random sample xrand and expanding the tree
from the node that is nearest to xrand by applying a

randomly sampled control. The EST builds a tree-like
roadmap by selecting a node with a probability inver-
sely proportional to the density of the node neighbor-
hood and extending it by applying a randomly sampled
control.

2. Planners that sample path segments instead of states and
that do not require the use of a metrics, such as the
Path Directed Subdivision Tree (PDST) [16] and
KPIECE [30]. The PDST planner subdivides the state
space into regions (cells), each one containing a path
segment. The tree is extended by iteratively sampling a
cell, randomly selecting a state from that cell, and app-
lying a randomly sampled control to generate the new
path-segment.
The KPIECE planner also samples the path segments
(called motions) by using a grid-based decomposition
of a projection space (defined either with random pro-
jections or user-defined) where the tree of motions is
projected and where a sampling procedure is defined to
select the important regions to explore.

3. Hybrid planners such as Synergistic Combination of
Layers of Planning (SyCLoP) [24] and the Linear Tem-
poral Logic (LTL) motion planner [4, 23]. The SyCLoP
planner splits the planning problem into a discrete
(high-level) layer and a continuous (low-level) layer
of planning. The former is based on the decomposi-
tion of the workspace, whereas the latter consists of a
sampling-based motion planner like EST or RRT that
is guided by the discrete layer. LTL is an extension of
the SyCLoP planer in which the discrete layer encodes
a complex motion planning task using an abstract graph
computed from a decomposition of the workspace and
an automaton that represents a linear temporal logic
formula describing the task.

In all the above stated planners the control sampling
range is usually set at the start and remains the same in the
entire planning process; on each state the controls are ran-
domly sampled from the given control range that results in
the robot motion. Beside sampling-based algorithms there
are some other recently proposed approaches for kinody-
namic motion planning, such as the Covariant Hamiltonian
Optimization for Motion Planning (CHOMP [35]). These
approaches mainly focus on the optimization (such as
smoothness) but can be used as stand alone motion planners
for computing collision-free trajectories.

2.2 Physics-Based Motion Planning

All the above stated kinodynamic motion planning strate-
gies are focused on computing a collision-free trajectory
from start to the goal state, i.e. interactions with the objects
in the environment are forbidden (and the contacts of a
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mobile robot with the floor not considered). This constraint
leads to the neglecting of the physics-based dynamic fea-
tures such as friction between the objects and the ground,
pressure distribution under the objects surfaces, gravitatio-
nal effect over the objects in the environment and the inter-
action dynamics (such as direction of interaction force and
momentum). If interactions are allowed, however, all these
features should be considered, and this is what physics-
based motion planning does, and the key difference with
respect to the kinodynamic and other motion planning
approaches. Therefore, physics-based motion planning has
recently emerged as a step further toward physical realism.
It simultaneously considers the kinodynamic constraints and
physics-based constraints (such as friction and gravity), and
also incorporates the purposeful manipulation of objects by
evaluating the dynamic interactions between rigid bodies
simulated using the basic physics (rigid-body dynamics).

Physics-based planning approaches implicitly use a
sampling-based kinodynamic planner, that is responsible for
sampling the states and constructing the solution path, but
using for the propagation step a rigid-body dynamic sim-
ulator (dynamic engine), such as ODE [26] or Bullet [9].
The dynamic engine models the dynamical world with all
the physical properties and has the ability to simulate the
properties of the physical interactions, such as force-based
inter-body collision and momentum. The physics-based
planner evaluates the results of the action after propagation,
if it satisfies all the constraints then the action is selected,
and discarded otherwise.

The complexity of the physics-based motion planning is
very high due to the high-dimensional state space, large
search space and highly constrained solution set. A few
physics-based motion planning approaches have been pro-
posed that addressed the above mentioned issues, such as
the Behavioral Kinodynamic Balanced Growth Trees (BK-
BGT) and the Behavioral Kinodynamic Rapidly-Exploring
Random Trees (BK-RRT) proposed in [33] that use a strat-
egy to reduce the search space based on a nondeterministic
tactic modeled using a finite state machine, along with skills
used to control the sampling. The propagation step is perfor-
med using PhysX [22]. A hybrid approach is proposed in [21]
that equips the physics-based motion planner with knowl-
edge (in the form of ontologies) about the robot’s manipula-
tion world. It uses a knowledge-based reasoning process to
reduce the robot search space and guide the motion planner
by defining the way objects can be manipulated. It uses RRT
and KPIECE as kinodynamic motion planner and ODE as
state propagator. This approach has also been used in task
planning approaches [1, 2] for the physics-based reasoning
process to determine the feasibility of the plan by evaluating
the dynamic cost of each subaction in the task plan.

