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Randomized Physics-Based Motion Planning for
Grasping in Cluttered and Uncertain Environments

Muhayyuddin , Mark Moll , Lydia Kavraki, and Jan Rosell

Abstract—Planning motions to grasp an object in cluttered and
uncertain environments is a challenging task, particularly when a
collision-free trajectory does not exist and objects obstructing the
way are required to be carefully grasped and moved out. This letter
takes a different approach and proposes to address this problem
by using a randomized physics-based motion planner that permits
robot–object and object–object interactions. The main idea is to
avoid an explicit high-level reasoning of the task by providing the
motion planner with a physics engine to evaluate possible com-
plex multibody dynamical interactions. The approach is able to
solve the problem in complex scenarios, also considering uncer-
tainty in the objects’ pose and in the contact dynamics. The work
enhances the state validity checker, the control sampler, and the
tree exploration strategy of a kinodynamic motion planner called
KPIECE. The enhanced algorithm, called p-KPIECE, has been
validated in simulation and with real experiments. The results have
been compared with an ontological physics-based motion planner
and with task and motion planning approaches, resulting in a sig-
nificant improvement in terms of planning time, success rate, and
quality of the solution path.

Index Terms—Motion and path planning, manipulation plan-
ning, physics-based planning, planning under uncertainties.

I. INTRODUCTION

IN THE past decades, motion planning has been considered
under deterministic conditions, such as the positions of the

objects and the motion of the robots being precisely defined.
Recently, the incorporation of uncertainties and probabilistic
treatment of the planning problem has gained a lot of inter-
est, with the objective to compute robust motion plans for real
environments. In this line, planning the grasping motions in
unstructured and uncertain environments is a challenging task,
particularly when a collision-free trajectory from start to goal
does not exist. To tackle this issue, two approaches are mainly

Manuscript received September 10, 2017; accepted November 12, 2017. Date
of publication December 14, 2017; date of current version January 16, 2018.
This letter was recommended for publication by Associate Editor M. Morales
and Editor N. Amato upon evaluation of the reviewers’ comments. This work
was supported in part by Spanish Government project DPI2016-80077-R and in
part by the National Science Foundation (NSF) under Grants IIS1317849 and
IIS1718478. (Corresponding author: Muhayy Ud Din.)

Muhayyuddin and J. Rosell are with the Institute of Industrial and Control En-
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followed: task and motion planning [1]–[5] and clutter grasp-
ing [6]–[9]. The former breaks down the problem into a repeated
sequence of actions to remove the objects obstructing the path
towards the target: select an object to move, select the grasp-
ing points (or contact points to push) on the object, compute
a collision-free trajectory for grasping (pushing), and find an
appropriate position to place the grasped (pushed) object. Fi-
nally, a collision-free trajectory is computed to grasp the target
object. On the other hand, clutter grasping, the topic of this pa-
per, is based on planning motions such that interactions with the
objects are allowed, in order to clear the path to grasp the target
object.

The task and motion planning approaches work well for struc-
tured or semi-structured environments. However, cluttered and
uncertain environments raise challenging issues. On the one
hand, these approaches require the detailed semantic descrip-
tion of the scene and the explicit reasoning about each robot-
object interaction (to carefully move objects in clutter). On the
other hand, uncertainty has to be also considered at task level
regarding the action effects, which leads to computationally in-
tensive methods that may fail in highly cluttered and uncertain
environments, i.e., it may not be possible to find a robust se-
quence of actions to free the path towards the target object.
These challenging issues could be tackled more easily using
clutter grasping approaches. These strategies free the path to-
wards the target object by pushing the objects away without
explicitly reasoning about each interaction. This letter proposes
to address the challenging issues of clutter grasping by us-
ing a randomized physics-based motion planner for grasping
in the presence of uncertainty. The planner is not constrained
to straight-line motions and does not require any preprocessing
step.

