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Abstract
Planning efficiently at task and motion levels allows the setting of new challenges for robotic manipulation problems, like for
instance constrained table-top problems for bi-manual robots. In this scope, the appropriate combination of task and motion
planning levels plays an important role. Accordingly, a heuristic-based task and motion planning approach is proposed, in
which the computation of the heuristic addresses a geometrically relaxed problem, i.e., it only reasons upon objects placements,
grasp poses, and inverse kinematics solutions. Motion paths are evaluated lazily, i.e., only after an action has been selected
by the heuristic. This reduces the number of calls to the motion planner, while backtracking is reduced because the heuristic
captures most of the geometric constraints. The approach has been validated in simulation and on a real robot, with different
classes of table-top manipulation problems. Empirical comparison with recent approaches solving similar problems is also
reported, showing that the proposed approach results in significant improvement both in terms of planing time and success
rate.

Keywords Combined task and motion planning · Robot manipulation · Geometric reasoning · Path planning

1 Introduction

Solving robotic manipulation problems like setting a table
with various objects requires a planning system which is
capable of finding a complete sequence of actions along
with feasible paths. Such planning problems becomes more
challenging if the actions required to perform the task are
subject to strong geometric constraints from the environ-
ment (lack of space for placing objects, occlusions) and the
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robot (reachability of objects, kinematic constraints of the
manipulators). Then, the choice of geometric values like
object placements, grasp poses, or inverse kinematic solu-
tions (which may depend on each other) is crucial in order to
avoid any dead-end task or unfeasible plan. The problem is
even more relevant for bi-manual robots where the different
reachablity of each arm has to be accounted for.

To address manipulation planning problems, variants of
probabilistic roadmaps have been proposed, like the manip-
ulation graph by Siméon et al. (2004), or multimodal motion
planning techniques (Hauser andLatombe2010;Hauser et al.
2010). However, roadmap methods do not cope well with
the curse of dimensionality inherent to manipulation prob-
lems with many objects. Task andMotion Planning (TAMP),
which looks for a discrete sequence of symbolic actions along
with a motion plan for each of them, is another possible
approach. The underlying discrete structure of manipulation
tasks (grasps and placements) is explicitly represented in the
symbolic domain, which breaks down the complexity of the
problem. The main difficulty when using TAMP for con-
strained manipulation planning problems is to avoid calling
the motion planer for unfeasible actions, which is a challeng-
ing issue for efficiently solving manipulation problems.

There are two main ways of integrating task and motion
planning information recently studied: simultaneously or
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interleaved. Approaches like Akbari et al. (2016), Cambon
et al. (2009) and Garrett et al. (2015) account for geometric
information by calling a motion planner while task planning
is being pursued. Therefore in these approaches, a manip-
ulation plan is available when the task planning process is
terminated. On the contrary, the methods investigated by
Dantam et al. (2016), He et al. (2015), Lagriffoul and Andres
(2016) and Srivastava et al. (2014) decouple motion planning
from the task planning part. They first do task planning, and
then call the motion planner to evaluate the feasibility of the
plan. Upon failure, geometric constraints are fed back to the
task planner and the procedure resumes. This can be repeated
several times until a feasible manipulation plan is found.

The integration of task andmotion planning is challenging
when the problem is highly constrained in terms of robot
kinematics and obstacles’ placement, due to the fact that it
may require many calls to the motion planner while task
planning is being pursued, or a large number of restarts of a
task planner which has a high computational cost.

1.1 Amotivating example

Consider a manipulation problem including the bi-manual
Yumi robot and a set of objects as depicted in Fig. 1. The
task is to place objects A, B, and I on the tray and object C
inside shelf 2. Initially, the left arm cannot access objects A,
B, I, and H because they are located out of its reachability
space. Therefore, both arms have to collaborate with each
other to solve the task. Objects A and B are not directly
accessible due to the critical position of objects I and H that
cause collisions with the robot when their grasp is attempted.
In order to allow the robot to transfer the objects fromone side
of the table to the other, a tiny region is defined in the middle
of the table to which both arms can have access. Initially, this

Fig. 1 A motivating example: the Yumi robot must deliver objects A,
B, and I to the tray, and object C within the shelf 2 in the presence of
kinematics and placement constraints

region is entirely occupied by object D and we assume that
no objects can be stacked on top of it. This situation imposes
a constraint on the placement of any objects in this region.
Furthermore, only two objects can be placed over the tray at
most, due to its limited capacity, and the other ones can be
piled on top of each other if needed, i.e., objects A and I can
be placed on the tray surface and B on top of A. The order in
which the goals are achieved is a critical issue. For instance,
if object I is located on the tray at first, there is no feasible
kinematic solution for transferring object C within shelf 2
because its entrance would be occluded. Goal ordering is
also critical regarding actions including both arms and the
middle region.

It must be noted that the aforementioned challenges do
not require reasoning upon the details of robot motions to be
addressed. Most of them can be detected using lightweight
geometric reasoning processes with respect to arms inverse
kinematic solutions, collision detection for possible choices
of objects placements, performed at initial and final config-
urations of each action.

1.2 Contributions

The current study proposes a simultaneous TAMP approach
to efficiently deal with bi-manual robot manipulation prob-
lems in constrained environments. The proposed approach is
a heuristic-based planner, which searches for a plan in state
space, and takes into consideration geometric constraints
while computing heuristic values. Two types of geomet-
ric reasoning processes are used: (a) geometric reasoning
about placements of objects, grasping poses, and inverse
kinematic solutions; (b) geometric reasoning about motion.
The former involves Spatial, Reachability, andManipulation
reasoning, which are used to account for geometric con-
straints in heuristic values. The proposed heuristic is able
to cover a large range of tabletop manipulation problems. It
figures out and excludes unfeasible motion planning queries
which have kinematic problems or collisions in their start
and goal configurations, and guides state space search. The
latter calls a motion planner for validating state transitions
and either returns a path or provides feedback in case of fail-
ure. The state of planner is updated by the constraints which
are detected using both geometric reasoning processes.

2 Related work

2.1 Task planning approaches

There are different approaches in Artificial Intelligence (AI)
like classical planning, logic programming, or constraint sat-
isfaction, which have been used by robotics researchers to
devise TAMP planning approaches.
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Planning can be done by searching in plan space, like the
GRAPHPLAN task planner (Blum and Furst 1997), by iter-
ative expansion of a Planning Graph. A planning graph is
a data-structure interleaving state-levels and action-levels.
Each state-level consists of the union of atoms (see Def-
inition 1) achievable by the actions in the previous level,
and each action-level is the set of actions whose precondi-
tions are present in the previous state-level. The graph is
expanded until goal conditions appear in the last state-level,
while mutual exclusion relations among actions and states
are maintained. A plan is then looked for by backtracking
from the last state-level towards the initial state-level taking
mutual exclusions into account. If no plan can be found, the
graph is expanded and the procedure is repeated.