Some other approaches address problem related to physics-
based motion planning such as physics-based grasping and

rearrangement planning [7, 8]. These approaches evaluate
the dynamic interaction by executing the straight line tra-
jectories under the quasi static assumption. Moreover some
approaches (such as [12, 28]) studied the rearrangement
planing in conjunction with the physics-based motion plan-
ning, but none of them addressed the issue of robust control
selection for the power efficient solution.

The determination of the appropriate set of controls and
durations such that, if sequentially applied, the robot moves
from an initial to a goal state following a power-efficient
trajectory is a challenge. With this aim, the current proposal
presents a control sampler that uses a knowledge-based
reasoning process to determine the appropriate values of
controls that may result in this behavior. The next section
will formally describe the problem statement and outline the
proposed solution.

3 Problem Formulation and Solution Overview

3.1 Problem Statement

Let a physics-based motion planning problem be defined as
the tuple (X ,U , f,K,F, xinit ,Xgoal), where:

– X represents the state space; it is a differential manifold.
– U represents the control space; it contains the set of all

possible control inputs that can be applied to the robot.
– f : X i × U −→ X i+1 is the propagation function.
– K is the abstract knowledge containing all the available

knowledge about the world such as object classifi-
cation, manipulation regions, and physical properties.
κ ⊂ K is the instantiated knowledge that represents the
knowledge that is valid for a particular instance of time.

– F : κ ×X −→ {0, 1} is the physics-based state validity
checker. It evaluates the state generated by applying f ,
and returns 1 if it satisfies all the constraints imposed
by κ , or returns 0 otherwise.

– xinit ∈ X is the initial state.
– Xgoal ⊂ X is the goal region.

Consider a motion planning problem where no collision
free trajectory from start to the goal exist (e.g. either the goal
or the way toward it might be occupied with manipulatable
objects). The objective is to determine the set of efficient
control inputs {u1, . . . , un} ∈ U and the set of associated
time durations {t1, . . . , tn} such that, if sequentially applied
to the system using f and starting from xinit , a goal state
xn ∈ Xgoal is reached, being the resultant trajectory power-
efficient and satisfying all the constraints (i.e. a trajectory
that avoids collisions with fixed obstacles but that may col-
lide with manipulatable objects to push them away from the
solution path). The proposed approach (at each step) will
determine the robust control using the low level reasoning
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about the object dynamics, in such a way that the resultant
solution will be power efficient (no optimization of any kind
such as path length will be considered).

3.2 Problem Modeling

We consider a dynamical workspace with several objects
(each one composed of one or more rigid bodies), that are
categorized into fixed objects and manipulatable objects.
Fixed objects, such as walls, remain static during the entire
planning process and no collision is allowed with them.
Manipulatable objects, on the contrary, can be pushed and
hence their pose is not fixed. Manipulatable objects are
further categorized into constraint-oriented manipulatable
objects (co-mObjects) and free-manipulatable objects (free-
mObjects), depending on whether they are subject to some
kinematic constraints or not (e.g. a car-like object can only
be pushed forwards or backwards in a single direction).
All manipulatable objects have associated regions, called
manipulation regions (mRegions), from where the robot can
exert forces in order to move them, i.e. the robot can interact
with the object through these regions and it is not allowed
to contact the object from any other part. For instance, as
shown in Fig. 1, a car-like robot has one mRegion located
at its front and one at its rear, and a vertical box has the
mRegions around it but below its center of mass.

The state s of each object is represented by its position r ,
orientation o, linear velocity v, angular velocity w, and the
associated manipulation constraints η:

s = {r, o, v, w, η} (2)

The state of the workspace (composed of n objects) at a
given instant of time t is represented as:

qt = {s1, s2 . . . , sn, t} (3)

Regarding the robot, its configuration space C, i.e. the
set of all possible configurations of the robot, can be
divided into the set of geometrically accessible regions,
called Cfree, and the set of the forbidden ones (those cor-
responding to collision with obstacles), called Cobs. The
condition Cfree∪ Cobs= C holds. In this work, Cfree is further
divided into Cmove and Cinteraction representing, respectively,

a b c d

Fig. 1 Different bodies with their mRegions (the red cube represents
the fixed object and hence have no associated mRegion)

Fig. 2 Configuration space: Cobs shown in black (collisions with fixed
obstacles) and gray (collision with manipulatable obstacles), Cinteraction
in green and Cmove in white

the regions where the robot can move freely and those
where the robot can enter in contact with the manipulat-
able objects, i.e. the set of configurations corresponding to
the robot1 being placed in an mRegion (see Fig. 2). The
condition Cmove∪ Cinteraction= Cfree holds.