Contributions: The main contribution of this letter is the
proposal of a physics-based motion planning strategy (framed
within sampling-based motion planning strategies) for grasping
in cluttered and uncertain environments. The main components
of the paper are (1) A probabilistic control sampler that samples
controls and computes the belief about the validity and the ro-
bustness of the sampled controls in the presence of object pose
uncertainty; (2) A tree exploration strategy which integrates the
computed belief with the planning data structures, biasing the
exploration towards the states that have high belief; (3) An uncer-
tainty handling strategy to cope with the propagation to future
states of the objects’ pose uncertainty which arises from robot-
object or object-object interactions. To handle the environment
dynamics, Open Dynamic Engine (ODE, www.ode.org) is
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used as state propagator. The proposal has been implemented as
a variant of the KPIECE planner [10].

The rest of the paper is structured as follows. First, Section II
provides an overview of the relevant literature, and Section III
formulates the problem and provides an overview of the solution.
Then, Section IV explains the proposed approach along with the
algorithms, and Section V describes the simulation set-up and
compares the proposed approach with others. Finally, Section VI
discusses the results of the work.

II. RELATED WORK

In a manipulation task, the main sources of uncertainty are the
imprecise knowledge of the initial state of the system (sensing
uncertainty), of the robot dynamics (motion uncertainty) and
of the future state of the environment when interactions exist
(environment uncertainty). Sensing uncertainty is tackled, for
instance, in [11] that describes the obstacle map using Gaussian
distributions, and constructs a road-map with minimum proba-
bility of collision. Motion uncertainty is considered in different
ways. Some approaches [12] consider the uncertainty in the
robot dynamics and in the initial state of the system as a zero
mean Gaussian noise, and use a variant of RRT [13] that, at
each step, computes the distribution of the state in a way such
that the robot keeps a safe distance from the obstacles. Others
use a linear quadratic regulator to maximize the probability to
reach the goal or to minimize an expected cost function [14],
or rely on Markov Decision Processes (MDPs) to compute the
global control policy over the environment to maximize the
probability of success [15]. Uncertainty in the environment is
considered in [16], which treats the extension step of an RRT
as a stochastic process, simulating multiple times and using
clustering techniques to create nodes, thus finding inherently
safer paths. Within the scope of RRT planners, a metric is in-
troduced in [17] to guide the search towards more convergent
trajectories, which increases robustness, as demonstrated with a
manipulator rearranging objects. Uncertainty in rearrangement
problems is also tackled in [18] using a learned policy from
user demonstrations, and with a similar idea in [9] for grasp-
ing in clutter. Learning from demonstrations avoid assuming
explicit knowledge of object or dynamics models, although this
has been done to include uncertainty while planning for clutter
grasping, assuming straight-line motions and quasi-static push
mechanics [6], [8].

Physics-based motion planning is a step further towards phys-
ical realism in the planning process, and therefore useful in
manipulation tasks. It extends kinodynamic motion planners
(i.e., those planners that consider kinematic and dynamics con-
straints) by incorporating the physics-based constraints, and by
allowing the robot-object and object-object interactions dur-
ing planning. These interactions are modeled based on rigid
body dynamics. Typically, sampling-based kindoynamic motion
planners (particularly tree-based planners) are used to sample
the states and to construct the solution path. The propagation
step is performed using a physics engine such as ODE. Within
this framework, approaches are proposed for problems like mo-
tion planning among collisionable obstacles [19], rearrangement
planning [20], [21], object placement [22], object sorting [23]

or bin picking [24]. This letter will tackle the clutter grasping
problem using a physics-based motion planner able to cope with
uncertainty in the initial state of the system and in the poses of
the objects as a result of robot-object or object-object interac-
tions.

III. PROBLEM FORMULATION

A. Problem Statement

Consider a motion planning problem that asks a robot to grasp
an object in a cluttered and uncertain environment, where possi-
bly no collision-free trajectory exists that moves the robot from
an initial configuration to a pre-grasping pose. All the objects
are assumed to have stable support surfaces and be laying on a
flat working region (e.g., a table). The objective is to compute
the sequence of robust controls and their durations in such a
way that, if applied to the system in the presence of object pose
uncertainty and imprecise knowledge of contact dynamics, it
moves the robot from the start to the goal state (a pre-grasping
pose), by pushing away those moveable objects obstructing the
path, while avoiding collisions with fixed obstacles. Object-
object interactions between moveable objects are allowed. Note
that we are not dealing with the rearrangement problem, i.e., the
final pose of the objects is not relevant.