Alternatively, search can be done in state space. In this
line, one of the most efficient task planning approaches is
the FastForward (FF) (Hoffmann and Nebel 2001) which
performs a heuristic search. This is the task planner used in
this paper. It has two main components: the Enforced Hill
Climbing (EHC) module devoted to select the more promis-
ing successor state using the heuristic values, and theRelaxed
GRAPHPLAN module that computes the heuristic value in
terms of the estimated number of actions. This later module
also computes the set of helpful actions (i.e. those actions
that executed from that state have a high probability of being
in the solution plan), which allows making the exploration
more efficient. The Relaxed GRAPHPLAN module is based
on a relaxed version of the Planning Graph. The relaxed ver-
sion of the Planning Graph (called RPG) ignores the delete
lists of the actions, so mutual exclusion relations do not take
effect in the planningphase. From thefirst state-level atwhich
all the problem goals appear, a backward search is applied
that results in the relaxed plan composed of the sequence of
cheapest actions connecting the initial state to the final one.
The heuristic value is then computed as the number of actions
in the relaxed plan, and the helpful actions are those actions
of the RPG that appear in the first action level. If EHC fails,
everything done so far is skipped and the FF restarts consid-
ering Best-First Search (BFS) instead of EHC.

Other task planning techniques like hierarchical-based
planning recursively decompose tasks into sub-tasks, down to
ground actions.Dependency amongactions aremodeledwith
so called Hierarchical Task Network (HTN) (Ghallab et al.
2004). Linear Temporal Logic (LTL), Satisfiability Modulo
Theories (SMT), and Answer Set Programming (ASP) tackle
task planning with logic programming. LTL (Clarke et al.
1999) is a formalism used to specify tasks by combining
logical propositions and temporal operators (LTL formula),
for which models are found using dedicated solvers. SMT
(De Moura and Bjørner 2011) and ASP (Lifschitz 2002) are
constraint-based languages capable of expressing boolean
satisfiability problems combined with other theories, e.g.,
integers. SMT problems are solved with constraint program-

ing, while ASP problems are solved with Satisfiability (SAT)
solvers.

Usually, task planning domain is represented by the Plan-
ningDomainDefinition Language (PDDL) (Mcdermott et al.
1998) whose purpose is to standardize the setup of AI plan-
ning problems.

2.2 Motion planning approaches

Motion planning is mostly done in the configuration space
(C-space) (Lozano-Perez 1983). The C-space has as many
dimensions as degrees of freedom the robot has, and therefore
each point represents a configuration of the robot. The sub-
space corresponding to collision-free configurations is called
Cfree and the subspace corresponding to collision configura-
tions is called Cobs . Motion planning in C-space consists in
finding a path in Cfree between two configurations.

Recently, much study is centered in sampling-based
motion planning to provide efficient solutions for path plan-
ning by avoiding the need to compute the whole C-space.
Path planning based on the Probabilistic Roadmap Method
(PRM) (Kavraki et al. 1996) is done in two phases. The first
phase is the construction phase, that spends a specific amount
of time sampling Cfree and interconnecting samples with sim-
ple collision-free paths forming a roadmap. The second phase
is the query process, which connects a start configuration to a
goal configurationbyusinggraph search techniques.Alterna-
tively, path planning based on theRapidly Exploring Random
Tree (RRT) (LaValle and Kuffner 2001) explores the config-
uration space by expanding several branches of a tree. In the
generic RRT algorithm, a tree is initialized at the root where
the initial state is placed and it incrementally grows towards
the goal configuration along random directions biased by the
less explored areas. The RRT-Connect (Kuffner and LaValle
2000) is a variant of RRT that has two trees rooted at the start
and goal configurations that try to meet each other. This is
the motion planner used in this paper.

2.3 Manipulation planning

The limitation of generic motion planning emerges when a
robot requires to displace objects when there is no feasible
path between two robot configurations due to task con-
straints. Accordingly, various versions of motion planning
have been enhanced and applied for solving a manipula-
tion problem. One is called physics-based motion planning
and considers dynamic interactions between rigid bodies.
Physics-based motion planning has been applied in manip-
ulation problems where pushing actions are required, for
instance (Muhayyuddin et al. 2015). A more general manip-
ulation planning approach using several PRMs has been
developed by Siméon et al. (2004) that considers multiple
possible grasps (that can be used for re-grasping the objects)
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and stable placements of the movable objects to solve the
problem. The manipulation problem of Navigation Among
Movable Obstacles (NAMO) has been addressed in Stil-
man et al. (2007) and Stilman and Kuffner (2008) using a
backward search algorithm from the goal in order to move
the objects occluding the way between two robot configu-
rations. The works in Hauser et al. (2010) and Hauser and
Latombe (2010) have investigated multimodal motion plan-
ning for the application of climbing robots and push-planning
by a humanoid robot, respectively, without consideration of
causal reasoning. The work in Hauser (2014) deals with the
MinimumConstraint Removal (MCR) problemwhile search-
ing for a motion path. The algorithm incrementally grows
a PRM for estimating the connectivity of the configuration
space, and results in a path that violates the fewest object-
collision constraints.

In the related field of grasp planning, Azizi et al. (2017)
propose a geometric approach based on detecting a complete
set of object subsurfaces in a cluttered scene, which allows
the end-effector to safely approach and grasp the object.
In a similar vein, Hertle and Nebel (2017) present tech-
niques for sampling appropriate geometric configurations
for object placements, grasping poses, or robot positions,
in order to perform a specific action. And recently, a method
for grasp planning in cluttered environments has been pro-
posed (Muhayyuddin et al. 2018), that uses randomized
physics-based motion planning to account for robot–object
and object–object interactions. This allows a robot to push
obstructing objects away while reaching a target grasp pose.

2.4 Combining task andmotion planning
approaches

Different studies have dealt with various strategies to com-
bine task and motion planning with the aim of finding a
feasible plan to solve a given task.

The work in Dornhege et al. (2012) introduces seman-
tic attachments, which are external reasoners called when
the preconditions of actions are evaluated (a motion planner
in this case). Other approaches employ a generic interface
between symbolic and geometric planning levels to deter-
mine whether a collision-free motion for symbolic actions
exists or not (Erdem et al. 2011; Srivastava et al. 2014). This
is done by calling a motion planner for each symbolic action
in the plan obtained by the task planner. In case of failure,
obstructing objects are identified and the state of the task
planner is updatedwith no-good constraints referring to these
objects. The process is resumed and repeated until a feasible
manipulation plan is found. Lagriffoul et al. (2012, 2014)
introduce the concept of geometric backtracking, which
denotes the systematic search process in the space of grasps
and placements when instantiating a symbolic plan. They use
linear constraints generated from symbolic actions and the

kinematic model of the robot in order to prune the space of
grasps and placements. In all these approaches (except the
onebyDornhege et al.), a symbolic plan is computedfirst, and
geometric constraints are evaluated afterwards. By contrast,
our approach evaluates geometric constraints for individual
actions while task planning is performed. Next, we present
approaches in which task planning and geometric reasoning
are more tightly intertwined.