3.3 Solution Overview

In order to find a power-efficient solution, we have devel-
oped an approach inspired by our daily life experience
where, in order to perform the task robustly, we dynami-
cally update the forces according to the interaction with the
environment, e.g. we do not exert the same force while push-
ing a plate, a table, or when moving freely. We propose the
use of any kinodynamic planner, such as KPIECE or RRT,
and to equip it with a state transition model that computes
the next state based on a dynamic engine and a reasoning
process that uses instantiated knowledge. This knowledge
defines from where objects should be manipulated and with
which range of forces. The knowledge representation used
is detailed in Section 4 and the knowledge inference and
reasoning process in Section 5.

The knowledge about the task and the workspace is
modeled in two levels:

– The abstract knowledgeK: It is a high-level representa-
tion of knowledge composed of the semantic knowledge
KS and the manipulation knowledge KM. The seman-
tic knowledge describes, using ontologies, information
of the task such as the kinematic and dynamic proper-
ties of the robot, of the objects, and the manipulation
constraints. From KS the manipulation knowledge KM

1In the case of manipulators the pose of the tool will be considered.
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is inferred. It contains all the necessary information that
is required for the motion planner, such as the type
of objects and how they can be manipulated. Abstract
knowledge remains the same during the whole planning
process.

– The instantiated knowledge κ: It is a low-level represen-
tation, updated at each instance of time by the reasoning
process, based on the manipulation knowledge and on
the feedback received from the motion planner (e.g. if
at a particular instance of time one of the mRegion of an
mObject is occupied by some other object, then if there
is an mRegion in the opposite side, it will be deactivated
by the reasoning process and κ will be updated accord-
ingly). The instantiated knowledge is used in the state
transition model as explained next.

The dynamic flow of knowledge is shown in Fig. 3,
where it is illustrated that the manipulation knowledge is
extracted from semantic knowledge (ontologies) and used
by the reasoning process along with the feedback from the
motion planner to update the instantiated knowledge. This
instantiated knowledge, as shown in Fig. 4, is the key mod-
ule of the state transition process, that takes the state of
the world qt as input and generates the next state qt+1 by
applying an appropriate control based on this knowledge:

κt = ξ(KM, qt ) (4)

qt+1 = f (qt , ut (κt )) (5)

That is, the state transition process consists of three mod-
ules: the physics engine, the instantiated knowledge, and
the low-level reasoning. The reasoning process is respon-
sible for updating the instantiated knowledge κ with the
manipulation constraints (determining which are the active
manipulation regions) and with the region of the config-
uration space where the robot is located (either Cmove or
Cinteraction). With this information the instantiated knowl-
edge determines the set of controls and selects one to be
applied (the set will be determined in such a way that if the
robot is in a region where interaction with an object is pos-
sible then the range of controls must allow the manipulation
of the object). Finally, the physics engine (i.e. physics-based
state propagator) generates qt+1 by applying the randomly

Fig. 4 State transition model for the κ-PMP

sampled control ut to qt . The validity of the resulting
state will be checked using the physics-based state validity
checker F that takes into account the instantiated knowl-
edge (i.e. a collision state is only valid if the robot collides
with manipulatable object from one of its manipulation
regions).

The preliminary work in [21] demonstrated the impor-
tance of using knowledge (described by ontologies) to
guide physics-based motion planning. The present proposal
greatly enhances the state transition model, which is the core
of the proposal, by introducing the low-level geometric rea-
soning process that allows the use of an adaptive control
range, thus obtaining power-efficient solutions. On the other
hand, it reduces the computational cost by introducing the
offline inference process that prevents the online query to
the ontological knowledge.

4 Knowledge Representation

This section presents the proposal done to represent and
manage knowledge for motion planning purposes, from the
abstract knowledge KS using ontologies to the instantiated
knowledge κ used at the motion planning level, through the
manipulation knowledge KM inferred from KS and used to
maintain κ .

Fig. 3 Flow of knowledge from
the high-level abstract
knowledge to the low-level
instantiated knowledge
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4.1 Representation of Knowledge Using Ontologies

Ontologies can be employed to model and organize knowl-
edge within different domains. In particular, they have re-
cently been used to organize knowledge for motion and
manipulation planning (e.g. [2, 10]) in order to enhance
inference capabilities. Ontologies can be easily edited using
the Protégé editor [27] and can be encoded and stored
using the Web Ontology Language (OWL) [3]. In this way,
the knowledge can be shared by different devices, being
accessed through the world wide web. Using ontologies,
knowledge is mainly classified in classes (which entails
a collection of objects), individuals (in which instances
of classes are stored), relations (expressing the correspon-
dence among objects as well as individuals), and properties
(specifying data values for objects).