Moreover, in order to ease the finding of a solution, the fol-
lowing constraints are set: 1) no interaction is allowed with the
target object; 2) as a result of interactions the object’s velocity
must be less than a given threshold, and no object should change
its support surface or fall from the working region.

B. World Modeling and State Validation

Let X be a differential manifold representing the state
space of the robot. At any time t the state of the robot
xt ∈ X is specified as xt = (qt , q̇t), where qt and q̇t de-
scribes the configuration of the robot and its time derivative,
respectively. The objects in the workspace are classified as
fixed, movable and target object, and are represented as O =
{Otarget,Omovable

1 , . . . ,Omovable
M ,Ofixed

1 , . . . ,Ofixed
F } with M and

F being the number of movable and fixed objects, respectively.
Their state space S consists of two components, S = {ρ,v}
with ρ representing the pose, and v the linear and angular ve-
locities. At any time t the state space st ∈ S of the target and
movable objects is represented as st = {starget, s1 , . . . , sM}. The
state of the world is modelled as W = X × S.

The discrete-time dynamic model of the robot is:

Wt+1 = f(Wt ,ut), (1)

where f : W ×U → W is the state transition function, with
control space U representing all possible controls that can be
applied to the system, and ut ∈ U a control input that is applied
at time t.

Let F be a state validity checker defined as F : W × C →
{true, false} where C represents the set of validity constraints
C = {kinodynamic, interaction}. The kinodynamic con-
straints refer to the workspace bounds, the joints limits, bounds
over the velocities, forces, and torques. The interaction con-
straints refer to the set of constraints that describe how the robot
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can interact with the environment, as described in the previous
subsection. A state is said to be valid if it satisfies all these
validity constraints.

C. Modeling Uncertainty

The current work handles: 1) uncertainty in the initial state
of the environment, 2) uncertainty in the robot motions and
3) uncertainty due to dynamic interactions.

1) The uncertainty in the initial pose of the objects can be
attributed to the process noise in the sensing of the environment
as measured, for instance, with a RGBD camera. In this work
object pose uncertainty is modeled as:

U init ∼ N (ρinit,minit), (2)

where N represents the multivariate Gaussian distribution with
ρinit being the mean representing the set of measured initial
poses of the objects, ρinit = {ρinit

1 . . . ρinit
M }, and minit the vari-

ance, minit = {minit
1 . . . minit

M }. Other uncertainty models could
be alternatively used as needed.

2) The stochastic discrete-time dynamic model of the robot
is described as:

Wt+1 = g(Wt ,ut , εt), (3)

where g : W ×U × ξ → W is the state transition function, with
the disturbance vector space ξ containing all possible distur-
bances that can be applied to the system. Disturbance in the
robot controls is modelled as:

U ε ∼ N (0,mε). (4)

The disturbance vector εt ∈ ξ represents the control uncertainty
at time t, and is used to introduce uncertainty in the control input
at this instant of time.

3) The uncertainty in the future states is propagated when
robot-object and object-object dynamic interactions occur.
These dynamic interactions involve various dynamic parame-
ters (such as friction, the pressure distribution under the object
surface, the contact forces and the inertial effects), whose values
greatly influence the behavior of the system. Physics engines
provide a good approximation of the actual contact dynam-
ics. ODE, in particular, does it with three contact parameters
D = {μ, c, e}, with μ being the vector of friction coefficients
between pairs of objects, c a constraint force mixing parameter
to soften constraints and e an error reduction parameter to relax
the constraints satisfaction. The uncertainty in the interactions
will be modelled by setting a multivariate Gaussian distribution
around the predefined approximated values:

UD ∼ N (Daprox,mD), (5)

with mean values Daprox = {μaprox, caprox, eaprox} and variance
mD = {mμ,mc,me}. The values of these parameters are tuned
in simulation and are qualitatively evaluated; the associated vari-
ances are small.

Fig. 1. Control selection process. The motions in green belong to the tree,
motions in black are the candidate motions and the motions in blue are the
particle motions that are used to compute the belief of the candidate motions.