Planning Graph-based TAMP The problem of planning
push and pull actions by a mobile robot has been addressed
by Akbari et al. (2015a, b). It combines different knowledge-
based taskplannerswith physics-basedmotionplanners. This
approach evaluates the feasibility of actions while planning,
allowing to cut off unfeasible action branches at the task level
(Akbari et al. 2015a). A modified version of GRAPHPLAN
(Akbari et al. 2015b) was proposed to allow the retrieving of
several potential planswhichwere subsequently evaluated by
a physics-based motion planner to find the least-cost feasible
one. These approaches can be computationally expensive in
terms of number of calls to the motion planner.

FF-based TAMP (Cambon et al. 2009) present an algo-
rithm which interleaves search at symbolic and geometric
levels, where a PRMmotion planner calls the task planner to
guide roadmap sampling. Upon failure of a selected action,
the PRM is left for further exploration (thus keeping the prob-
abilistic completeness of sampling-based motion planners).
Guidance is provided by a heuristic value based on the sym-
bolic distance to the goal. On the other hand, the work in
Garrett et al. (2015) proposed an approach, called FFRob,
which computes the heuristic value by analyzing the feasibil-
ity of actions with a Conditional Reachability Graph (CRG)
based on a modification of PRM planner. It requires a pre-
processing step to initialize the CRG by sampling objects
poses and robot configurations, and determining conditions
under which these samples are reachable or not. The study
in Akbari et al. (2016) proposes the κ-TMP for multi mobile
robots. The approach calls a physics-based motion planner
during heuristic computation only for actions manipulating
an object. In the last two approaches, the heuristic function
considers geometric information, by calling the motion plan-
ner or by evaluating different accessibility queries which can
be expensive in constrained environments. To mitigate this
drawback, the current study only performs relaxed geometric
information in the heuristic computation.

Hierarchical-based TAMP The work in de Silva et al.
(2013) focuses on a combination based on the HTN planner.
It facilitates backtracking at different levels, also including an
interleaved backtracking procedure. The work in Kaelbling
and Lozano-Pérez (2011) has addressed an aggressively hier-
archical approach that constrains the abstract plan steps so
that they are serializable (i.e. so that the particular way of per-
forming the first step does not make it impossible to carry out
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Fig. 2 The proposed system overview of TAMP

subsequent steps), and handles the integration by operating
on detailed, continuous geometric representations.

LTL-based TAMP The work in He et al. (2015) applied
TAMP using the LTL task planner. Motion planning evalu-
ation launches after a task plan is provided. In the case of
failure, task planning input can be updated by a set of con-
straints in order to find another plan. The authors claim the
planner is capable enough in moving away objects that block
desired executions without requiring backtracking.

Constraint-based TAMP Thework inDantam et al. (2016)
proposed the IterativelyDeepenedTask andMotionPlanning
method using the SMT. It incrementally detects constraints
and keeps dynamically adding or eliminating a number of
task constrains based on the feedback obtained from the
RRT-Connect motion planner. The approach is able to find an
alternative plan when an unfeasible one is identified. It first
finds the task plan, and then motion planning is employed to
evaluate its feasibility. The work presented by Lagriffoul and
Andres (2016) addressesTAMPby solving a culprit detection
problem. In case of failure at the geometric level, a logical
explanation is computed. This explanation is fed back to the
ASP task planner, which prunes entire families of plans lead-
ing to similar failures. The cycle repeats until a feasible plan
is found.

Erdem et al. (2016) investigated different integration
methods between task and motion planning, focusing on
when and how feasibility checks should be performed.
Computational benefits and drawbacks of different method
are systematically compared. A similar analysis was done
by Lagriffoul et al. (2013), in which various degrees of post-
poning feasibility checks aremathematically and empirically
compared. Both studies point out the importance of the type
of problem considered for choosing an appropriate method,
e.g., large task spaces are not amenable to pre-computation
or, geometrically constrained problems benefit from tight
task-motion integration because it allows early pruning.

3 Overview of the proposed task andmotion
planning

The proposed TAMP extends the basic FF planner in order
to consider geometric information while planning. The
approach uses hybrid planning information for representing
the effects of actions in terms of symbolic and geometric
information. The architecture of the system is sketched in
Fig. 2. It consists of three main parts: Heuristic Computa-
tion, State Space Search, and Action Selection Process.

Heuristic Computation returns a heuristic value and a set
of helpful actions for a given state. The standard RPG is first
constructed and the relaxed plan is extracted. The relaxed
plan is then fed into a geometric reasoner which checks it
against certain geometric constraints, i.e., reachability, colli-
sions, and graspability. If these constraints are satisfied, the
heuristic value is returned alongwith helpful actions. If a con-
straint is violated, the state is updated with a set of atoms(s)
describing the cause of failure, and an alternative relaxed plan
is looked for. Hence the heuristic function is informative both
in terms of symbolic and geometric constraints.

State Space Search keeps the standard search procedure of
the FF planner, i.e., enforced hill climbing (EHC). From each
state, the action resulting in the state with lowest heuristic
value is selected. The only difference is that the heuristic
value now accounts for geometric constraints.

The Action Selection Process attempts to find a motion
path for an action. Using information from geometric rea-
soning, it is possible to define start and goal configurations
for the RRT-Connect motion planner, and compute a path. If
motion planning fails, the current state is updated with the
cause of failure and the search resumes. Otherwise, the action
is added to the partial plan at hand.

The rest of the paper is structured as follows. First, Sect. 4
introduces the planning domains, Sect. 5 describes how the
relaxed geometric reasoning process is accomplished for
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symbolic actions, and Sect. 6 illustrates the heuristic com-
putation based on the relaxed geometric reasoning. Then,
Sect. 7 demonstrates the planning part in the state space,
Sect. 8 discusses implementation issues and the results of dif-
ferent manipulation problems, and finally Sect. 9 concludes
the work.

4 Task andmotion planning formulation

4.1 Definitions

Definition 1 (HybridTAMPdomain)AhybridTAMPdomain
D is a tuple 〈A,F ,W, Acc, Sg〉whereA is the action space,
F a set of ground atoms,W = (R,O) is aworkspace includ-
ing a set of robots R and a set of movable and fixed objects
O. Acc represents potential accessible workspace regions
w.r.t. robot arms, Sg is a set of predefined grasping poses for
objects. Objects are denoted as:

O = {Om
1 (pos,fe) …Om

j (pos,fe), O f
1 (pos,fe) . . .