4.2 Abstract Knowledge

The abstract knowledge is the high-level representation of
knowledge which remains fixed throughout the planning
process. It is divided into the Semantic Knowledge contain-
ing information about the workspace and the robot, coded as
an OWL taxonomy, as depicted in Fig. 5, and the Manipu-
lation Knowledge which involves knowledge related to how
the robot can interact with the workspace, and which is
inferred from the semantic knowledge.

4.2.1 Semantic Knowledge (KS)

Semantic knowledge categorizes information within the
following classes:

– Class “RobotProperties” describes the properties of
the robot in two subclasses. Geometric constraints
of the robot such as joint limits are stored in the
class KinematicProperties; differential properties of the
robot such as bounds on forces, torques, velocities, and

accelerations (global properties that condition the max-
imum capacity of the robot) are stored in the class
DynamicProperties.

– Class “ObjectClassification” is used to describe the
objects in the workspace such as, fixed (fixedOb-
ject), free manipulatable (free-mObject) and constraint-
oriented manipulatable (co-mObject).

– Class “ManipulationConstraint” describes orientation
constraints on the motion of bodies and objects.

The hierarchy of knowledge among the classes can be
represented using Description Logic (DL). For instance the
hierarchy for a constraint-oriented manipulatable object is
described below:

Thing := object
∃hasSuperclass(Thing, SemanticKnowledge)
∧∃hasClass(SemanticKnowledge,ObjClassification)
∧∃hasSubclass(ObjectClassification, co-mObject)

where ∧ and ∃ represents conjunction and exist, respectively.
The semantic properties (that are stored on OWL) are

divided into object properties and data properties. The for-
mer are used to describe the relationships between the
individuals, and the latter are used to assign the values to
the physical attributes. As an example, some of the seman-
tic properties of the car-like object are depicted in Fig. 6 and
explained below in terms of DL.

Object := Car
∧∃hasWheel(Car,Wheel)
∧∃hasBody(Car,Body)
∧∃hasWheel(Wheel, alongYaxis)
∧∃canMove(Car, alongXaxis)

The above stated DL description of an object property
(hasConst-yAxis fourwheeldrive) explain that car is com-
posed of wheels and body, the motion of the car-like object
is constraint by the wheels that are along the y axis of the

Fig. 5 OWL-based semantic
knowledge taxonomy. https://sir.
upc.edu/projects/ontologies

https://sir.upc.edu/projects/ontologies
https://sir.upc.edu/projects/ontologies
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Fig. 6 Screen shot of the
Protégé editor showing the
semantic properties of a car-like
object

chassis so that the car can only move along the associated
x-axis.

The data properties in terms of description logic are
represented as follows:

Object := Car
∃hasWidth(Car,Value)
∧∃hasDepth(Car,Value)
∧∃hasHeight(Car,Value)
∧∃hasGravity(Car,Value)
∧∃hasFriction(Car,Value)
∧∃hasMass(Car,Value)

It describe the dimension of the car, response to the grav-
itational (if considered as dynamic object, the value will be
true and false otherwise) and the values of friction (between
wheels and road) and mass of the car respectively.

4.2.2 Manipulation Knowledge (KM )

Manipulation knowledge is inferred from KS using a Prolog
inference process that will be detailed later in Section 5.1.
It contains the classification of objects (fixedObject, free-
mObject, or co-mObject), a complete set of mRegions for
manipulatable objects, physical attributes of objects, and
kinematic and dynamic properties of the robot (such as joint
limits and bounds on forces and velocities). Manipulation
knowledge remains fixed throughout the motion planning
process. KS contains the maximum possible knowledge
about the world and KM that related to a particular motion
planning problem (e.g. it must be updated if the features of
the robot change).

4.3 Instantiated Knowledge (κ)

Instantiated knowledge is the low level representation of
knowledge (at the motion planning level). It is dynamic and
valid for a particular instant of time (containing all possi-
ble constraints that are valid for that instant of time) and is
updated for the next time step. The instantiated knowledge

contains two main components: (1) the knowledge about the
valid and invalid manipulation regions, as well as dynami-
cal properties (such as masses, friction coefficients) of the
objects; (2) the control sampling range (such as bounds on
control forces and torques) to be used by the motion planner
at the current instant of time (by using the state propagator,
i.e. the dynamic engine).

The instantiated knowledge is updated by the low-level
reasoning process based on the high-level manipulation
knowledge and the feedback from the motion planner. The
reasoning process is detailed in Section 5.2).