IV. PROPOSED APPROACH

A. Solution Overview

The proposed approach considers the above stated motion
planning problem as an open-loop problem, i.e., it tries to de-
velop a robust strategy that absorbs the potential deviations in the
objects poses and in the results of the interactions occurring dur-
ing the planning process. The work presents a physics-based mo-
tion planner with an underlying sampling-based kinodynamic
planner that incorporates a robust tree growing strategy. This
strategy works in two phases. The first one is a control sampling
phase, once the state from which the tree will grow is selected,
the algorithm applies randomly sampled controls called can-
didate controls for some randomly sampled time durations to
generate valid motions called candidate motions (as depicted
in Fig. 1(a)). No uncertainty is considered in this phase. The
second phase considers the uncertainty in the system, as stated
in Section III-C, to compute the belief about the robustness
and validity of the candidate motions. This is done for each
candidate motion by considering the uncertainty and repeatedly
applying the candidate control to obtain a set of associated mo-
tions, called particle motions (as shown in Fig. 1(b), where U rgn

represents the uncertainty in the object’s pose as introduced in
Section IV-C2), and evaluating their validity. This belief is used
to select the best candidate motion (Fig. 1(c)), thus enhancing
the tree exploration process. Additionally, a strategy to handle
the uncertainty due to dynamic interaction is included in the
approach.

B. Kinodynamic Motion Planning

Kinodynamic Motion Planning by Interior and Exterior Cell
Exploration (KPIECE) [10], [25] is used to plan the trajectory.
It is a sampling-based kinodynamic motion planner, particu-
larly designed for systems with complex dynamics. A recent
benchmarking study [26] concluded that KPIECE is a very good
choice (to plan efficiently) for physics-based motion planing.
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KPIECE grows a tree of motions. A motion is defined as
ν = (x,u, d), where x is the start state of the motion, u is the
control vector that is applied at state x for a time duration d.
A key feature of KPIECE is how it estimates coverage during
exploration. In order to estimate the coverage, the state space is
projected into a low-dimensional space that is partitioned into
cells. As a result of the projection, motions are classified into
cells (each cell can contain several motions). These cells are
divided into interior and exterior, depending on whether neigh-
boring cells are occupied or not. The tree growing procedure is
based on first selecting a cell, then selecting a motion of that cell
and a state pertaining to it, from where the tree will grow. The
cell selection process for the tree growth is based on a parameter
called importance (cells with high importance are preferred for
expansion), defined for a cell z as:

Imp(z) =
log(I) · score

Ccell · (1 + |Neigh(z)|) · Cov(z)
, (6)

where I represents the planning iteration when the cell was
added to the grid, Ccell represents the number of times it has
been selected, Cov(z) represents the number of states in the
cell, |Neigh(z)| is the number of instantiated neighboring cells,
and score represents the exploration progress, a value that is
computed by evaluating the increase in the total coverage and
the time spent to achieve this increment in coverage (when
expanding from the cell). Once the cell is chosen, a motion
from that cell is selected using a half normal distribution (over
the indices of the motions, ordered starting with the newest).
Finally, a state is randomly picked from the selected motion and
a new motion is sampled from that selected state. The process
continues until the tree of motions reaches the goal state.

The current proposal extends this algorithm with:
1) Strategies to handle the propagation of objects’ pose un-

certainty into future states resulting from robot-object or
object-object interactions (Section IV-C).

2) A motion sampling strategy that samples motions to ex-
pand the tree and computes the belief about the robustness
of the sampled motions (Section IV-D).

3) A tree exploration strategy to modify the cell and
motion selection process according to these beliefs
(Section IV-E).

The algorithm, inspired by the original KPIECE algorithm,
is presented in Algorithm 1. As input it takes the initial state of
the world Winit , the uncertainty in the initial pose of the objects
U init, a goal region Qgoal , a time threshold Tmax , the number
of candidate motions k to use, the number of particle motions
np to evaluate the robustness, the displacement threshold d for
evaluating interactions, and the validity constraints C that are to
be used by the state validity checker. It starts with ν0 , a motion
of zero duration representing the initial state.

Lines 1 to 3, 12 and 14 are the default steps of KPIECE. The
contribution of the current proposal is implemented in func-
tion UpdatePoseUncertainty (line-13) that updates the
object pose uncertainty (Section IV-C2), in function Motion-
Sampler (line-8) that samples k motions and select the one that
has highest belief (Section IV-D), and in functions SelectMo-
tion (line-7) and UpdateCellImportance (line-15) that,

respectively, select a motion from the selected cell to grow the
tree and update the cell importance (Section IV-E).