O f
k (pos,fe)} where j and k are the number of Movable and

Fixed objects respectively, whose initial position and orien-
tation is denoted by pos, and whose features are denoted by
f e. In the present case, the bi-manual Yumi robot is rep-
resented by R = {L Arm, RArm}, for left and right arms
respectively, and its configuration (a vector of joint angles)
is denoted by Q. Acc = {Accl , Accr , Accm} represent
predefined workspace regions which can be kinematically
reachable by the left arm, right arm, and both arms, respec-
tively. In order for the task planner to assign reachable targets
to each arm, configuration symbols are typed by ConfRob-
Left or ConfRobRight, which map to Accl ∪ Accm or Accr
∪ Accm , respectively. In this way, some unfeasible actions
are pruned from the search space of planning. For example,
if an object is located on the left side of a table which is not
reachable by the right arm, task planning applies the move
action considering the left arm.

Definition 2 (Hybrid action) A hybrid action a ∈ A is a tuple
〈name(a), pre(a), effect(a), coneffect(a), Q(a)〉 where:

– name(a) is the action symbolic name.
– pre(a) is a set of atoms which must hold for the action to
be applied. It includes:

– geometric details: geom(a) is the component and
numerical counterparts of pre(a). It represents geo-
metric values in W , i.e., how object poses and/or
robot configuration should be before executing the
action. This information is important for geometric
reasoning and setting a motion planning query.

– effect(a) represents the effects ofa on the state it is applied
to. It consists of:

– effect+(a), positive effects, i.e., a set of atoms added
to the current state;

– effect−(a), negative effects, i.e., a set of atoms deleted
from the current state.

– geometric details: geom+(a) and geom−(a) are the
components and numerical counterparts of effect+(a)

and effect−(a) computed during geometric reason-
ing. They represent changes in W , i.e., how object
poses and/or robot configuration aremodified by exe-
cuting the action. For instance, when an object is
transferred to a new location, the new pose is repre-
sented in geom+(a). A data-structure is so considered
to store the geometric information such as grasping
pose, object pose placement, and robot configura-
tions.

– coneffect(a) is the set of conditional effects, i.e., pairs
〈con(a), effect(a)〉 such that effect(a) is applied when the
formula con(a) holds.

– Q(a) is a query function to the motion planner which
computes amotion between two robot configurations and
stores the solution if any.

Definition 3 (Hybrid relaxed action) A hybrid relaxed action
a′ ∈ A′ (where A′ denotes the relaxed action space) is a
tuple 〈name(a′), pre(a′), effect(a′), coneffect(a′), ∅〉 where
effect(a′) contains only e f f ect+(a′) and geom+(a′). In
other words, a hybrid relaxed action does not incorporate
any negative effect. A hybrid relaxed domain D′ is a tuple

〈A′,F ,W, Acc, Sg〉.
Definition 4 (Hybrid state) A hybrid state S is a tuple S =
〈P,V〉 where P is a set of ground atoms which hold in that
state, and V represents a full geometric description of the
scene, i.e., configurations of robots and poses of objects.
Applying action a to state S1 results in state S2 as follows:

S2.P = {(S1.P ∪ effect+(a))\effect−(a)}
S2.V = {(S1.V ∪ geom+(a))\geom−(a)} (1)

The hybrid state is required to represent the effects of actions
in terms of symbolic and geometric information. A data-
structure for storing geometric information is considered that
is needed to compute heuristic values (see Sect. 6). The data-
structure of a state includes information like all poses of the
fixed and manipulatable objects along the configurations of
both robotic arms.

Definition 5 (Hybrid relaxed state) A hybrid relaxed state is
a tuple 〈P ′,V ′〉 where P ′ is a set of ground atoms which
hold in that state, V ′ represents a full geometric description
of the scene. P ′ and V ′ are the result of applying a relaxed
action (see Definition 3). Hence, since no negative effects are
considered, applying the relaxed action a′ to state S′

1 results
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in state S′
2 as follows:

S′
2.P ′ = {S′

1.P ′ ∪ effect+(a′)}
S′
2.V ′ = {S′

1.V ′ ∪ geom+(a′)} (2)

Accordingly, there can be many relaxed worlds depend-
ing on the number of geometric details recorded for each
symbol related to objects’ placements and robot configura-
tions, as symbols can have different values at the same time.
For instance, if there is one movable object which is initially
grasped by the robot and it is transferred to a new position
(by a relaxed action), the object will have two geometric
placements values, i.e., its initial position and the transferred
position, and the robot will also have two geometric configu-
ration values in this state. The following two possible worlds
exist for the example:

– The object is in the initial position and the robot is in the
initial configuration.

– The object is in the final position and the robot is in the
final configuration.

This concept allows the planner to evaluate all possible
situations when requested.

Definition 6 (Hybrid TAMP planning problem) A hybrid
TAMP planning problem T is represented by a tuple
〈D,S0,G〉 where D is a hybrid domain, S0 consists of a
set of ground atoms representing the initial symbolic state I
such that I ⊆ F along their geometric assignments regard-
ing the initial state of the worldW0, and G ⊆ F is the set of
symbolic goal conditions. The solution of a TAMP problem
is a hybrid plan, i.e., a sequence of symbolic actions achiev-
ing G, along with a feasible motion for each action, which
we denote by π .

Definition 7 (Hybrid relaxed planning problem) A hybrid
relaxed planning problem T ′ is described as a tuple 〈D′,Si ,
G〉 where D′ is the hybrid relaxed domain, and Si is the
current state from which the relaxed plan is computed. We
denote the relaxed plan by π ′.

4.2 Manipulation action templates

The following action templates and all the symbols (like those
considered for the reachability of robot arms) to solve the
pick and place manipulation tasks are defined using PDDL.
Note that PDDL can use ADL (Action Description Lan-
guage, Pednault 1989) which allows us to write operators in a
more compact way, using quantifiers and conditional effects.
Geometric details of symbolic actions conditions (such as
object placements or robot grasp configurations) are not pre-
computed. They are sampled and assigned on demand during
the planning process.

The action template Move(Rob, Q, Q′) is designed to
move the robot arm Rob between configurations Q and Q′
without holding any object. The action is applicable if the
following preconditions hold: the robot arm is located at
Q, its hand is empty, it can reach configuration Q′ and no
movable objects are blocking its way to Q′. The last pre-
condition is represented by fact isCrit(Om

j , Q′); objects that
make this fact to hold are called Critical Objects. As a result
of the action, conditional effects (specified by when), whose
purpose is to classify the symbolic configuration space for
the right arm RArm and the left arm LArm, are specified.
When the move action is applied to RArm, Q′ belongs to the
symbolic configurations considered for the right arm, Con-
fRobRight. When the move action is applied to LArm, Q′
belongs to symbolic configurations considered for the left
arm, ConfRobLeft.