5 Knowledge Inference and Reasoning Process

The flow of knowledge was graphically illustrated in Fig. 3.
It includes the knowledge inference process and the rea-
soning process. The knowledge inference process is the
pre-processing step responsible of inferring the manipula-
tion knowledge KM from the ontological semantic knowl-
edge KS . On the other hand, the reasoning process is the
responsible of updating the instantiated knowledge at each
instant of time while planning, based on KM and the current
state fed back by the motion planner.

5.1 Knowledge Inference Process

The inference process is performed using Knowrob [32],
a knowledge-based processing tool for robotics applica-
tions that allows operating over OWL data bases, extended
with the following predicates (coded in Prolog) tailored
to extract the necessary information for the physics-based
motion planner:

– object classification(?Obj, ?ObjType): Given an object
Obj returns the type of the associated object ObjType
by evaluating its category. Those manipulatable objects
that are too heavy for the robot to be manipulated are
changed to fixed.
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– manipulatable region(?Obj, ?ManipRgns): Given a
manipulatable object Obj computes the set of associated
manipulatable regions ManipRgns taking into account
the manipulation constraints, if any.

– object properties(?Obj, ?PhysicalProps, ?Dimension):
Given an object Obj returns its physical properties
PhysicalProps, including mass and friction values, as
well as gravitational effect and the dimension Dimen-
sion of the object.

– robot properties(?DynamicsProps, ?KinematicProps):
Returns the dynamics properties of the robot (forces and
velocities limits) in DynamicsProps, and the kinematic
properties (joint limits) in KinematicProps.

At any given state fed back by the motion planner (cor-
responding to the node to be expanded), the reasoning
process uses geometric reasoning to update the instantiated
knowledge with the current information on the manipulation
regions and on the control sampling range. Those manipula-
tion regions that become useless are deactivated; the others
are set active. A manipulation region becomes useless if it
is occupied by an obstacle (i.e. the robot cannot access it),
or if the motion of the object is not possible when the robot
interacts with it from the manipulation region, e.g. if the
front manipulation region of the car-like object is blocked
with a mObject it is deactivated, as well as the rear mRegion
because the robot can not exert forces from there until the
front mRegion becomes free.

5.2 Reasoning Process

Kinodynamic planners sample both the direction and mod-
ule of the control to be applied to extend the tree data
structure. The proposed reasoning process computes the
module range from where to sample depending on whether
the robot is located in Cmove or Cinteraction, and in this latter
case depending on whether the robot is in collision or not.

The normal control range to move the robot freely in Cmove

will be diminished when being in Cinteraction, and if contact
occurs then it will be increased based on the weight of the
object to be pushed. Let F be the module range from where
to sample, and let F take the value F = [fmin, fmax] when
the robot is in Cmove. Then, when the robot is in Cinteraction:

– F = α[fmin, fmax] with α < 1 if no contact occurs,
– F = [fmin +fobj, fmax +fobj] with fobj = μobj mobj g,

if contact occurs,

where μobj is the friction coefficient between the object and
the floor, mobj is the mass of the object, and g the gravita-
tional force. In case of a manipulator (kinematic chain), the
range of forces is converted to a range of joint torques using
the transposed Jacobian.

To illustrate this, Fig. 7 qualitatively depicts the differ-
ence between the use of the proposed control sampling
range and a fixed range, as done in standard physics-based
motion planning approaches [21, 29]. In our proposal, the
higher value of control forces will only be used when the
robot is in contact with the object, and according to its
weight. If a fixed lower control range is set then it may not
be able to push the objects (to clear the regions) and fails
to compute the path, on the other hand, if a higher con-
trol range is set then it consumes unnecessary power and
may result in a huge displacement of the object. Moreover,
prior to contact, the proposed controls slow down to have a
smooth transition from no contact to contact.

6 The κ-PMP approach

6.1 Proposed Framework

The proposed framework for power-efficient physics-based
motion planning is depicted in Fig. 8. It is a hybrid planning
framework that consists of three main layers: the high-level

Fig. 7 Sample and propagation
using: a the simple physics-
based motion planner; b κ-PMP.
The control sampling range is
selected based on the dynamics
properties of the target object
and the manipulation region.
Blue samples represent the lower
values of control range, whereas
orange samples represent the
higher values. Yellow samples
represents the decrease in forces
during the transition between
free and contact motions
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Fig. 8 Knowledge-oriented physics-based motion planning (κ-PMP)
for power-efficient motion plan

layer devoted to the knowledge management and inference
process, the communication layer, and the low-level layer
devoted to the physics-based motion planning.

The high-level layer that contains the high-level repre-
sentation of knowledge is divided into the semantic knowl-
edge coded in the form of ontologies, and the manipulation
knowledge inferred from the semantic knowledge using the
knowledge inference process module.