C. Handling Uncertainty Propagation

To handle uncertainty, the most robust motion should be cho-
sen, i.e., those with higher chance to reach a valid state. For this
purpose, the robustness of the candidate motions is evaluated by
generating a set of particle motions. The belief of the candidate
motions is computed as a function of the validity of the motion
particles. This section explains how the particle motions are
generated and used to update the uncertainty pose of the objects
when interactions take place.

1) Particle Motion Generation: Particle motions are gen-
erated to evaluate a nominal candidate motion. Each particle
motion is generated by sampling the initial state, the dynamic
interaction parameters and the control to be applied: a) the initial
state is sampled from the PDF function associated to the initial
state of the nominal candidate motion (initially represented by
Eq. (2)); b) the dynamic parameters are sampled using the PDF
function described in Eq. (5); c) the control is determined by
randomly adding noise to the nominal candidate control using
Eq. (4). Then, a particle motion is obtained by applying the
selected control to the chosen initial state and considering the
sampled dynamic interaction parameters. Each particle motion
will be evaluated using the state validity checker F .

2) Updating Object Pose Uncertainty: Once interactions
take place, the object pose uncertainty of the displaced objects
is recomputed (objects may collide several times with the robot
and/or with other objects). The poses of the objects as a result of
interaction are highly variant depending on the contact regions
and interaction force directions. Therefore, the resultant poses
of the objects after applying several particle motions, can be
modelled using the Gaussian Mixture Model (GMM), which is
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a convenient way to model the data that comes from different
sources [27]:

U rgn =
n∑

j=1

αj · N (cj ,mj ) with αj ≥ 0 ,
n∑

j=1

αj = 1. (7)

Eq. (7) is computed using Expectation-Maximization (EM)
algorithm.

D. Probabilistic Motion Sampler

The function MotionSampler (Line-8, Algorithm 1) is
used to select a robust motion to expand the tree. It is a prob-
abilistic motion sampler that samples k candidates, computes
the belief abut their validity, and returns the one that has the
highest belief to be added to the tree data-structure. The process
is summarized in Algorithm 2 and uses the following functions:

� SampleCandidateMotions: Samples a set M of k
candidate motions by first randomly choosing a single state
from the input motion, and then by randomly sampling k
controls and durations.

� Propagatec : Uses Eq. (1) to compute the state resulting
from applying motion νi (i.e., sampled control u at the
selected state x for the time duration d).

� Propagatep : Uses Eq. (3) to compute the state resulting
from applying motion νi .

� StateValidityChecker: Evaluates the resultant
state of the world,Wc , using the state validity checkerF . If
Wc satisfies all the validity constraints, F will return true,
and false otherwise. The validity constraints are explained
in Section III-B.

� GetObjectPoses: Retrieves the object poses from Wc .

� SampleObjectPose: Samples the object poses using
Eq. (2) or Eq. (7), depending on whether the object is still
at its initial pose or has been moved due to interactions.

� SampleDynamicParameters: Samples the dynamic
parameters using the probability distribution function de-
scribed in Eq. (5).

� InteractionEvaluator: Returns true if |disp| ≤ d
or false otherwise, where disp is the displacement vector
containing the displacement(s) covered by the object(s) in
the result of interaction and d a given threshold (experi-
ments showed an increase in success rate if object pose
uncertainty was reduced by avoiding very large displace-
ments in highly cluttered scenes).

� ComputeBelief: Compute the belief of a motion as
bi = Pi

statePi
int. .

� AddMotionBelief: Add the belief into the corre-
sponding motion data structure in M.

� SelectMotion: Selects the motion from M that has
the highest belief, although with a given small probability,
it is replaced by SelectRandom that selects a motion
randomly regardless of its belief value.

E. Tree Exploration Strategy

The main parameters that control the tree exploration in
KPIECE are the cell selection process and the motion selec-
tion from the selected cell. In order to enhance the exploration
strategy to make the tree to grow through robust regions, our
approach modifies these processes as follows.