Move(Rob, Q, Q′):

Pre: At(Rob, Q), HandEmpty(Rob), ∼UnReach(Rob,
Q′), ∀Om

j ∼isCrit(Om
j , Q

′)
Effect: when (con: Rob = RArm) ⇒ {At(Rob, Q′), Q′ ∈
ConfRobRight}, when (con: Rob = LArm) ⇒ {At(Rob,
Q′), Q′ ∈ ConfRobLeft}, ∼At(Rob, Q)

Theaction templateMoveHolding(Rob,Om
i , Q, Q′, Pos,

Pos′) is designed to move the robot Rob between configura-
tions Q and Q′ while holding object Om

i , changing its pose
from Pos to Pos′ if Pos′ is feasible. The action uses condi-
tional effects like those of the move action.

MoveHolding(Rob,Om
i , Q, Q′, Pos, Pos′):

Pre: At(Rob, Q), Holding(Rob,Om
i , Q, Pos),

∼ I n f eas(Pos′,Om
i ),∼ UnReach(Rob, Q′),∀Om

j ∼
isCri t(Om

j , Q′)
Effect: when (con : Rob = RArm) ⇒ {At(Rob, Q′),
Q′ ∈ Con f RobRight}, when(con : Rob = L Arm) ⇒
{At(Rob, Q′), Q′ ∈ Con f RobLe f t},
Holding(Rob,Om

i , Q′, Pos′),∼ At(Rob, Q),

∼ Holding(Rob,Om
i , Q, Pos)

The action templatePickUp(Rob,Om
i ,Q,Pos) is described

to pickOm
i by Rob. It is responsible to attachOm

i to the robot
gripperwhen the robot is located atQwith no attached object,
andOm

i lays on a position Pos on the surface and its top side
is free.

PickUp(Rob,Om
i , Q, Pos):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ), On-

surface(Om
i , Pos, Q)

Effect: Holding(Rob,Om
i , Q, Pos),∼ HandEmpty

(Rob),∼ On − sur f ace(Om
i , Pos, Q)
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The action template PutDown(Rob, Om
i , Q, Pos) is

described to put down Om
i over a surface at Pos by detach-

ing the object from the robot when Rob holds Om
i in Q. The

action is also responsible to negate isCrit facts for the asso-
ciated Om

i if any.
PutDown(Rob, Om

i , Q, Pos):

Pre: Holding(Rob, Om
i , Q, Pos)

Effect: HandEmpty(Rob), Clear(Om
i ), On-surface(Om

i ,
Pos, Q), ∼Holding(Rob, Om

i , Q), ∀Q′ ∼isCrit(Om
i , Q

′)

The action template Stack(Rob, Om
i , Om

j , Q, Pos) is used
to stack Om

i on the top of Om
j . It is applicable when Rob is

holdingOm
i and the top side ofOm

j whereOm
i is going to be

located is free.
Stack(Rob, Om

i , Om
j , Q, Pos):

Pre: Clear(Om
j ), Holding(Rob, Om

i , Q, Pos)
Effect: HandEmpty(Rob), Clear(Om

i ), On(Om
i , Om

j ,
Pos), ∼Clear(Om

j ), ∀Q′ ∼isCrit(Om
i , Q

′)

Finally, the action template UnStack(Rob, Om
i , Om

j , Q,
Pos) is applied to pick a pilled object Om

i .
UnStack(Rob, Om

i , Om
j , Q, Pos):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ),On(Om

i ,
Om

j , Pos)
Effect: Clear(Om

j ), Holding(Rob, Om
i , Q, Pos),

∼HandEmpty(Rob), ∼On(Om
i , Om

j , Pos), ∼Clear(Om
i )

5 Relaxed geometric reasoning

Relaxed geometric reasoning consists in evaluating geomet-
ric conditions of actions without calling a motion planner.
It indicates that motion planning is likely to be feasible for
the selected actions if certain task constraints are met. The
reasoning process involves three modules: reachability rea-
soning which looks for a feasible kinematic solution for the
robot regardless of any attached object, spatial reasoning
which determines a valid pose for the manipulated object,
and manipulation reasoning which determines if grasping is
possible. They are described in detail next.

Reachability reasoning (Rrch): To move the robot to a
location described by a set of potential pre-grasping poses, it
is first required to find a valid goal configuration. This is done
by calling an InverseKinematic (IK) solver for each potential
pre-grasping pose and evaluating whether the IK solution is
collision-free or not. The reasoning procedure returns the first
collision-free IK solution found, if any, and the correspond-
ing pre-grasping pose. Failure may occur if no IK solution
exists or if no collision-free IK solution exists. In this lat-

ter case, the reasoning procedure reports the collisionable
objects, ordered such that those that are manipulatable are
returned first.

Spatial reasoning (Rsp): It is used to determine a proper
placement for an object within a given regionwithout consid-
ering the robot. For the desired object, a pose is sampled such
that the object lies in the surface region and the initial stable
posture is maintained. The sampled object pose is then eval-
uated by a collision-checking module to determine whether
it collides with other objects. If the sampled pose is feasi-
ble, it is recorded in the geometry details of the action which
moves the object. Otherwise, another sample will be tried.
If all attempted samples are unfeasible, the reasoner reports
failure and the collisionable objects are returned. Moreover,
some other constraints are taken into consideration while
the sample placement is accomplished with respect to the
object features or final placement region limitation, e.g., big
or heavy objects are not allowed to be located on the top of
small or light objects.

Manipulation reasoning (Rmnp): It is used to choose the
grasp to be used to transfer an object from its current place-
ment to a valid goal placement (determined byRsp). From a
set of grasps, the reasoning process uses Rrch reasoning to
verify that one of the possible ways to grasp the object has
a collision-free IK solution both at the current and the goal
placements, and it is returned. If there is no grasp satisfying
these constraints and the reason is due to collisions and not to
the IK problem, then the collisionable objects are returned.
In this work, prismatic objects are used with the predefined
top and side grasps, the latter at different heights according
to the object height.

For instance in Fig. 1, it is supposed that the robot is going
to place object C within the shelf 2. If the object is initially
grasped from the top, there will be no valid configuration
for the robot to locate the object due to collision with the
shelf. On the contrary, if it grasps the object from the side, it
can find a feasible configuration to position the object on the
surface. Therefore, the reasoning process leads to avoiding
or reducing re-grasping operations.

Algorithm 1 describes the relaxed geometric function
when applying either the Move or MoveHolding action to
a given world W (describing the pose of the objects and
the configuration of the robot). Upon success, the positive
geometry details of the action are updatedwith the robot con-
figuration and the gripper pose. For theMoveHolding action,
the pose of the object is also added. Otherwise, the algorithm
returns in CO the set of objects whose collision causes the
failure of the action. This geometric reasoning is not required
for other manipulation actions as they only attach or detach
the object to/from the gripper. The evaluation of the Move
and MoveHolding actions is done as follows:
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– Reasoning about the Move action [lines 5–8]: the pro-
cess is done by the function Rrch(W, a) [line 6], which
searches for a feasible robot configuration and store it in
Qrob if it finds one. In this case, Res is set to True and the
geometric information is stored in the geometric details
of the action [lines 6–8]. Otherwise, it is set to False and
the CO causing the failure, is returned if any.