The low-level layer consists of the instantiated knowl-
edge κ (that contains the temporary manipulation con-
straints and the bounds on the control forces), the reasoning
process (responsible of updating the instantiated knowledge
from the current state and the manipulation knowledge),
and the motion planner (whose main modules are the
physics-based state validity checker F , the control sampling
module, a standard kinodynamic planner like KPIECE or
RRT from the Open Motion Planning Library [31], and the
ODE-based physics engine). This layer is developed within
The Kautham Project [25], an open source framework for
motion planning that includes geometric, differential and
physics-based motion planners (including those that require
ontological knowledge).

The communication layer is based on ROS and commu-
nicates the high-level abstract knowledge and the low-level

motion planning layer: the abstract knowledge is encap-
sulated as a ROS service and the motion planning layer
accesses it as a ROS client.

6.2 Algorithm

The planning process is sketched in Algorithm 1. It takes
as input the initial state qinit , the goal region Qgoal , and
the maximum allowed planning time Tmax . If a solution is
found, it returns the path from qinit to qgoal ∈ Qgoal , or
NULL otherwise. To sample the states and construct the
planner data structure, the approach provides the flexibil-
ity to use any sampling-based kinodynamic motion plan-
ner (such as RRT, KPIECE, SyCLoP) offered by OMPL,
together with the Open Dynamic Engine as state propagator.

Lines [1–3] of the algorithm are the preprocessing steps
for the motion planner; lines [4–15] contain the planning
process. The main functions used are the following:

– WorkspaceInit: Iinitializes the state of the robot and of
the objects in the environment.

– SemanticKnowledgeGenerator: Creates the semantic
knowledge KS from the ontologies.

– ManipulationKnowledgeInference: Infers KM from KS .
– ReasoningProcess: Updates the instantiated knowledge

by updating the manipulation constraints and the range
of the control, as detailed in Algorithm 2.

– SelectNodeToExpand: Selects the node to expand fol-
lowing the node selection process of the kinodynamic
planner used.

Algorithm 1 κ-PMP

Input: Initial state q init, Goal region Qgoal ∈ C, Threshold Tmax

Output: A path from q init to q ∈ Qgoal
1: WorkspaceInit()
2: KS ←SemanticKnowledgeGenerator()
3: KM ←ManipulationKnowledgeInference(KS)
4: while t < Tmax do
5: κ ← ReasoningProcess(KM, q)
6: SelectNodeToExpand()
7: {u, n} ← SampleControlsAndSteps(κ)
8: for i = 0 to i < n do
9: qnew ← Propagate(q, u)

10: if ! StateValidityChecker(qnew, κ) then
11: Break
12: else
13: UpdateConnections()
14: end if
15: end for
16: if qnew ∈ Qgoal then
17: return Path(qnew)
18: end if
19: end while
20: return NULL
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Algorithm 2 ReasoningProcess(KM, q)

1: � ← UpdateManipulationConstraints(KM, q)
2: L ← ComputeRobotLocation(q)
3: {fmin, fmax} ←ComputeControlRange(L)
4: κnew ←UpdateInstantiatedKnowledge(�, {fmin, fmax})
5: return κnew

– SampleControlsAndSteps: Samples the controls and the
number of steps describing the number of times the
selected control will be applied repeatedly. To sam-
ple the controls any control sampling strategy, such as
steering control sampling, can be used.

– Propagate: Applies the sampled control u on the state
q for �t time using the Open Dynamic Engine as state
propagator.

– StateValidityChecker: Is the physics-based state validity
checker (F) that validates the newly generated state by
taking into account the instantiated knowledge.

– UpdateConnections: Adds the accepted state to the
planner data structure and updates the connections
accordingly.

– Path: Returns a path from qinit to qgoal if the last gene-
rated state lies in the goal region, and NULL otherwise.

Algorithm 2 implements the reasoning process, it con-
tains the following steps:

– UpdateManipulationRegions: Activates and deactivates
the manipulation regions using the geometric reasoning
based on KM and the current state.

– ComputeRobotLocation: Determines the region L
where the robot lies.

– ComputeControlRange: Determines the control range
as a function of L.

– UpdateInstantiatedKnowledge: Updates the data
structures of the instantiated knowledge with the
updated manipulation regions and the control sampling
range.

The key point of the algorithm is that, during planning, the
instantiated knowledge is updated at each instant of time
by the reasoning process (Line 5), conditioning the sam-
pling of the controls (Line 7) and the state validity checking
procedure (Line 9).