� The definition of a motion is modified by incorporating
the motion belief, i.e., ν = (W,u, d, bν ), where W is the
state of the world and bν represents the belief about the
robustness of ν.

� A belief value is associated with the cells, according to the
beliefs of the motions they contain. It is computed as the
mean value of the beliefs of the motions normalized for all
the cells, i.e.:

bcell =
bν

∑
∀cellj b

j
ν

with bν =
1
n

∑

∀νi ∈cell

bνi
(8)

� The Imp parameter is modified by integrating bcell in order
to favour those cells with higher belief (the strength of this
bias being controlled by a heuristic parameter f , set equal
to the number of cells):

Imp(z) =
(1 + fbcell) · log (I) · score

C · (1 + |Neigh(z)|) · Cov(z)
(9)

Then, once a cell is chosen for the exploration, the motion
from that cell is selected based on bν . If several motions have
the same belief, a random motion will be selected from them.
In order to explore the less certain regions, with a fixed small
probability, the selection is done as in the standard KPIECE.

V. EVALUATION

The proposed approach described in the previous section re-
sults in a planner that enhances the power of KPIECE by con-
sidering uncertainty, object interactions and by favoring the tree
exploration towards safer areas, allowing to plan motions in
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Fig. 2. Sequence of the snapshots of the execution with: (a) YuMi; (b) Kuka-
LWR. Videos: https://goo.gl/RzLVi1 and https://goo.gl/socxhb

Fig. 3. Sequence of snapshots of the execution on the real YuMi robot. Video:
https://goo.gl/bHspjZ

cluttered and uncertain environments. The main parameters of
the algorithm are evaluated in this section, where comparisons
with other approached are also done.

A. Simulation Setup

The simulation setup is implemented in The Kautham
Project [28], a C++ based open-source tool for motion planning.
It provides the flexibility to plan under geometric, kinodynamic
and physics-based constraints. It uses Open Motion Planning
Library (OMPL) [29] as a core set of sampling-based planning
algorithms. OMPL provides the integration with the Open Dy-
namic Engine that can be used as state propagator to handle
the physics-based constraints. A variant of KPIECE has been
implemented that includes all the extensions described above.
All experiments were run on an Intel Core i7-4500U 1.80 GHz
CPU with 16 GB memory.

The proposed approach has been tested with two different
robots: the 14 degree-of-freedoms (DOF) ABB YuMi and the
7 DOF KUKA-LWR, both of them with 2-finger grippers. The
example scenarios are presented in Fig. 2. The scene shown in
Fig 2(a) consists of movable objects (red cans) and the target
object (wine glass). The goal is to move the robot to a pre-grasp
configuration to grasp the wine glass, by pushing away those
cans obstructing the path. The scene depicted in Fig 2(b) consists
of movable objects of arbitrary shapes (boxes and bottle) and
the target object (cyan cylinder). Moreover, the approach is also
validated with the real YuMi robot, and a sequence of snapshots
of the execution is depicted in Fig. 3.

B. Benchmarking

The current approach is benchmarked against two ap-
proaches: 1) an ontological physics-based motion planner,

Fig. 4. Histogram of average number of states and cells of 60 runs.

Fig. 5. Graph of average planning time of 30 runs by varying the clutterness.

Fig. 6. Graph of average planning success rate of 30 runs by varying the
clutterness.

introduced in [30], that enhances KPIECE for physics-based
motion planning (it will be referred as o-KPIECE); 2) a task
and motion planning approach for grasping in clutter proposed
in [2], [3]. We run 30 simulation for each scenario.

1) Algorithmic Parameter Evaluation: The current ap-
proach always generates more efficient solutions in terms of
memory. Extensive tests showed that the number of generated
states in p-KPIECE is always less than o-KPIECE. This implies
that the number of generated cells is also less. Since the cell
parameters are updated after each propagation step, p-KPIECE
will update them faster, as compared to o-KPIECE. Fig. 4 shows
the histograms of the average number of generated states and
cells during planning, using o-KPIECE and p-KPIECE. The
comparison between planning time of both planners using dif-
ferent levels of clutterness is shown in Fig. 5. Since p-KPIECE
considers uncertainty, it performs an additional step that is ro-
bustness evaluation of each generated state, which makes it
computationally expensive as compared to the o-KPIECE. As a
result, for clutter scenes, the planning success rate of p-KPIECE
is higher, as shown in Fig. 6. The robustness evaluation depends
on the number of particle motions that are used to compute the
belief, the larger the number of particle motions the more robust
the plan. However, the computational time increases with the
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Fig. 7. Graph of average planning time of 60 runs by varying the number of
particle motions.