– Reasoning about the MoveHolding action [lines 9–16]:
the action is appraised by the functions Rsp(W, a) and
Rmnp(W, a,Om

i (posgoal)). The function Rsp(W, a)

searches for a feasible object placement, sets Ressp to
True if found, and returns Om

j (posgoal). Upon failure, it
returns False and CO may be returned [line 11]. Then,
the function Rmnp(W, a,Om

i (posgoal)) looks for a fea-
sible goal configuration and stores it in Qrob if found.
Otherwise, potential objects causing failure are returned
in CO.

Algorithm 1: RelaxGeomReas(W, a)

1 CO ← ∅
2 a.geom+ ← ∅
3 i ← 0
4 Res = False
5 if a.name = Move then
6 {Res, Qrob,CO, g} = Rrch(W, a)

7 if Res = True then
8 a.geom+.add(Qrob, g)

9 else if a.name = MoveHolding then
10 while i < Max do
11 {Ressp,Om

j (posgoal),CO} = Rsp(W, a)

12 if Ressp = True then
13 {Res, Qrob,CO, g} = Rmnp(W, a,Om

i (posgoal))
14 if Res = True then
15 a.geom+.add(Qrob,Om

j (posgoal), g)

16 break

17 else
18 a is not required to be evaluated;
19 Res = True

20 return {a.geom+, Res,CO}

6 Heuristic computation using relaxed
information

Both the heuristic value and helpful actions are computed
using relaxed symbolic information and relaxed geometric
reasoning. The purpose of using relaxed information is to
find a relaxed plan satisfying actions’ conditions in terms of
robot kinematics and object placement. Algorithm 2 illus-
trates (for a given state S and goal G) how the computation

of the heuristic and helpful actions of the standard FF is mod-
ified to include geometric information. This is done in three
steps: computing the RPG and the relaxed plan π ′, evaluat-
ing π ′, and computing the heuristic value along the helpful
actions, as detailed next.

Algorithm 2: RPG(S,G)

1 RPGgr ← RPGConst(G)

2 π ′ ← RPGPlan(RPGgr)

3 S′.W ′
0 = S.W and S′.F ′ = S.F

4 foreach {a′ ∈ π ′} do
5 while True do
6 W ′ = SetRelaxWorld(a′)
7 if W ′ = NULL then
8 {a′.geom+, Res,CO}←RelaxGeomReas(W ′, a′)
9 if Res = True then

10 S′ ←NextRelaxState(a′)
11 break

12 else
13 if MaxUpdates(S) < Max then
14 S ← UpdateState(S,CO)

15 return RPG(S,G)

16 else
17 return {∞,∅}

18 h(S) ← HeuristicValue()
19 H(S) ← HelpfulActions()
20 return {h, H(S)}

Computing the RPG and π ′ [lines 1, 2]: At the begin-
ning, theRPGgraphRPGgr containing state layers and action
layers is constructed by the function RPGConst [line 1]. The
function RPGPlan extracts π ′ from that graph [line 2]. This
process is done as the standard FF carries out.

Evaluating π ′ [lines 3–17]: The relaxed state is initi-
ated with the current geometric state of the world S.W and
the symbolic information of the state S.F [line 3]. Actions
appearing in π ′ are forwarded to the relaxed geometric rea-
soning for the feasibility check [line 8]. Upon success, action
a′ is applied to compute the new relaxed state [line 10]
according to Eq. (2). The key question is in which relaxed
world the corresponding action has to be evaluated because
multiple copies of poses and configurations for objects and
robot may exist. This is tackled in the function SetRelaxWorld

[line 6]which chooses one of the feasible relaxedworlds, i.e.,
with no collisions and meeting the precondition of the asso-
ciated relaxed action. At each successive call, the function
returns a different feasible relaxed world and returns NULL
if no more exist. In this latter case, the function MaxUpdates

[line 13] evaluateswhether a predefinedmaximumnumber of
trials to update the current state and find another RPG plan is
reached or not. A new relaxed plan is then required [line 15]
after updating the current state by the function UpdateState

[line 14] according to the feedback of the geometric reasoner:
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in the case of finding any CO, the ground atom isCrit(CO,
Q’) is added to the current state. Otherwise, the ground atom
UnReach(Rob, Q’) is added to the state regarding the cor-
responding arm, and also Infeas(Pos′, Om

i ) is inserted if the
evaluated action is of typeMoveHolding. Two examples are
given below to illustrate how task constraints (like critical
objects) and action details are determined.

Computing The heuristic value along with helpful actions
[lines 18–19]: After the relaxed plan becomes feasible in
terms of lightweight geometry information, the heuristic
value and the set of helpful actions of the current state
are returned. The function HeuristicValue returns the heuristic
value h(S) [line 18] and the function HelpfulActions extracts
helpful actions H(S) [line 19]. This process is also performed
in a similar way to the standard FF.

Example 1 To illustrate the heuristic computation using
relaxed information, consider the scene in Fig. 1 and let the
goal be to transfer object A to the middle region of the table
that it is occupied by object D. From the initial state of plan-
ning, the following relaxed plan is first extracted:

π ′
0 = {MoveA, PickUpA, MoveHoldingA,

PutDownA} �⇒ h(Sinit ) = 4
The selected actions are then forwarded to the relaxed geo-

metric reasoning check. The action MoveA is first evaluated
usingRrch . The reasoner tries to acquire a feasible Q in order
to grasp object A. All attempted samples have collisions with
object H and there is not any other relaxed world such that
objectH is in another position in order to find a feasible grasp-
ing pose of object A. Then, the constraint isCrit(H , Qa) is
asserted to the initial state and the heuristic computation is
restarted again and the following plan is retrieved:

π ′
1 = {MoveH, PickUpH, MoveHoldingH,

PutDownH, π ′
0} �⇒ h(Sinit ) = 8

As it can be seen, the heuristic value is increased. The
feasibility of actions are investigated. The reasoning process
is able to find geometric details for the actions Move and
MoveHolding applied to object H. But, the spatial reasoning
process is not able to find any valid placement for object A
when the action MoveHoldingA is being evaluated due to
collisions with the object D and there is not any relaxed
world where this object is located away from this region.
Therefore, the constraint isCrit(D, Qa) is added to the state.
Similarly, the heuristic computation is repeated and the fol-
lowing relaxed plan is obtained:

π ′
2 = {MoveD, PickUpD, MoveHoldingD,

PutDownD, π ′
1} �⇒ h(Sinit ) = 12

When this relaxed plan is forwarded to the reasoning pro-
cess, it can find feasible geometric details for all the relaxed
actions. So, the corresponding heuristic value and helpful
actions are achieved. In thisway, the integration of the relaxed
reasoning process with the heuristic function leads to pro-

vide the informed heuristic value taking into account task
constraints.