6.3 Simulation Setups

The proposed approach is validated using three different
robot models, depicted in Fig. 9. The scenario presented in

Fig. 9 Planning scenes: a an holonomic mobile robot; b a car-like mobile robot; c a planar kinamatic chain. Video: https://sir.upc.edu/projects/
kautham/videos/k-PMP1.mp4

https://sir.upc.edu/projects/kautham/videos/k-PMP1.mp4
https://sir.upc.edu/projects/kautham/videos/k-PMP1.mp4
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Fig. 9a is for an holonomic mobile robot. It consists of a
robot (sphere), free-mObjects (blue and purple cubes, being
the purple ones heavier than blue cubes) and fixed-objects
(red walls). The problem is to go from qinit to qgoal , being
the possible solutions blocked by the blue or the purple
cubes. Since the motion of this robot is controlled by apply-
ing the control force, the range of the control force will be
selected by the reasoning process according to the object
to be pushed (blue or purple), as explained in Section 5.2.
The higher values of controls will only be applied when the
robot is in interaction with the object, unlike the conven-
tional planners that fix the control range at the start, our

approach dynamically varies the control range. The power
P consumed by the robot while moving along the path is
computed as

P =
n∑

i

fi · di

�ti
, (6)

with f and d being, respectively, the applied force and
displacement vectors, and �t the time duration.

Figure 9b describes the scene for the car-like robot. The
position and orientation of the car is controlled by adding

Fig. 10 State space projection
onto the workspace for the
scenes with the holonomic
mobile robot (top), the car-like
robot (middle) and the planar
manipulator (bottom) using: (1)
κ-KPIECE, (2) κ-RRT and (3)
κ-SyCLoP planners

a

b

c
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Fig. 11 Logarithmic plot of the power consumed while moving along the path for the holonomic mobile robot

Fig. 12 Logarithmic plot of the power consumed while moving along the path for the car-like robot

Fig. 13 Logarithmic plot of the power consumed while moving along the path for the planar manipulator
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the torque to the wheels and to the steering. The path to
the goal is blocked with the free-mObjects (blue cubes) and
in order to reach the goal the car has to clear the way by
pushing the objects away. The high amount of torque is only
required while pushing the objects. The reasoning process
updates the torque bounds by determining the forces that are
required to push the object, and transforms it into the torque
exerted by each wheel. The power consumed while moving
along the path is computed as

P =
n∑

i

τi · ωi, (7)

where τ is the torque exerted by the wheels and ω is the
corresponding angular velocity.

The scenario for the planar manipulator is depicted in
Fig. 9c, it consists of free-mObject (yellow and blue boxes),
the target object (green box) and the fixedObjects (red
cubes). The manipulator is shown in its initial state and the
goal is to grasp the target object, being the way to that object
blocked by the yellow box. Since one region of the yellow
box is occupied with the target object, the reasoning pro-
cess will change its type to co-mObject and it can only be
manipulate along y-axis (Once all the manipulation regions
of the yellow box will be free, its type will again update
to free-mObject). In-order to reach the goal the manipulator
has to push it away. The control forces are transformed into
joint torques using the transposed Jacobian and the power is
computed as

P =
n∑

i

τi · ωi, (8)

where now τ is the torque exerted by the joints and ω is
the corresponding angular joint velocity. Fig. 10 depicts
the configuration space for the κ-KPIECE, κ-RRT and
κ-SyCLoP planners for the above stated scenarios.

7 Results and Discussion

We compared κ-PMP with simple physics-based planning,
using RRT, KPIECE and SyCLoP as kinodynamic motion
planners, because a recent benchmarking study [11] of the
physics-based motion planning showed these planners as
being the most suitable for physics-based motion planning:
KPIECE computed the efficient solutions in terms of time
whereas SyCLoP and RRT computed the efficient solution
in terms of power. No comparison has been done with other
planners that seek different goals, such as [12, 28] that cope

with the rearrangement of the objects in the workspace or
such as [20] that are focus on optimization issues.

The parameter used in the comparison were:

– Power consumption: The total power consumed by the
robot while moving along the solution path.

– Planning time: The total time consumed by the planner
to compute the solution path.

– Success rate: The number of successful runs in the
maximum limit of planning time.

Fig. 14 Histogram of the average power consumed by the robots: a
holonomic mobile robot, b car-like robot, c planar manipulator
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Fig. 15 Histogram of the
average planning time. Scene1,
scene2 and scene3 correspond to
the scenes illustrated in Fig. 9

l

7.1 Quantitative Analysis

κ-PMP computes the power efficient solution as compared
to the simple physics-based motion planning approach.
We compared the best results that we obtained using
both approaches with different kinodynamic motion plan-
ners. Figures 11, 12, and 13 show the logarithmic plot of
power consumption vs time corresponding to the holonomic
mobile robot, the car-like robot and the planar manipula-
tor, respectively. In all cases κ-PMP is the most efficient
plan in terms of power. The average power consumed by
each planner in several runs is shown in the form of his-
togram (Fig. 14) corresponding to the three different robot
models. There is a significant difference in terms of power
consumption when using κ-PMP and simple physics-based
planning approaches.