Fig. 8. Graph of average planning success rate of 60 runs by varying the
number of particle motions.

Fig. 9. Histogram of average planning time of 60 runs by varying the cell size.

number of particle motions, shown in Fig. 7, and this may drop
the planning success rate for not being able to find a solution on
time, as shown in Fig. 8. Another parameter that may affect the
planning process is the cell size used by KPIECE, that must
be properly set. Big cell sizes do not ease the identification of
the relevant regions of the workspace and fail to guide the tree
growth, resulting in long unrealistic paths. On the other hand,
smaller cell sizes better guide the search, thus enhancing the
planning efficiency. Too small cell sizes, however, may increase
the computational time required due to the huge number of cells
generated. This effect on the planning time is depicted in Fig. 9,
where cell size is represented as a percentage of the side length
with respect to the side of the cube that models the workspace.
In this work the state space is projected to the workspace, using
the end-effector position.

2) Comparison With Task Planning: The current proposal is
also compared with the task and motion planning approaches
(TMP) for grasping in the clutter without and with uncertainty
[2], [3], respectively. We have generated a qualitatively similar
setup as that in those references, as shown in Fig. 10. Since the
TMP approach presented in [2] does not consider uncertainty
in the environment, in order to be fair with the comparison, we

Fig. 10. Sequence of the snapshot of the executions with the YuMi and the
Kuka-LWR, for the comparison with the task and motion planning approach.
Videos: https://goo.gl/ZorqCF and https://goo.gl/F4fZVL

TABLE I
COMPARISON OF P-KPIECE WITH TASK AND MOTION PLANNING APPROACHES

Obj. Success Rate % Av. Planning Time (s)

TP TPU pKP pKPU TP TPU pKP pKPU

5 – 95 100 100 – 89 2.89 9.88
10 – 95 100 100 – 162 5.96 14.52
15 100 83 100 90 32 135 9.15 29.43
20 94 70 100 86 57 229 16.78 47.61
25 90 68 96 73 69 166 26.09 72.28
30 84 48 90 66 77 122 41.21 103.07
35 67 – 73 53 41 – 49.62 134.94
40 63 – 60 40 68 – 71.64 182.19

Obj. represents the number of objects used, TP and TPU represent the approaches presented
in [2] and [3], respectively. pKP and pKPU represent the p-KPIECE with and without
uncertainty, respectively.

have assumed that the uncertainty in the environment is almost
negligible, and then one particle motion is enough to evaluate
the robustness, i.e., k = 1. Whereas, to compare with [3], the
value of k is set to 15. The higher the value of k the higher the
confidence in the planner exploring safer regions, but the lower
the computationally efficiency. The chosen value will depend
on the problem; k = 15 worked well in the example scenarios
presented in this letter. Table I summarizes the results of the
comparison. The data regarding the TMP approaches has been
obtained from [2] and [3], being generated with an Intel Core i7-
4770 K machine with 16 GB RAM (i.e., a faster processor than
the one used in the current study). The task and motion planning
approach requires explicit reasoning to perform each action, i.e.,
repeatedly selects an object to pick, computes the collision free
trajectory to grasp it, finds and appropriate placement location
and moves the object to that location. In contrast, the current
proposal does not require explicit reasoning about the complex
dynamic multi-body interactions for moving in the clutter. At
each step, the objects must satisfy the global set of constraints,
that are easy to evaluate. This process makes it easy to compute
the robust plan efficiently, even in the presence of uncertainty.