Example 2 Another advantageof consideringgeometric eval-
uation in the heuristic computation phase is to report failure in
the case of selecting invalid geometric values for the actions.
This case avoids the consideration of geometric backtrack-
ing which goes to the previous states in order to reselect their
geometric values. Let’s consider the example represented in
Fig. 3.

The goal is to move the right arm to a feasible grasp-
ing configuration of object A. The left part of the scene
shows the initial state and the right side presents one feasible
manipulation relaxed world after applying theMoveHolding
relaxed action.The symbolic relaxed solutionplan taking into
account geometric constraints is shown as well. The action
locates the object in posb2. When the geometric information
of the last relaxed actionMoveRA is going to be evaluated, it
figures out there is no feasible worldmaking this action feasi-
ble either with object B placed in position posb1 or posb2. The
reasoning process so reports the collisionable object B, and
again the heuristic computation is restarted to find a feasible
geometric assignment for locating object B.

7 Planning in the state space

A manipulation plan is found using state space search as in
the classical FF algorithm. The difference lies in the heuris-
tic function which includes geometric reasoning, and the
fact that action selection must be confirmed by the motion
planner. The pseudocode of this process is presented inAlgo-
rithm 3. It is worth noting that there is no pre-processing step
assigning geometric details (object placements or robot grasp
configurations) to the symbols: geometric details are resolved
during relaxed geometric reasoning. It gets T as input and
returns π if applicable. First, the trials counter tr ial is ini-
tialized [line 1] and the state Si gets the initial state [line 4].
The function Search implements the standard FF search pro-
cess using EHC or BFS [line 6]: it returns the next hybrid
state (see Eq. (1)) to visit Si+1 along with helpful action(s)
or action(s) with lowest heuristic value HSi . This value is
computed with the modified RPG function (see Algorithm 2),
hence taking geometric constraints into account.

If no actions resulting in a state with lower heuristic value
[line 7] can be found, the algorithm tries the whole process
again by taking into account previous trials. As long as the
maximum number of iterations is not reached [line 9], the
process is repeated with the initial state updated by the func-
tion UpdateInitState [line 11]. This function samples random
geometric states while taking all the constraints identified so
far into account. If the maximum number of trials is reached,
the process returns failure [line 14].

123



Autonomous Robots

Fig. 3 Example of reporting an unfeasible geometric value for the
placement of an object. Blue objects are fixed and the red ones are
manipulatable and the labels in the scene involve the geometric details
of objects. The characters L andR show the action applied to the left and

right arms respectively. The goal is to transfer the right arm to object
A. The successive relaxed worlds that result from relaxed actions in π ′
that add geometric details are shown

With an arbitrarily high value for Max, the probability
that all possible object poses and robot configurations be
considered gets close to 1. However, although Search [line 6]
is complete and MotionPlanner [line 16] is probabilistically
complete, overall completeness is lost since motion planning
runs with a cut-off time, and it is never queued for further
refinement in case of failure [lines 20, 21].

The MotionPlanner function is used to compute a collision-
free path for the currently selected action(s) [line 16]. If a
path is found, Res is set to True and the path Q is returned.
Then π is appended with the action(s) [line 18]. Otherwise,
Res is false and CO may contain colliding object(s). If
collision(s) are detected, the state is updated with ground
atom(s) isCrit(CO, Q′), otherwise simply with the ground
atom UnReach(Rob, Q′), and the algorithm keeps searching
until other HSi are considered.

8 Evaluation

8.1 Implementation

The proposed framework implementation consists of three
components: task planning, relaxed geometric reasoning,
and motion planning. Task planning is implemented using
a modified version of the FF planner developed in C++.
Relaxed geometric reasoning and motion planning use the
Kautham Project1 (Rosell et al. 2014), a C++ based open-
source tool for motion planning, that enables to plan under
geometric and kinodynamic constraints. It uses the Open
Motion Planning Library (OMPL) (Sucan et al. 2012) as
a core set of sampling-based planning algorithms. In this
work, the RRT-Connect motion planner is used for motion
planning. This planner is one of the most efficient motion

1 https://sir.upc.edu/projects/kautham/.
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Algorithm 3: The Proposed TAMP Algorithm
inputs : T =〈D,S0,G〉, D=〈A,F,W, Acc, Sg〉
output: π

1 tr ial ← 0
2 i ← 0
3 π ← ∅
4 Si ← Sinit
5 while G � Si do
6 {HSi , Si+1} ← Search(Si ,G,A))

7 if HSi = ∅ then
8 tr ial ← tr ial + 1
9 if tr ial < Max then

10 i ← 0
11 Si ← UpdateInitState()
12 Continue
13 else
14 return fail

15 else
16 {Q, Res,CO} = MotionPlanner(HSi )

17 if Res = True then
18 π .append(HSi )

19 else
20 Si ← UpdateState(CO)

21 Continue

22 i ← i + 1

23 return π

planners, but it does not guarantee optimal motions. The
Kautham Project involves different collision checking mod-
ules to detect robot–object and object–object collisions, and
features a placement sampling mechanism to find feasible
object poses in the work-space. For IK computations, it uses
the approach developed by Zaplana et al. (2018). Relaxed
geometric reasoning uses these modules in order to find fea-
sible sample geometric instances for symbolic actions. The
communication between task, relaxed geometric reasoning,
and motion planning modules is done via Robotic Operating
System (ROS) (Quigley et al. 2009).

8.2 Empirical results and discussion

All experiments were run on an Intel Core i7-4790U 4.00
GHz CPU machine with 32 GB memory. The platform
used is the two-arm Yumi robot (with 7 degree-of-freedoms
per arm and two finger grippers). Two different classes of
table-top manipulation problems were used for validation:
constrained problems, and cluttered tablemanipulation prob-
lems in which the object to be grasped is surrounded bymany
other objects.

Heuristic computationwasmademore efficient by caching
the computation of geometric details. As there are multiple
calls to the heuristic function from each state, geometric val-
ues can be stored and reused for similar relaxed actions in
different relaxed plans.

Regarding the first class of manipulation problems, the
scenario explained in Fig. 1 has been implemented and val-
idated in simulation. The problem consists of various types
of objects and is non-monotonic, i.e., target objects have to
be temporarily placed in regions which are not specified as
goal regions, and occluding objects need to be moved out of
their initial pose in order to free space in these temporary
locations. Some snapshots of the execution are displayed in
Fig. 4. Detecting various types of task constraints, the appro-
priate geometric details, aswell as the correct order of actions
play an important role in this manipulation problem, which
is mostly done in heuristic computation. The performance
of the problem is illustrated in Fig. 5 in terms of average
time of total manipulation planning and motion planning,
and also the reachability, spatial, and manipulation reason-
ing. The solution task plan is composed of 33 actions and the
success rate is 96%. The parameters used are the following:
the number of pre-grasping poses per object used for reacha-
bility reasoning is 20; the number of sample poses for spatial
reasoning is 20; theMax threshold is 20 in Algorithms 1 and
2, and 5 in Algorithm 3.