The average planing time of several runs for three scenes
is presented in Fig. 15. κ-PMP computes the solution almost
in the same time as the traditional approach does. To com-
pute the success rate, we set the maximum planning time to

150 s and each query is executed 10 times. Figure 16 shows
the histogram of the success rate where it can be appreci-
ated that κ-PMP has a similar success rate as the traditional
one. In some cases (particularly for the manipulator) our
approach has the higher success rate than the traditional one.

7.2 Qualitative Analysis

The analysis of the results shown in the previous section
illustrates that κ-PMP preserves the behavior of the kin-
odynamic planner used (such as RRT or KPIECE) and
significantly reduce the power consumed. This is due to
the fact that κ-PMP dynamically varies the control sam-
pling range according to the physical properties of the
target object. Moreover, κ-PMP uses knowledge to deter-
mine the way to manipulate objects in order to reach the
goal in a more realistic way. For instance, Fig. 17 shows
a sequence of snapshots of an execution using a traditional
physics-based planning approach. Since it lacks the knowl-
edge about the way of manipulating the objects, the yellow

Fig. 16 Histogram of the
success rate. Scene1, scene2 and
scene3 correspond to the scenes
illustrated in Fig. 9
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Fig. 17 Execution of the
computed motion plan by the
simple physics-based motion
planner. It can be observed that
the task fails because the
manipulatable yellow object
ends at the gripper, thus
preventing the manipulator to
grasp the target green object

box ends stuck in the gripper, thus preventing the manipula-
tor to grasp the green box, reducing the success rate of the
planner.

κ-PMP manipulates the objects in a natural way with-
out putting any extra constraints (such as quasi static push).
Figure 18 shows the results of the dynamic interaction
between the robot and the object using both approaches. In
most of the cases simple physics-based planning approach
threw the object away (Fig. 18a) because it is unaware of
how much force is required to push. In contrast, Fig. 18b
shows the smoother interaction resulting from the use of
κ-PMP. It applies the forces based on the physical prop-
erties (such as mass and friction) and pushes the object
in a smooth way. Furthermore the solution path computed
by the κ-PMP is naturally biased toward the manipula-
tion regions, which helps to effectively manipulate the
objects.

7.3 Practical Application of the Proposed Approach

From the analysis done, it has been shown that the pro-
posed approach computes more robust and power efficient
motion trajectories, as compared to the kinodynamic or
simple physics-based planning approaches (mentioned in
the related work). Moreover, the current proposal handles
dynamic interaction in a more natural way. With a practical
perspective, therefore, this approach may be significantly
important in two directions. On the one hand, it can be a part
of an integrated task and motion planner. The availability of
power-efficient motion trajectories may have a relevant con-
tribution in the final performance of the integrated task and
motion planner, since the costs of the actions in a plan are
critical and greatly influence the decisions of the task plan-
ner. On the other hand, as a stand alone planner, it results
in a smart and powerful tool to manipulate objects in the
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Fig. 18 Snapshots of the
dynamic interactions between
the robot and the yellow object
corresponding to the simple
physics-based motion planning
(a) and to the κ-PMP planner
(b), respectively. Videos: https://
sir.upc.edu/projects/kautham/
videos/k-PMP2.mp4

a

b

clutter, without the need of reasoning at task level, giving
practical solutions to quite difficult problems.

8 Conclusion

This paper has proposed a framework, called κ-PMP, to
use knowledge to enhance physics-based motion planners
based on any kinodynamic algorithm, like RRT or KPIECE,

and on any dynamic engine, like ODE or Bullet. Manip-
ulation knowledge, inferred from an abstract knowledge
ontology coded using the Web Ontology Language (OWL),
is used to incorporate a reasoning process within the state
transition model. This allows to dynamically update: a) the
control sampling range based on the region of the configu-
ration space where the robot is located and on the physical
properties of the objects to be interacted; b) the regions from
where an object can be manipulated. A comparison of

https://sir.upc.edu/projects/kautham/videos/k-PMP2.mp4
https://sir.upc.edu/projects/kautham/videos/k-PMP2.mp4
https://sir.upc.edu/projects/kautham/videos/k-PMP2.mp4
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physics-based motion planners based on RRT, KPIECE and
SyCLoP with and without using the κ-PMP framework
has been carried out in three different scenarios involving
a holonomic mobile robot, a car-like robot and a planar
manipulator. The proposal resulted in an improvement of
the success rate and of the performance in terms of power
consumed and quality of the solutions.
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