C. Qualitative Analysis

The quality of the solution path computed by p-KPIECE is
improved as compared to the o-KPIECE. Since o-KPIECE does
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not evaluate the post-effect of dynamic interactions and the re-
sults of object-object interactions, that leads to the unreasonable
results. For cluttered scenes, in most of the cases, it displaces the
target object or drops the objects from the table surface, whereas
p-KPIECE carefully evaluates the post-effect of dynamic inter-
actions, interaction velocity and displacement covered by the
object in the result of interactions, greatly increasing the plan-
ning success rate. Moreover, the incorporation of robustness
evaluation phase results in the more stable and robust motion
plans, i.e., the integration of the results of robustness evaluation
within the planning data structure allows the search to be guided
towards the regions that are safer, thus increasing the success in
the final execution of the planned paths.

The solution computed by p-KPIECE is also qualitatively
different from the TMP solution. The TMP solution is generated
by integrating several move, pick and place actions. Each motion
planning query is set to move the robot to a particular place (for
picking or placing an object); these local queries do not consider
the final goal. In contrast, p-KPIECE computes the solution in
a more natural way, it launches a single query and moves away
the objects obstructing the path.

Currently, no smoothing operation over the trajectory is ap-
plied, although it can easily be added by using deterministic
control sampling strategies or by applying post processing over
the computed path as presented in [14].

VI. CONCLUSION

This study proposes a randomized physics-based motion
planner for planning the grasping motions in cluttered and un-
structured environments. The developed framework takes into
account the uncertainty in the objects’ pose and in the contact
dynamics. The KPIECE planner is enhanced by: a) introducing
a motion sampler, for the extension of the tree, that samples
motions and evaluates the belief about their robustness in the
presence of uncertainty; b) biasing the tree exploration strategy
based on the computed beliefs. The proposed planner enables
single actions to move multiple objects, thereby avoiding the
combinatorial explosion in the task planning part of TMP. The
work is validated in simulation and in real environment against
other approaches, such as ontological physic-based motion plan-
ner and task and motion planning approach. The results show
significant advantages in terms of planning time, success rate
and the quality of the computed solution path.
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[15] R. Alterovitz, T. Siméon, and K. Y. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with Markov motion un-
certainty,” in Robotics: Science and Systems. Cambridge, MA, USA: MIT
Press, 2007, pp. 233–241.

[16] N. A. Melchior and R. Simmons, “Particle RRT for path planning with
uncertainty,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 1617–
1624.

[17] A. M. Johnson, J. King, and S. Srinivasa,“Convergent planning,” IEEE
Robot. Autom. Lett., vol. 1, no. 2, pp. 1044–1051, Jul. 2016.

[18] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Unobservable monte carlo
planning for nonprehensile rearrangement tasks,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2017, pp. 4681–4688.

[19] Muhayyuddin, A. Akbari, and J. Rosell, “κ-PMP: Enhancing physics-
based motion planners with knowledge-based reasoning,” J. Intell. Robot.
Syst., Sep. 2017. [Online]. Available: https://doi.org/10.1007/s10846-017-
0698-z

[20] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in Proc. IEEE Int. Conf. Robot. Autom., 2015,
pp. 3075–3082.

[21] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in Proc. IEEE Int.
Conf. Robot. Autom., May 2016, pp. 3940–3947.

[22] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning for
object placement on cluttered table surfaces,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Sep. 2011, pp. 4627–4632.

[23] M. Gupta, J. Mller, and G. S. Sukhatme, “Using manipulation primitives
for object sorting in cluttered environments,” IEEE Trans. Autom. Sci.
Eng., vol. 12, no. 2, pp. 608–614, Apr. 2015.

[24] J. Mahler and K. Goldberg, “Learning deep policies for robot bin picking
by simulating robust grasping sequences,” in Proc. 1st Conf. Robot Learn.,
2017, pp. 515–524.

[25] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by interior-
exterior cell exploration,” in Algorithmic Foundation of Robotics VIII. New
York, NY, USA: Springer, 2009, pp. 449–464.

[26] M. Gillani, A. Akbari, and J. Rosell, “Physics-based motion planning:
Evaluation criteria and benchmarking,” in Robot 2015: Second Iberian
Robotics Conference. New York, NY, USA: Springer, 2016, pp. 43–55.

[27] P. Pfaff, C. Plagemann, and W. Burgard, “Gaussian mixture models for
probabilistic localization,” in Proc. IEEE Int. Conf. Robot. Autom., May
2008, pp. 467–472.
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