Regarding the second class of problems, several scenes
containing from 15 to 40 objects have been used and com-
pared with the approach presented in Srivastava et al. (2014)
and Muhayyuddin et al. (2018). In order to make the prob-
lems more challenging, only side-grasps are used to pick up
objects. The clutter table problem for 15 objects is repre-
sented in Fig. 6 which has been evaluated in simulation and
in the real environment. In this type of problems, it has been
observed that both robot arms can collaborate to free the path
towards the target object, like the problem shown in Fig. 7.
The clutter table problem where the goal is to hold the red
object surrounded by 40 objects is displayed in Fig. 8. This
problem is in essence similar to the problems used in Srivas-
tava et al. (2014) and Muhayyuddin et al. (2018).

Table 1 summarizes the comparison between the current
proposal (HTAMP) and the work in Srivastava et al. (2014)
(labeled here as Ap1) and the work in Muhayyuddin et al.
(2018) (labeled as Ap2) in terms of success rate and planning
time. We observed that the HTAMP approach has efficiently
solved the clutter table problems in both terms as compared
with the Ap1 approach. One of the main reasons is that
HTAMP detects the task constraints in the heuristic compu-
tation phase and selects carefully the objects placements in
advance of calling motion planning. On the contrary, Ap1
does first symbolic task planning, calling a motion plan-
ner that feeds back constraint to the state. Moreover, Ap1
may require to manipulate the objects more than once. The
average time of the reachability, spatial, and manipulation
reasoning, and also motion planning for this type of problem
is shown in Table 2. As it can be seen, the relaxed geometric
reasoning time increases according to the difficulty of the
problem when the number of objects increases. This is due
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Fig. 4 The sequence of the snapshots of the execution for the 3D world problem. Video: https://sir.upc.es/projects/kautham/videos/HTAMP-3D.
mp4

to the fact that the relaxed geometric process requires more
effort to find valid geometric details for grasping as well as
for placement of objects on the table.

In comparison to Ap2, HTAMP is also able to solve
more efficiently cluttered problems with increasing num-
ber of obstacles in the workspace. The approach Ap2 is a
randomized physics-based motion planner designed to plan
grasping motions in cluttered environments, when the exact
final placement of the objects is not relevant. The approach
does not rely in a combination of task and motion levels,
and no high-level explicit reasoning is done. Instead, robot–
object and object–object interactions are allowed to push
away those objects obstructing the way toward the object
to be grasped. We observe that HTAMP scales better with
the increasing number of objects regarding planning time,
although the execution time can be worse if many objects
have to be removed.

The proposed approach can be extended to consider other
manipulation problems in which push or pull actions are
required. To tackle this, those symbolic actions have to be
defined in the action space, and also the relaxed geomet-
ric reasoning can be extended in order to compute feasible
geometry information for the new actions.

Robotics manipulation problems become more challeng-
ing when the robot is required to place several objects in
limited goal regions where placements of objects are critical.
In such case, a large number of different object pose sam-
ples may be needed to determine the best feasible ones. This
could decrease the performance of HTAMP since the num-
ber of combinations can grow very large (as it is the case for

Fig. 5 The average time related to total manipulation planning and
motion planning, and also reachability, spatial, and manipulation rea-
soning for 30 runs

packing problems). Therefore heuristic computation could
be slower, or the planner could have to restart several times
if no feasible combination of object poses is found.

9 Conclusion

To solvemanipulation problems for bi-manual robots, a com-
bined heuristic-based task andmotion planning approach that
looks for the plan in the state space has been proposed. The
main challenge was to provide low-level geometric informa-
tion for guiding the task planner. The proposed idea is to use
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Fig. 6 The sequence of the execution snapshots for the clutteredmanip-
ulation problemwhere the Yumi robot has to grasp the red object among
15 ones in the environment. The problem has been implemented in sim-

ulation (a-1 to a-6) and the real environment (b-1 to b-6). Video: https://
sir.upc.es/projects/kautham/videos/HTAMP-15.mp4

Fig. 7 The sequence of the snapshots of the execution for the cluttered
manipulation problem where the Yumi robot has to grasp the red object
among 20 ones in the environment. Video: https://sir.upc.es/projects/
kautham/videos/HTAMP-20.mp4

the FF heuristic state-space task planner, whichwasmodified
so that its heuristic function takes geometric constraints into
account through various geometric reasoning procedures.

During the heuristic computation, a relaxed geometric
problem is addressed, which considers only certain types
of task constraints. Therefore, the heuristic function is able
to guide state space search towards geometrically feasible
states. Once an action has been selected in the state space,
the motion planner is called to confirm this choice by com-
puting a collision-free path.

Fig. 8 Some sequence of the snapshots of the execution for the cluttered
manipulation problem where the Yumi robot has to grasp the red object
among 40 ones in the environment. Video: https://sir.upc.es/projects/
kautham/videos/HTAMP-40.mp4

Using this technique, the proposed approach is able to
find feasible manipulation plans without geometric pre-
computation, and without geometric backtracking. The pro-
posed approach has been validated with various classes of
table-topmanipulation problems of different complexity, and
a thorough comparison with recent approaches is presented.
The proposal has been implemented and evaluated in sim-
ulation and through real experiments. The results show that
the approach can solve manipulation tasks efficiently both in
terms of planning time and success rate.

As future work, the integration of semantic knowledge
with the planning process is envisioned, which will allow to
flexibly apply the proposed approach to problems involving
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Table 1 Comparison of HTAMP with two different approaches. Ap1
presented in Srivastava et al. (2014) andAp2 presented inMuhayyuddin
et al. (2018)

Problem Success rate % Av. planning time

Ap1 Ap2 HTAMP Ap1 Ap2 HTAMP

Clutter 15 100 100 100 32 9.1 10.1

Clutter 20 94 100 100 57 16.7 11.8

Clutter 25 90 96 100 69 26 15.3

Clutter30 84 90 100 77 41.2 18.2

Clutter 35 67 73 95 41 49.6 19.3

Clutter 40 63 60 95 68 71.6 21.8

Table 2 The average total reachability, spatial, and manipulation rea-
soning, and also motion planning time of the cluttered environment
problems

Problem Rch-reas Sp-reas Manip-reas Motion planning

Clutter 15 0.8 0.11 1.01 5.74

Clutter 20 1.12 0.21 1.9 6.41

Clutter 25 1.45 0.32 2.45 8.42

Clutter 30 1.59 0.49 3.6 10.63

Clutter 35 2.17 0.71 3.95 9.81

Clutter 40 3.07 1.05 5.17 10.1

manipulation of objects with various attributes and specific
manipulation constraints. Also, we may consider alternative
task planning techniques, such as contingent planning, as a
way to cope with uncertainty and achieve better performance
in real situations.
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